

Trends and Evolution of Window Inter faces

A Discussion on Interfaces and Interaction Techniques for
Window Management

Martin Tomitsch
University of Technology, Vienna

December 2003

 2

Supervisors:

Univ. Prof. DI Dr. Thomas Grechenig
Institut für Automation und industrielle Software
Research Industrial Software Engineering (RISE)
Technische Universität Wien

Nicolas Roussel, Maître de Conférences
Projet In Situ
Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud

 3

Abstract

The Xerox Star, the first personal computer with a graphical user interface, was
developed about twenty-five years ago. Seminal work on graphical interfaces even dates

back to the 1960s. However, current techniques used for window management are merely

variations of methods designed in the 1980s with very little improvements. Users are
more and more confronted to the fact that the direct manipulation paradigm and the

desktop metaphor do not scale well to the increased number of windows, palettes and

icons that we need to manage today.

This document starts with a retrospective on graphical user interfaces and the concept of

window manager. It then describes state-of-the-art window interfaces as well as

innovative techniques that have been recently proposed by the research community.
Finally, it ends with some suggestions for new research directions on window

management.

Zusammenfassung

Der Xerox Star, der erste Personal Computer mit einer grafischen Benutzerschnittstelle,
wurde bereits vor etwa 25 Jahren entwickelt, erste Visionen grafischer Schnittstellen

reichen sogar bis 1960 zurück. Methoden für Window Management, wie wir sie heute in

Systemen mit grafischen Schnittstellen finden, sind lediglich leicht verbesserte
Variationen von jenen, die um 1980 entwickelt wurden. Aufgrund der hohen Anzahl von

Fenstern, Paletten und Icons, die wir heute handhaben müssen, sind direkte Manipulation

und die Desktop Metapher nicht mehr ausreichend.

Diese Arbeit beginnt mit einer Retrospektive von grafischen Benutzerschnittstellen,

gefolgt von einer allgemeinen Einführung in das Konzept von Window Managern. Eine

Übersicht derzeit am Markt befindlicher Systeme mit grafischen Schnittstellen, sowie die
Besprechung von neuen Innovationen in diesem Bereich, geben einen Überblick über die

aktuelle Situation. Zum Abschluss dieser Arbeit werden mögliche Richtungen neuer

Forschungstrends aufgezeigt.

 4

Résumé

Le Xerox Star, premier ordinateur personnel proposant une interface graphique, a été
conçu il y a environ vingt-cinq ans. Les premiers travaux sur les interfaces graphiques

remontent aux années 60. Pourtant, les techniques actuellement utilisées pour la gestion

de fenêtres ne différent pas ou très peu de celles imaginées dans les années 80. Et les
utilisateurs se trouvent chaque jour un peu plus confrontés au fait que le paradigme de la

manipulation directe et la métaphore du bureau ne sont plus adaptés au nombre de

fenêtres, de palettes et d'icônes que nous devons aujourd'hui gérer.

Ce document commence par une rétrospective des interfaces graphiques et la présentation

du concept de gestionnaire de fenêtres. Nous passons ensuite en revue un certain nombre

de gestionnaires de fenêtres actuels ainsi que différentes techniques innovantes proposées
récemment par la communauté de recherche. Enfin, nous terminons par une discussion

sur quelques directions de recherche qui nous semblent prometteuses pour l'avenir.

 5

Contents

Introduction..9

1 Origins of window management...11
Historical overview...12
The rise of the graphical user interface..13
Early window systems..16
Direct ancestors..19
Prospects..23

2 The concept of window managers..25
Definition of terms..25
Presentation..27

Window layout strategies..27
Rectangular opaque windows ...29
Icons..29
Titles and borders...30
Menus..30
Scroll bars..31
Virtual workspaces...32
Application user interface...33

Operations..33
Window manipulation ..33
User input...34
Interaction devices..35

Characteristics of window managers...35
Technical aspects..36
Window managers in other domains ...37

3 Directions for innovation of human-computer interfaces..39
Technological progress...40
Visual clutter and Windowitis...40
Designing for the user...41

Tasks versus objects and operations..41
User expectations...42

Human factors..43
Present development ...44
Future prospects ...44

4 State of the art in window management ..47
Apple Mac OS..48

History ...48
User experience..49

 6

Technology aspects..52
Microsoft Windows..52

Introduction ...53
History...54
User experience..55
Prospects..57

Window managers for the GNU/Linux operating system ..57
Introduction ...58
The X Window System ..59
A descriptive example..60
Desktop environments..62
Window managers..63
Summary..66

5 Visions of window management ..69
Conservative novelties..70

Novel window operations...70
Dynamic space management ..75
Improved tiled windows...78

Experimental innovations...83
Adaptive window management...83
Zooming user interfaces...84
Three dimensional windows...88
Virtual reality environments...93
The pile metaphor ..95
Gesture-based interaction ...96

Other approaches..96
Discussion..98

6 Drafts for new designs...105
Specific issues..105
Beyond the desktop metaphor ...107
Sketches...109
Provisions for the future...113

Synopsis...115

APPENDIX ..117
Acronyms...119
Credits to figures..121
Bibliography ..125

 7

Preface

Most of research work that led to this thesis was conducted during my stay in Paris, at the
In Situ project group, which is part of the Laboratoire de Recherche en Informatique at

the Université Paris-Sud. I am grateful for the guidance and support of many people, who

have made my visit at the university in Paris and this work possible.

First, I would like to thank my supervisor Thomas Grechenig, who supported me from the

beginning in my rather unconventional idea of writing my thesis in Paris, and who also

provided me with guidance and ideas that gave shape to this document.

I am much obliged to Nicolas Roussel, who supported me throughout my thesis. His

suggestions and research work in the field of window management have led to the topic

of this thesis. I am grateful for his continuing guidance and many inspirational
discussions, which helped to shape my understanding of window managers. He also

helped me with the French translation of the abstract.

Loic Dachary, Nicolas Gaudron, Jean-Daniel Fekete, Yves Guiard, and other members of
the In Situ project group provided valuable ideas, discussions, and reactions to the work

as it progressed. I would also like to thank Wendy Mackay and Michel Beaudouin-Lafon

for the opportunity to participate in the In Situ project.

My special thanks go to Miruna Stroe, who has read the document and made essential

contributions to content and style. She has also provided me with the title window

pictures and helped forming the graphical layout of this document. I also thank Andreas
Aschenbrenner for proofreading and valuable comments.

However, there are many others who contributed to this work. My thanks go to all the

fellow students and friends, who supported me during my work, for their interest and
suggestions.

 9

0 Introduction

Literally, a window is an opening in the wall of a building that allows people to see

outside. With the advent of graphical user interfaces the term was adopted for computing

environments, where it describes a canvas that allows people to behold specific parts of
an application. In computing, a window is a portion of a computer screen, usually

rectangular in shape, on which applications might draw their graphical output. The

concept of windows supports several simultaneously running computer processes. The
size and position can normally be adjusted, and windows may also overlap. During the

last decades this abstraction proved to work well in graphical user environments, and

today all popular computer systems with a graphical user interface are based on the
window metaphor.

Windows represent an elemental part of WIMP interfaces, where WIMP stands for

windows, icons, menus and a pointing device. WIMP interfaces often come along with
the desktop metaphor that has been developed at Xerox PARC in the 1970s. Windows

were first presented in the Smalltalk environment, where they behaved like overlapping

sheets of paper. This corresponds to the independent overlapping windows approach,
which is followed by almost all window systems today. Windows are allowed to overlap

each other, window operations are performed one at a time, and size and location of each

window are independent.

Overlapping windows were a solution to handle the problem of limited available space

due to small-sized screens in the 1980s. Today we have screens with much higher

resolutions at our disposal. Additionally graphics processing speed has increased as well,
which makes animations and other sophisticated graphic effects feasible. However,

current window systems like Apple Mac OS or Microsoft Windows still follow the same

principles that were defined in the 1980s. Graphics features have improved slightly, and
recently these systems also started taking advantage of advanced graphics libraries.

However most of the methods used for window management today are just variations of

techniques that were developed in the beginning of the era of graphical user interfaces.

Today users have to deal with tasks that involve several applications, while each

application consists of several windows or palettes. Due to the independent overlapping

windows approach users need to do the organisation themselves and each window must
be handled separately. With the increase in the number of windows, palettes and icons,

this became a time-consuming activity. Task switching became also more complex due to

the increased number of windows per task. Furthermore users are not able to see the
overview of their desktop due to overlapping windows.

 10

Kahn et al. also observed the phenomenon of too many open windows and called this

situation “Windowitis” . They stated that in Windowitis situations users become quickly

disoriented and lose the relationships that exist between windows.

Many solutions have been proposed by the research community to address these problems,

including novel metaphors, interaction techniques or layout algorithms. Most of the

proposals are located within the design space of WIMP interfaces and aim to improve
window housekeeping activities through introducing new window management

techniques. Only a few present novel metaphors, however almost all of them still rely on

windows as the main technique to display information. Some approaches also try to
explore three-dimensional interaction techniques for window interfaces.

To find the next generation of graphical user interfaces it is necessary to look at their

origins first. Most of the fundamental window management techniques were developed
during the initial period of window interfaces. It is also necessary to understand that

WIMP interfaces are just one possible set of alternatives for graphical user interfaces.

There might be other characteristic graphical user interfaces that scale better with the
increased amount of information we have to deal with today than WIMP interfaces.

This document is divided into six main chapters. The first chapter reveals the origins of

graphical user interfaces and discusses some early window managers that were available
at that time. It concludes with an overview of window interfaces that influenced graphical

user interfaces that dominate the scene today, which are the Xerox Star, Apple Lisa and

Apple Macintosh. The next chapter introduces the concept of window managers. This
includes a definition of terms, presentation of WIMP interface elements, and different

concepts such as layout strategies. Furthermore this section discusses benefits of window

managers and points out a few technical aspects, such as different models of memory
space organisation. The third chapter unveils problems that are raised by the increased

number of items we have to deal with today and shows that they occur due to

shortcomings of current window managers. The fourth chapter provides an overview of
the state of the art in window interfaces. There are three prevailing window systems,

which are Apple Mac OS, Microsoft Windows and the X Window System. Again, the

emphasis will be put on window management aspects. Finally, the fifth chapter presents
novel techniques for window management, which are divided into conservative novelties

and experimental innovations. The first section focuses on proposals that aim to improve

current window management methods, while the main paradigm remains the desktop
metaphor. The section, termed experimental innovations, presents concepts that introduce

entirely new techniques to window management, such as three-dimensional interaction

techniques. To conclude this chapter, a discussion of the presented approaches will be
given. The closing chapter, chapter six, will suggest some possible future directions of

development of graphical user interfaces, including a few drafts to illustrate these new

interfaces.

 11

Chapter 1
1 Or igins of window management

The advent of window management was initiated by the rise of graphical user interfaces,

which according to Andries van Dam represent the third generation of human-computer
interaction evolution [van Dam 1997]. To give an overview of the development of

window interfaces it is therefore necessary to look at the evolution of human-computer

interaction first, which van Dam classifies into four main periods, accompanied of “ long
periods of stability interrupted by rapid change”. Each period is characterised through

interaction techniques matching the technology available at that time. The first period that

spanned the 1950s and 1960s was dominated by computers used in batch mode, using
punched-cards as input and providing line-printer output. The next period started in the

early 1960s and lasted until the early 1980s. It was the era of timesharing on mainframes

and minicomputers. Alphanumeric displays were used for output, while the dominating
interaction technique was the text-based command line input. Personal microcomputers,

running operating systems with command line shells, like Microsoft DOS or UNIX, rank

among this period. The third age of user interfaces began in the 1970s and is still going
on. It is characterised by the introduction of raster-graphics-based networked

workstations, microcomputers and personal computers equipped with a graphical pointing

“ […] Finally, and again, mine is an attempt to find and redefine a sense of order,
to understand, then, a relationship between what has been and what can be, to

extract from our culture both what has been and what can be, to extract from our
culture both the timeless and the topical.”

Richard Meier, architect

 12

device (typically a mouse) and using graphical user interfaces with windows, menus and

icons. Therefore user interfaces of that period are called WIMP graphical user interfaces.

The predominant paradigm is the desktop metaphor. The fourth generation of user
interfaces, which van Dam calls post-WIMP, has just begun. Van Dam believes that Post-

WIMP user interfaces will rely on gesture and speech recognition instead of using menus,

forms or toolbars1.

This chapter will focus on the third period as window managers originated in the

development of graphical user interfaces. First I will give an introduction to the history of

window management, followed by an in-deep overview of the evolution of graphical user
interfaces. Early examples of window systems that inspired today’s window managers

significantly will be presented as well throughout this chapter.

Histor ical overview
Windows were first used by Douglas Engelbart during his work at the Stanford Research

Institute during the 1960s [Engelbart 1988], therefore he is considered as being the
inventor of windows (along with the mouse and hypertext). Windows that could overlap

and be moved easily were introduced first in the Smalltalk environment, developed by

Alan Kay and others at the Xerox Palo Alto Research Center (PARC) during the 1970s
[Shneiderman 1998]. The Apple Macintosh, which was presented in 1984 and was based

on the earlier Apple Lisa, was the first high resolution, mouse-based computer system to

be commercially successful on the mass market. When Microsoft introduced its window-
based operating system Microsoft Windows 1.0 for IBM PC compatible computers some

years later, window systems became available for even a wider mass market. Most of the

window management techniques available today originate from that time.

Before the era of window managers that came along with the development of window

interfaces, users had to remember their various activities and how to switch between

programs or tasks. Window managers assign a separate area of the screen, a window, to
each activity, and changing between windows allows simple switching of applications or

tasks. This physical separation was especially essential for operating systems that

supported multiprocessing. Suddenly it was possible to compile a file in one window
while editing another file in a different window. Each process had its own physical space

to display data or read input from any input device. Without this approach of physical

separation the output of different processes would be confusingly interspersed with each
other or input might be given to the wrong process.

1 Voice recognition is already available since many years but has not been accepted by users.
Therefore it is not believed anymore that this will become the next generation of human-computer
interaction.

 13

When window managers became popular there were various different window managers

available from many companies and research groups. Brad Myers provides a thorough
taxonomy of early window managers in [Myers 1988]. Some of them will be presented in

this chapter. According to Myers most of the ideas implemented by window managers

have originated at Xerox PARC, including windows in general, pop-up menus, icons and
tiled windows. Though several window managers using different techniques existed in

the early years of window interfaces, only a few became popular and commonly used by

a wide mass market. These window managers will be presented in chapter 4.

The r ise of the graphical user inter face
A Graphical User Interface (commonly known as GUI) is a user interface based on

graphics, rather than purely on text. A GUI usually consists of metaphors like desktop,

folders or trashcan. The main input device in GUIs is a graphical pointing device, such as
a mouse. Graphical elements of a GUI typically include windows, pull-down menus,

buttons, scroll bars and iconic images. Applications use the main elements that come with

the operating system and add their own graphical elements. This section gives an
overview of development of graphical user interfaces. But first its predecessor, the

command line interface, shall be mentioned.

The command line interface

Graphical user interfaces appeared for the first time with the advent of windowing

systems. Before windowing systems became popular and available to the broad mass
market, users had to interact with computers through an interface based on text, known as

the command line interface. The command line interface was the first interactive dialog

style to be commonly used, and it is still widely used today. Instructions can be expressed

 Fig. 1.1 A command line interface. This picture shows a terminal for text-based input,
integrated in a GUI desktop.

 14

to the computer directly by using function keys, single characters, abbreviations or

whole-word commands [Dix et al. 1998].

There are two reasons why command line interfaces are still used. One is that some

systems provide no other means of interaction than the command line to communicate

with the system. As an example, consider telnet, which is used for remote access. The
second reason is that some users, especially expert users, prefer using the command line

to menu-driven interaction because it is much more powerful. Text-based commands

offer direct access to the system functionality as well as a higher flexibility by providing a
number of different parameters or options that will vary the behaviour of the command in

some way. Yet, this flexibility and power brings with it difficulty in use and learning,

which makes them unattractive to novices, and explains the immense success of graphical
user interfaces.

Initial developments

The decades of development of user interfaces with graphical aspects were prefaced by

one of the first real-time graphic display systems for computers, namely Sketchpad

[Sutherland 1963]. Sketchpad (Fig. 1.2) was a revolutionary program written by Ivan

Fig. 1.2 Ivan Sutherland’s Sketchpad Console, 1962. Sketchpad was the first interactive
object-oriented 2D graphics system, and already featured many techniques used in
today’s interfaces.

 15

Sutherland in 1963 which ran on the Lincoln TX-22 computer at the Massachusetts

Institute of Technology (MIT) and was a working program to interactively edit vector

based illustrations with a light-pen directly on screen. Sketchpad did not provide any
means of graphical user interface elements like menus and scrollbars, all present control

elements were still external to the screen. Sketchpad did not only influence the

development of graphical user interfaces, but it is also considered to be the ancestor of
modern computer aided drafting (CAD) programs.

Douglas Engelbart is seen as a pioneer of human-computer interaction, including the

graphical user interface. As part of his Augmentation of Human Intellect project at the
Augmentation Research Center at Stanford Research Institute (SRI-ARC) in the 1960s he

developed the On-Line System, or NLS. NLS was the first hypertext system, which

became operational, but its primarily objective was to use the computer for an interactive
dialog with the user and to support human idea processing [Müller-Prove 2002]. Douglas

Engelbart and his group at SRI-ARC were responsible for the development of computer

interface elements such as multiple windows (which are a basic element of window
managers), interactive text editing, video conferencing and the graphical user interface.

His fundamental research work also resulted in the invention of the mouse in 1963 (Fig.

1.3).

Fig. 1.3 The first wooden mouse, 1963. The predecessor of the present computer mouse was
invented by Douglas Engelbart.

The next remarkable step on the path towards personal computing was initiated by the
invention of the Alto computer at the earlier mentioned Xerox PARC in the 1970s (Fig.

1.4). It was originally designed by Butler Lampson and Chuck Thacker and featured a 72

DPI bit mapped graphic display and a mouse. The mission of Xerox PARC was to
investigate the possibilities of new computer systems to be used in offices, assuming that

in the future computer power would be abundant and inexpensive. Research work led to

the development of the object-oriented programming language Smalltalk and further
improvement of the concept of graphical user interfaces. Many aspects of the Alto

computer were inspired by Alan Kay’s vision of the Dynabook, a personal computer for

children of all ages [Kay 1972].

2 The Lincoln TX-2 was the successor to the Lincoln TX-0, which was an innovative computer
developed at the famous Lincoln Labs at MIT It went online in 1957 and was the first fully
transistorized computer.

 16

The establishment of windows to graphical user interfaces raised the need for specific
techniques to interact with these windows. Suddenly a vast range of new possibilities for

human-computer interaction emerged. This led to the advent of window management

techniques, and respectively to the development of applications to handle the organisation
of windows on the desktop, namely window managers.

Ear ly window systems
In the early days of window systems there were several different window managers

available. Though most of these window managers never became available on the mass

market, some of them had already implemented notable interaction techniques. Therefore
I want to provide a short overview of early window systems in this section, focussing on

significant characteristics rather than on implementation issues. For further information

consider [Hopgood et al. 1986].

Fig. 1.5 describes the genealogy for early window systems. Most of the systems shown in

that figure are discussed in this chapter.

Many interaction techniques that are used in window managers nowadays originate from
research work at Xerox PARC. For example the earlier mentioned Smalltalk environment

(Fig. 1.4) was part of Xerox PARC’s research work. It is considered to be the first real

window system since it was the first system that used overlapping windows. In the first
release it was only possible to interact with the window on top, but people thought that

this was disadvantageous and therefore it was changed in later versions. Smalltalk was

Fig. 1.4 The Xerox Alto II personal computer, 1975. The figure to the right shows a typical
screen of Smalltalk-76 where windows behaved like overlapping sheets of paper on a
desktop.

 17

also the first system that used a cut-and-paste, modeless editor. Furthermore it featured
multipane windows, pop-up menus, a Smalltalk browser and a clock.

DLisp was developed at Xerox PARC and was first presented in 1977. It provided the

starting point for Interlisp-D, the successor of DLisp. It did not support cut-and-paste
editing and used a menu-driven interface. Key ideas of this system were that partially

obscured windows were treated in the same way as the window of the top, which means

that characters could be typed into them even while being obscured. DLisp was the first
system that provided support for multiple fonts. Windows were defined descriptively

rather than procedurally, and recursive windows were supported. Since icons were not

known by the time when DLisp emerged, it presented various other innovative schemes
for handling the complexity of the display. The idea was that windows that were not

touched for a period of time would become grey and fade away. Another concept

addressed grouping of related windows into desktops. Other features of DLisp were error
handling and a mail system for the first time integrated in a graphics environment.

Interlisp-D was a real system with about a thousand users and was influenced by

Smalltalk. It initially included DLisp but the DLisp code disappeared later on. In
Interlisp-D it was possible to switch between tasks, and later versions also supported

multiple processes and monitors.

Fig. 1.5 Window systems genealogy. The picture shows the family tree of early window
systems and the correspondingly date when they were first presented.

 18

While Smalltalk, DLisp and Interlisp-D arose at Xerox PARC, a graphically-oriented

Mesa development system called Tajo was developed in the Systems Development

Division of Xerox. Tajo was a multiple process program development environment that
ran on Lisp machines and used scroll bars, subwindows and pop-up menus. To support

scrolling with the mouse a three button scheme was used. Static menus were first

implemented in Tajo, with the motivation that they provided a better interface for
experienced users, and to allow mouse-button ahead. Tajo was the first system that used

the notion of icons, and therefore defined the two possible states of a window: open and

closed (iconic). The initial approach was to represent a closed window by a small labelled
rectangle on the right of the screen, but they were soon replaced by pictorial

representations.

The Docs system, which was developed in 1980 and 1981 at Xerox PARC, was
influenced by DLisp and was the first system that used the Cedar Graphics Model3. It

provided support for scaling and rotation but had performance problems and therefore

was replaced by its successor Viewers. Viewers consequently had less functionality but
better performance. It used whiteboards as a spatial way of presenting objects, influenced

by Smalltalk browsers. According to Warren Teitelman, Viewers was the first tiling

window manager [Hopgood et al. 1986]. It also introduced a concept that allowed users to
customise the interface and featured richer icons (Fig. 1.6).

Fig. 1.6 Icons in Cedar, 1982. The picture demonstrates Cedar’s rich icon set.

The most successful commercial system that aimed to bring windows to a UNIX system

was SunWindows. It supported different options for scrollbars, buttons and bars by using

libraries. SunDew was a window system developed at Sun Microsystems, written by
James Gosling and David Rosenthal. It was later renamed into NeWS, which stands for

Network extensible Window System. In NeWS applications communicate with the

window system via PostScript, which was seen as an extensible protocol. Development
goals of this system were flexibility in its user interface, remote access to windows to

support distributed networked environments, powerful graphical primitives and efficient

usage of the available hardware, while guaranteeing a certain performance. Furthermore
NeWS used retained windows to hide window damage through overlapping to the

programmers. A notable feature of the NeWS window manager is that it supported

arbitrarily shaped windows.

3 an ancestor of the Adobe Imaging Model, which uses a data structure with all the scaling,
transformation etc information

 19

Sapphire4 is a window system that was designed for the PERQ personal workstations. It

was developed at CMU and first used in 1983. Like most of the other window managers,

Sapphire follows the overlapping windows paradigm and provides icons to reduce the
screen clutter. While other systems define an icon as a simple little picture to represent

the window that provides very little information, Sapphire’s icons contain several pieces

of status information (Fig. 1.7). The icon’s status information included an error indicator,
represented by a small bug on the top left of the icon, two different progress bars to

indicate how much of the current tasks and the entire job has been completed, and a

keyboard symbol that appeared in the middle top of the icon to indicate that the process
was waiting for input.

Fig. 1.7 Icons in Sapphire. The 64x64 square icons provided users with up to eight pieces of
status information.

Other notable early window systems are the Blit [Pike 1983] that was the first window

system for UNIX, and the Plan 9 window system, namely 8 ½ [Pike 1991], both written

by Rob Pike. The Blit provided an asynchronous multi-window environment for the
UNIX operating system and aimed to exploit the multiprogramming capabilities of UNIX.

The latter is a window system application for the Plan 9 distributed system, which was

developed under aspects of minimalism. All resources in the Plan 9 window system were
represented as files.

Direct ancestors
The majority of window systems presented in the last section was never used by a broad

audience. It was Xerox PARC who attempted to make the concept of graphical user
interfaces available for the mass market. Although they did not succeed with their

mission they paved the way for later commercially successful window systems. In this

section I want to present the Xerox Star, which was the first product with windows
available on the market, as well as its successors, the Apple Lisa and Macintosh, and

NEXTSTEP.

4 The term Sapphire stands for “screen allocation package providing helpful icons and rectangular
environments” .

 20

Xerox Star

In 1975 Xerox PARC started a project to build a commercial system based on all the

research results of PARC, which led to the development of the Xerox 8010 Information
System, named shortly the Xerox Star (Fig. 1.8), presented in 1981. The Xerox Star came

with a consistent graphical user interface that used the notion of an office to represent the

operational tasks of the system. Originally this representation was called the physical-
office metaphor5, but nowadays it is well-known as the desktop metaphor. Since this class

of interfaces consists of windows, menus, buttons, radio buttons, and icons, and uses a

pointing device in addition to the keyboard for user input, it is commonly referred to as
WIMP, which stands for Windows, Icons, Menus and Pointers. (There are several other

interpretations what the abbreviation of WIMP might stand for, such as Windows, Icons,

Menus and Pull-down menus, or Windows, Icons and Mouse Pointer.)

Apple Lisa and Macintosh

While most of the window systems were still development projects that became never

commercially successful, Apple came up with new systems to commercialise the ideas

and make them available for a broad market. The story is that Steve Jobs, one of the co-

5 In fact originally the original term used at Xerox PARC in the 1970s was user illusion since
graphical user interfaces create visual environments for abstract data spaces [Prove 2002].

Fig. 1.8 Xerox Star, 1981. The Xerox Star which was developed at Xerox PARC was the first
window system ever commercialised. The picture shows a document window and
icons representing objects, such as folders, documents, printers and electronic mail.

 21

founders of Apple Computer, Inc., was paying a visit to Xerox PARC, where he saw the
Xerox Star and, inspired by its graphical user interface, decided to produce the Apple Lisa

(Fig. 1.9). Fact is that this visit did actually happen in November 1979, but proposals for

the design of Lisa were already dated back to October 1978 and May of 1979 [Raskin
1994]. Nevertheless Apple’s engineers received a demo of Smalltalk, which ameliorated

their understanding of a graphical user interface with windows, menus and the mouse as a

graphical input device.

The Apple Lisa was presented in 1983, but, like the Xerox Star, it was not commercially

successful. In 1984 Apple released the Macintosh (Fig. 1.10), which consisted of a

keyboard and mouse attached to a box that contained a nine inch monochrome screen and
a single floppy drive. The Apple Macintosh provided an intuitive user interface by

introducing the pull-down menus, icons and point-and-click mouse driven processing. Its

GUI has been more or less copied by all following graphical applications in design and
usage.

NEXTSTEP

In 1985 Steve Jobs, who was mainly responsible for the development of the Apple Lisa

and Macintosh, left Apple and, together with some former engineers from Apple, founded

NeXT. He had a vision of a computer that would change the world of computers.
However the NeXT system was developed for research labs and universities, and since it

was rather expensive for its time, it sold slowly. Nevertheless the NeXT system

introduced a window system that is indeed worth being mentioned. It is called

Fig. 1.9 The Apple Lisa, 1983. The Apple Lisa was inspired by Smalltalk’s graphical user
interface. It already used windows, menus and a mouse as a pointing device.

 22

NEXTSTEP6, and is based on an operating system, called Mach, to which a UNIX

interface was added so that people could use the UNIX command line. It also introduced

the Objective C language that made writing applications for NEXTSTEP far easier than
on other systems at that time, as well as an object-oriented application layer, including

several toolkits and development tools for the object-oriented layers.

NEXTSTEP was a graphical system based on PostScript and was running on NeXT, 486,
Pentium, HP-PA and Sun SPARC computers. But its most impressive characteristic is its

detailed and very refined graphical user interface (Fig. 1.11). NEXTSTEP 1.0 was

released in 1989, but several previews were already presented in 1986, the last version 3.3
was released in 1995. By that time NeXT developed OpenStep, a cross-platform standard

and implementation, that was based on NEXTSTEP. In 1997 NeXT was sold to Apple

Computer. Mac OS X is a direct descendant of NEXTSTEP and OpenStep (see chapter 4).

NEXTSTEP’s graphical user interface features many characteristics that were far ahead

of its time. Menus were aligned vertically and not attached to applications. The principle

is based on the idea of active windows. Therefore only one menu is present on screen.
Also submenus could be ripped of and placed anywhere on the desktop. Locations of

menus were saved for each application and therefore would reappear at the same place

after restarting an application. Scrollbars in the NEXTSTEP environment are displayed
on the left of a window and therefore save user’s time since the main menu is also located

6 The official spelling changed from “NeXTstep” to “NeXTStep” to “NeXTSTEP” and finally to
“NEXTSTEP” (http://foldoc.doc.ic.ac.uk, Oct 2003)

Fig. 1.10 The Apple Macintosh, 1984. Like its predecessor, the Apple Lisa, it featured a
graphical user interface based on the desktop metaphor.

 23

left-hand. The size of a document is visualised by the length of the scrollbar, and the
scrolling arrows for up and down, as well as for left and right are placed next to each

other, which again saves user’s time.

The application that provides the interface tools in NEXTSTEP is called Workspace
Manager. It contains the application Dock, the File Viewer, windows, menus and many

other things. The Dock is a shelf that holds frequently used documents and applications,

represented as icons. Windows can also be minimised to icons and can be distinguished
from applications and documents by a tiny black bar running across the top (Fig. 1.12).

Many of NEXTSTEP’s features, like the Dock or the File Viewer, can be found in

Apple’s latest operating system, Mac OS X (see chapter 4).

Fig. 1.12 Icons in NEXTSTEP. The figure shows applications, documents and minimised active
applications represented as icons. The latter can be identified by the black bar on top
of the icon.

Prospects
I have started this chapter with an introduction to van Dam’s theory of evolution of
human-computer interaction. Subsequently I have presented systems that were developed

Fig. 1.11 The NEXTSTEP desktop. This picture shows features that were available on
NEXTSTEP, like the application Dock (to the right), the file viewer and a common
menu for the currently active application (to the left). It also demonstrates
NEXTSTEP’s luminous graphical interface design.

 24

in the late 1970s and early 1980s and instituted the beginning of the third generation in

van Dam’s evolution theory. These systems have significantly influenced nowadays’

window systems. Moreover they have defined a notion that is still being considered to be
good enough and therefore state-of-the-art systems rather adopt their basic ideas than

attempt to change them. It appears that we are trapped within the paradigm of WIMP

interfaces, and the third period of human-computer interaction evolution will probably
continue to go on for quite a while.

 25

Chapter 2
2 The concept of window managers

This chapter gives an introduction to the concept of window managers, including a

definition of terms that are used in the context of window management, and which will be
found throughout this document. The previous chapter has revealed the origins of window

managers. I will refer to some of the window managers presented in that chapter when

discussing the concept of window management in general. Looking at window managers
from the past is interesting for two specific reasons. First, concerning the basic ideas not

much has changed during the last decades of window interfaces evolution, and second,

many problems were addressed by early window managers that today’s window manager
designers are not aware of any more. Therefore I believe that substantial knowledge can

be gained by exploring the problems historical window mangers had to deal with. A

comprehensive discussion about the methodology of window management can be found
in [Hopgood et al. 1986].

Definition of terms
Graphical user interfaces that use the notion of the WIMP desktop are based on windows.

This term has been commonly accepted because it provides a good abstraction to

comprehend how data is being displayed on our screens. The rectangular frame of an

Architect’s data, a handbook to architecture.
Ernst Neufert, Halsted Press, 1980

 26

application can be seen as the window to the application, or as Sutherland described it, as

a view onto a large virtual world [Sutherland 1963]. Jenny Preece describes windows as a

method to overcome the problem of limited space available on a screen for displaying
information. She defines windows as an area of a visual display, usually rectangular,

which divide the physical display area into several virtual displays [Preece et al. 1994].

The Microsoft Windows 3.0 User’s Guide (1990) defines a window as a “rectangular area
that contains a software application, or a document file.” Today it is commonly agreed

that windows in the virtual world do not have to be rectangular. However until recently

window managers only supported rectangular windows, and the main species of windows
found in the state-of-the-art window systems is still the rectangular opaque one. In the

present document the term window will be used for areas occupying rectangular areas, for

explicitly non-rectangular ones, the term arbitrary window will be used.

[Hopgood et al. 1986] constitutes a distinction between a window and a viewport.

According to this distinction a window denotes an area in some source display space,

while a viewport denotes an area in some destination display space. The actual displayed
image results from a window to viewport mapping. Many window systems present a

window and viewport as the same entity, which corresponds to a one-to-one window to

viewport mapping. In the context of nowadays’ window managers a viewport
corresponds to the notion of virtual desktops. A definition for this term will follow later

on in this chapter.

According to Brad Myers a system using a graphical user interface can be logically
divided into two layers, where each layer consists of two parts. The layer which provides

the basic functionality is called base layer. This layer handles the display of graphics in

windows and manages the various input devices like a pointing device, keyboard or touch
screen. The base layer is also known as the window system. Window systems have

already been mentioned in the previous chapter. They are a standard component of a

computer’s graphical user interface, and were developed as a part of the WIMP paradigm
invented at Xerox PARC (see chapter 1).

The second layer is the user interface, which includes all aspects that are visible to the

user. The corresponding term for the user interface is window manager. Brad Myers
defines a window manager as “a software package that helps the user to monitor and

control different contexts by separating them physically onto different parts of the screen”

[Myers 1988]. The simplest approach for a window manager is to provide many separate
terminals on the same screen. A more complex window manager supports several

activities to manipulate windows, whereby windows can contain different kind of

information including text, graphics or video. Window managers are usually implemented
as part of a computer’s operating system, but they can also be implemented by individual

application programs or programming environments. For example GNU/Linux and other

UNIX operating systems do not provide any window manager, but there are many

 27

different applications for window management available that can be explicitly installed

(see chapter 4). A desktop environment is a software package that contains a set of

applications, like a window manager, file manager, terminal emulator, help system,
display configuration, etc. While the term desktop environment characterises a system

that is based on windows, thus employing the desktop metaphor, I want to use the term

working environment for systems that do not necessarily rely on windows.

The two parts of a window manager are the presentation and the operations. The

presentation is composed of the pictures that are displayed by the window manager. The

operations are a set of commands, which are provided to the user to manipulate the
windows and their contents. Basic operations are closing a window, moving windows

around on the screen and changing their size. In the following two sections, which are

mainly based on [Myers 1988], I will give further information on the two parts of the user
interface.

Presentation
This section discusses the first part of window managers, namely the presentation. There

are various aspects of the presentation which can be used to classify or describe window

managers.

Window layout strategies

The idea of overlapping windows originates in the 1980s when screens typically had a

resolution of 640 x 480 and it was impossible to display two page-sized documents on the

screen simultaneously. Overlapping windows provided a solution to this problem by
allowing more windows to be opened simultaneously. In this approach windows are

allowed to obscure others and operations on windows are performed one at a time. Size

and location of each window is independent and therefore this approach is sometimes also
called independent overlapping windows approach. Most of current window managers

still use this approach though screen resolution has improved tremendously. Further

discussion on that aspect will follow in the next chapters.

Fig. 2.1 Window layout strategies. The left picture illustrates the behaviour of windows in an
overlapping window system, while the right picture represents a tiled window systems
were windows are aligned side by side covering the entire screen space.

In contrast, the tiled windows approach does not allow windows to overlap. The approach

of splitting simple displays is usually described as being tiled, because the display space

 28

is often covered completely with rectangular sections, representing the windows, similar

to ceramic tiles on a floor. In tiling systems windows are aligned side by side and

therefore the content of all open windows is visible simultaneously. In this approach the
window system is typically in charge of managing the window placement and size. There

are different approaches on how to manage windows in a tiled windows system, some of

them will be discussed in a later chapter. When windows are tiled they can be arranged in
fixed columns or in arbitrary places on the screen.

Ben Shneiderman suggests a more extensive characteristic for tiling and overlapping

because many possible variations exist, which would be ignored by making a simple
dichotomy [Shneiderman 1998]. Furthermore he presents the following tiling variants.

� Space-filling tiling with fixed number, size and place.

This is the simplest case, which uses a fixed number of fixed-sized and fixed-
placement tiles.

� Space-filling tiling with variable size, place and number.

A common approach used by window managers of this category is to start with
one big window covering the whole screen. When a second window is opened the

screen is divided horizontally or vertically to make space for the new window,

and so on. This tiling strategy was used for Microsoft Windows 1.0. A
disadvantage of this strategy is that windows could show unexpected behaviour

when single windows are closed, moved or resized.

� Non-space-filling tiling.
Some variations of window managers exist, which do not require the entire

available space to be covered by windows.

� Piles of tiles.
Another variant that merges the idea of tiled and overlapping windows is the

piles-of-tiles strategy. Windows are arranged in stacks, putting subsequent

windows on top of older windows, to overcome the limitation of a fixed number
of windows. With a special command it is possible to reveal previously used

windows.

Another issue is how to deal with updating the contents in windows. In tiling systems the
content of all windows is visible and therefore can be updated easily. In overlapping

windows a decision has to be made whether updating the content of a hidden window is

allowed or not. Some older window managers required that windows come to top before
they can be written to because it is more difficult to clip the output operations correctly.

Nowadays’ window managers usually allow output to windows while they are covered. If

output can occur in covered windows the next issue is whether the listener window is
allowed to be covered. It is easier for the users to recognise in which window they are

 29

writing if the listener window is at the top but some window managers allow input in

covered windows to provide maximum flexibility in arranging the windows.

Rectangular opaque windows

As earlier mentioned, window managers typically display windows as rectangular opaque

shapes. While this corresponds to the window metaphor (since windows in the real world
have rectangular shapes) windows for documents or applications do not necessarily have

to be rectangular. Recent window managers consequently attempt to support non-

rectangular or translucent windows. Axel Kramer proposes translucent non-rectangular
windows to dissolve the tight connection between windows, their content and

applications [Kramer 1994]. However, using translucent windows raises several new

issues. While the advantage of translucency is that the content of windows beneath the
active window is visible, this can also be distracting while working on a task. A problem

of transparency in windows is that it becomes difficult for users to perceive in which

layer they currently are. Using translucent windows can also produce falsification of
colours, causing, for example, the misinterpretation of status information.

Icons

The Term icon was adopted for interface design by David Smith during his work at Xerox

PARC [Smith 1977]. In the first window manager that used the concept of icons they
were displayed as the title line of the window. An approach which was also used in tiling

systems (the content of the window was hidden and the title line remained at the same

place) and is also found in some early Apple Macintosh OS versions.

In some window managers icons represent data objects as well as processes. For example,

to delete a file (the object), the icon which represents the file is moved over the icon that

constitutes the trash can. This action causes that the file is being deleted or moved to the
trash can (which represents the process). In other window managers icons are just another

way to represent windows. These icons can be displayed as a tiny version of the actual

window to provide the user with additional information.

Most icons are static, except for the case when the icon changes according to a change of

the status of the represented object (e.g. trash can or mailbox). But there are also

approaches that use dynamic icons to provide additional status information about the
object being represented (e.g. a progress bar).

Icons discussed above are mainly used to represent objects, such as applications,

documents or other elements of the graphical user interface. Other notions are icons to
constitute commands or actions, and icons that are used as signs. The first can be

typically found in toolbars of applications. In window managers icons for closing or

resizing a window represent examples for this type of icons (Fig. 2.2). Sign icons are used

 30

to display a message in a non-textual manner, and their purpose is to attract the user’s
attention (compare Fig. 2.2).

Titles and borders

Windows usually have some decoration which is provided by the window manager. This

typically includes a special title line and a special border around the window. The title

line usually shows the name of the application and some additional information like the
current directory or the name of the file being edited. Title lines can also contain some

additional command buttons or menus that are used to invoke window operations. Title

bars can change shading or colour to indicate which window is currently active.

The window border varies among different window managers, and many display a

shadow below each window by using a three-dimensional lighting model. This helps

users to distinguish windows from the background. Frames can also allow means of
window operations, such as resizing or moving. Border colour, thickness or shape can be

used as well to highlight the currently active window.

Menus

Menus are a basic component of WIMP user interfaces. Some window managers provide
menus, which can be adopted by applications, while in other window managers menus

have to be implemented on the application level. Providing them through the window

manager supports more consistency among applications.

Fig. 2.2 Icons in Microsoft Windows XP. This picture shows the three different roles of icons.
The icons on top of the desktop represent objects. The three icons in the upper right
corner of the window constitute commands. The mail icon in the bottom line is used
as a notification icon.

 31

The most common type of menu is the pull-down menu (Fig. 2.3). Menu titles are

typically lined up horizontally, but in some systems the can also be arranged in a vertical
column (as an example consider NEXTSTEP, Fig. 1.11). A click on a menu title reveals

the list of menu items for that menu. If the number of items cannot be represented in a

single column, structure hierarchy menus are used. In hierarchic menus specific menu
items provide access to a second column of menu items.

Pop-up menus are a variation of pull-down menus. They were first used in the Smalltalk

environment (chapter 1, Fig. 1.4), and are part of the graphical user interface of
contemporary window managers. Pop-up menus are opened by clicking a reserved mouse

button. The menu entries are revealed where the click occurs. These menus are typically

used to provide context related menu entries, therefore they are also called context
sensitive pop-up menus, or shortly context menus.

New interaction techniques for menus include pie menus [Hopkins 1991] and marking

menus, which are a variation of pie menus. Pie menus, like pop-up menus, are invoked by
clicking a reserved mouse button on any element on the screen. Consequently these

menus are context sensitive as well. The difference is that pie menus are circular, with

items arranged like slices of a pie. The motivation for this design approach is that
directions are easier learned than distances, which means that dragging the mouse in a

certain direction to locate a menu item in a pie menu is faster than moving the mouse a

certain distance down a list to an entry in a traditional linear menu. Marking menus rely
on quick gestures, so-called marks, for menu entry selection.

Scroll bars

Scroll bars became a very effective tool to help users navigating through a document that

consists of more pages, or a list of items. The basic operation for a scroll bar is to move

up or down and left or right, but typically they offer some additional functionality. Ben
Shneiderman lists some different variations of scroll bars and discusses also possible

future improvement [Shneiderman 1998], shown in Fig. 2.4.

Fig. 2.3 Three different variations of menus. The picture to the left shows a traditional linear
menu. The middle picture demonstrates a context sensitive pop-up menu that is
invoked directly from the icon. (Both examples were taken from Macintosh OS). The
picture to the right shows a pie menu implemented in the Mozilla browser.

 32

However, scrollbar designs used in today’s graphical user interfaces are still weak, and

several suggestions have been presented to improve their functionality. Scrollbars in

NEXTSTEP already pointed out some important aspects that should to be considered for
scrollbar design (chapter 1, Fig. 1.11).

Vir tual workspaces

Some window managers provide users with the concept of virtual workspaces (or

multiple virtual workspaces) [Henderson and Card 1986] to address the problem of

insufficient screen estate. The workspace is divided into a suite of virtual workspaces that
allow users to organise their tasks as separate workspaces. The concept is also known as

virtual desktops, which means that users can work on multiple desktops where only one at

a time is visible. The notion of rooms constitutes the same paradigm except that they rely
on a particular spatial metaphor. On the contrary, the term virtual desktop describes a

desktop that is too large to be completely displayed on the screen. Typically, the part that

is actually visible can be adjusted. This corresponds to the notion of viewport.

There are different approaches for virtual workspaces, for example whether they allow

user interaction or not, or concerning the representation of an overview window. Each

virtual workspace may contain several applications running, with several windows
opened or represented as icons. In some window managers it is also possible to adjust

different environment settings, such as background or font colour, for each virtual

workspace.

Users typically arrange virtual workspaces according to their tasks. Each task requires

certain applications running, and a particular arrangement of windows and other objects.

With the concept of virtual workspaces switching between different tasks becomes much
easier. Users do not have to remember the arrangement of all windows for every task and

do not have to rearrange them every time they want to switch to another task.

Fig. 2.4 Scrollbars showing traditional and enhanced features. From left to right: page
number in scroll box; proportional scroll box; selectable position markers; value bar
showing sections; page bar with discrete positions.

 33

Generally there are two or more different virtual workspaces available. If an overview is

provided, virtual workspaces are typically arranged in a line or as a matrix, where the

currently active one is highlighted (Fig. 2.5). [Ringel 2003] provides an analysis of virtual
desktop usage strategies, as well as a comparison of virtual desktops and the use of

multiple monitors.

Application user inter face

The window manager’s user interface usually affects the interface of application

programs. Some window managers attempt to minimise their restrictions so that
application programmers have a maximum flexibility in designing the application’s user

interface. Another approach is to specify the user interface of applications to a large

extend to ensure consistency among applications. However, even if the user interface is
almost independent from the window manger interface, it has to provide some minimum

functionality like switching between windows and resizing or moving windows, which

will affect the way of interaction between an application and users.

Operations
This section discusses the second component of window managers, namely the operation

part.

Window manipulation

To allow window manipulation, a window manager has to provide a certain set of

commands. There are four basic operations which are typically implemented by every
window manager: add (create a new window), delete (remove an existing window),

reposition (move an existing window to a new location) and resize (change the extent of

an existing window in one or both dimensions).

Today window managers offer a few additional operations, like the maximise- and

minimise-functions or a function to place the window at different levels in the hierarchy

of overlapped windows in an independent overlapping system.

Most of the functions provided by window managers are employed on each window

independently (though the latest version of Microsoft Windows offers some operations

Fig. 2.5 Virtual workspaces. The left picture shows a simple overview window for four virtual
desktops, arranged in a line. The right picture shows a matrix representation. The
active desktop is highlighted.

 34

that can be performed to a group of windows). This is a significant shortcoming as the

number of windows we have to deal with in order to complete tasks increased

tremendously during the last few years. There are many new approaches that address this
problem and some of them will be discussed later on.

Another essential command is changing the listener window. This operation is not a

function employed on a particular window and therefore is not considered as part of the
basic operations mentioned above. However it is part of the window manager. Examples

for this functionality are the Alt Tab command in Microsoft Windows, the taskbar or the

Finder in Apple Mac OS.

Window managers that support icons typically provide two more operations for shrinking

the window down to the icon and expanding it from the iconic representation to normal

size. In current window managers it is also possible to move the icon itself to arbitrary
locations, but it is impossible to change the size of icons.

There are many more variations of operations available in different window managers,

and operations also vary in tiled window systems. For an overview of operations of early
window managers consider [Myers 1988].

User input

Window managers typically provide various possibilities for operations to be specified by

users. For example there may be menus (p. 30) which contain a list of available

commands so that they can be easily accessed by novices. In contrast, accelerators are
provided to experienced users for frequently used commands. They are typically executed

through so-called shortcuts via the keyboard.

Advantages or disadvantages of accelerators, menus and other methods of user input will
not be discussed in detail here, as this is not part of this chapter. More information about

general user interface principles can be found in other places, like [Shneiderman 1998] or

[Preece et al. 1994]. Relevant interaction aspects of specific operations in the context of
window management will be presented in the chapter about new interaction techniques

for window management (chapter 5, p. 69).

An interesting aspect is the operation for changing the listener. As described earlier the
listener is the window that listens to the keyboard typing. There are various techniques

used in different window managers to change the listener, for example in some window

managers a window becomes the listener if it contains the mouse cursor, other window
managers require an explicit mouse click to change the listener. Many window managers

also provide an accelerator, so that the listener can be changed by using the keyboard.

 35

Interaction devices

Myers raises the question how window managers will handle additional input devices like
touch tables or knobs, as well as speech recognition, as he prognoses that those new input

techniques will become important in the future [Myers 1988]. However, today, fifteen

years later, the most commonly used input devices are still the keyboard and a graphical
pointing device. Therefore this question remains of interest.

Character istics of window managers
Jenny Preece et al. present the following characteristics of window managers [Preece et al.

1994]. Most of these issues have already been discussed above.

� The use of limited available screen space can be optimised by using the

overlapping windows approach.

� Users can use multiple sources on screen at once to carry out a certain task, for
example they can copy selected material from other windows in order to create a

new document.

� Any item of interest can be displayed in several multiple views at the same time
and the users can interact with any of them.

� Window managers allow using one set of input devices for various different

purposes.

� Mouse actions usually invoke different actions in different contexts. Those

actions are easier understood by users due to the notion of windows, because

each window gives a visual and textual context for the different kinds of
interaction.

� Users do not have to remember complicated commands to execute programs or

functions. Instead they can specify objects and actions by pointing and selecting.

� Window managers support the standardisation of the user interface across

different applications. This allows users to learn how to operate new applications

more rapidly, once they have learned to operate the first one.

These issues represent general benefits of window managers compared to systems used

before window managers became popular. Today those features are commonly taken for

granted. On the contrary, many disadvantages of current window management techniques
appeared due to the requirements we are facing today. Those disadvantages and new

approaches that address shortcomings of current window managers will be discussed in

the next chapters.

 36

Technical aspects
This document primarily focuses on user interaction techniques used in window managers,
rather than on issues like memory spaces, protocols and other implementation aspects.

Readers who are further interested in the technical background of window managers are

advised to consider the corresponding references in the appendix, for instance [Hopgood
et al. 1986]. This section discusses only a few general technical aspects that can be used

to describe window managers.

There are three different models for implementing the window management function in a
system. The history of these models is tightly coupled with the history of window

systems. Therefore they are somehow related to chapter 1, but it is interesting to look at

these models to understand the differences in today’s window systems.

Originally the window management function was placed in the same memory space as the

applications. This approach was used by early systems like Smalltalk, DLisp and

Interlisp-D. Using this model, it was easy to change window management functions by
simply changing the library. Since applications and the window manager shared the same

memory space, applications did not have to be aware about these changes. A

disadvantage of this approach was its vulnerability.

The second model uses a similar approach where the window manager shares the memory

space with applications, but the area that contains the window management function is

separated from the application’s memory space area. Applications invoke window
management function through a stub-like mechanism. This model was implemented by

the Lisa, respectively the Macintosh, but also by early versions of Microsoft Windows.

Like in the first model window management functions can be simply changed by
replacing the library, without influencing applications.

The last concept is to place the window management function outside the memory space

of the applications in a server process. In this model applications and the server use a
protocol for communication. The Blit was the first system that separated the window

manager function for the applications. The X Window System followed this methodology.

Consequently, all window managers for UNIX and GNU/Linux operating systems are
implemented as a server process outside the memory space of the client.

Another technical aspect that can be used to describe window managers is whether they

use a bitmap-based or vector-based approach for displaying graphics. Microsoft Windows
is an example for a bitmap-based system, while NEXTSTEP represents a system that

follows the vector-based approach. A problem of bitmap-based graphics is that small

objects like menu bars tend to disappear on a large screen. On the other hand designing
graphical appealing icons that are scaleable is more difficult than designing bitmap icons.

 37

Window managers in other domains
The present document discusses window management for desktop computers with
graphical user interfaces. However there are several other domains where window

managers or a similar notion have been implemented. Examples are computer games,

which hold a significant share in the computer market. But also mobile phones, handheld
computers and even embedded systems for electric or household appliances sometimes

require a window manager for their user interface. The latter of course raise totally

different design issues due to their limited size. For example tiling windows obviously
represent a better approach for appliances with small displays than the use of overlapping

windows. PicoGUI 7 is an example for a window system for embedded systems that

includes a window manager (Fig. 2.6).

Computer games generally represent an excellent field for experimental improvements,

since they are usually designed to use the entire screen space and commonly kept

independent from operating systems in their looks-and-feels. An illustrative example is
the concept of pie menus. The initial idea of pie menus dates back to 1969, but yet they

7 http://www.picogui.org

Fig. 2.6 A window system for handhelds and embedded systems. The picture shows the
PicoGUI running on a VR3 handheld computer skin.

 38

have not been implemented in any commercially successful window manager. Don

Hopkins is responsible for most of notable research work that has been done on pie

menus. He did not only work on NeWS but also wrote the Blit and the Plan 9 system (see
chapter 1). In the late 1990s he worked for Maxis where he implemented a pie menu for

The Sims8.

8 http://thesims.ea.com

 39

Chapter 3
3 Directions for innovation of

human-computer inter faces

The prevailing paradigm of graphical user interfaces that rely on the desktop metaphor
and its WIMP elements has been extensively tested and used during the last decades.

However while the paradigm remained the same, demands in the real world have changed.

First technology has undergone remarkable improvements. We have high resolution
screens and high-speed processors at our disposal. And secondly the number of items we

have to deal with has increased in such a scope that the currently available metaphor does

not suffice anymore.

These concerns represent the main motivation for research work in the subject of window

management. In this chapter I want to point out issues that necessitate innovation of

graphical human-computer interfaces, followed by a discussion on general directions and
an outline of present development. The main focus remains on the subject of window

management, but some aspects also correspond to other parts of the user interface, like

file management.

"One must look at a display screen as a window through which one beholds a
virtual world. The challenge to computer graphics is to make the picture in

the window look real, sound real and the objects act real."

Ivan E. Sutherland, 1965

 40

Technological progress
During the last twenty years window managers proved to be an excellent approach to
handle multiple programs in graphical user interfaces. However most of the window

managers used today still follow the independent overlapping windows paradigm

(chapter 2, p. 27), which emerged as an answer to the needs of 1980s’ applications and
technology. By the time when window managers appeared first people had to work on

screens with rather small resolutions and therefore the overlapping windows technique

was a suitable approach. Nowadays screens have much higher resolutions and most of the
common window managers also support multi-screen environments. This would allow

users to work with several windows visible simultaneously. However a majority of

applications is designed to use the entire screen space, which consequently results in
obscuring other information.

Not only resolution and size of screens have increased. Due to the rapid development of

technology computers are much more powerful then in the 1980s. Hardware-accelerated
graphics have led to an improvement of graphic libraries, and graphics hardware support

more and more advanced graphic functions. This allows us to efficiently implement

advanced graphical interaction techniques. But until recently commercial window
systems were still based on graphic libraries designed in the 1980s, which makes it

difficult or impossible for application developers to use advanced graphical functions at

the level of windows.

Obviously evolution of computer hardware has happened while window managers stil l

put their trust in paradigms that were developed in the 1980s.

Visual clutter and Windowitis
When window managers along with the graphical user interface replaced the previously
dominating command line interface they took away the burden from users to memorise

their various activities and how to employ them. Additionally multitasking became

possible, while providing effortless means of interacting with several applications at the
same time. However, today applications support a growing range of activities which

makes it again difficult for users to remember these activities. Therefore we have reached

a point where it is necessary to start thinking about alternative approaches [Roussel 2003].

The number of windows which are displayed on the screen at the same time has increased

tremendously, and organising those windows or switching between applications became a

time consuming task. Users have to apply various operations to every window
independently in order to organise their applications. The increasing number of windows

displayed simultaneously has led to an intricate working environment, which makes it

difficult for users to remember the contexts of their tasks. Ben Shneiderman uses the term
window housekeeping for the activity of arranging information on the display

[Shneiderman 1998].

 41

A desktop that is running several applications, thus displaying many windows

simultaneously, is also termed a cluttered screen [Miah and Alty 1999]. Cluttering makes

it difficult for users to find and manipulate information. This fact is even aggravated
when the objects displayed on the screen are similar. For example selecting the

appropriate window out of four text windows might require considerable effort, while a

glance would suffice if the four documents contain very dissimilar content. Therefore
window management activities can also be reduced by reducing clutter.

Kahn and Charnock called the phenomenon of too many open windows Windowitis

[Kahn and Charnock 1995]. They observed that Windowitis leads to disorientation of
users because they lose the relationships that exist between windows and are not able to

get an overview of the information displayed in them. Significant cognitive overload

caused by the visual chaos that users perceive detains them to productively work on their
tasks.

In the 1980s the invention of windows to display information was a tremendous

improvement compared to text-oriented visualisation of data and information. However
today, about twenty-five years later, it became compulsory to explore other innovations

that match the requirements of today’s applications and users.

Designing for the user
User-centred design is considered as a significant development of the last decades of

human-computer interaction evolution. Therefore the emphasis for window management
innovation should be put on the user. When researchers started to design the first window

managers they had to deal with a lot of restrictions in technology, some of them were

already mentioned above, such as small screen resolution and slow graphic processors.
They had to come up with solutions that matched the available technology of the 1980s.

Today’s technology is so extensively progressed that there are almost no restrictions left

when it comes to designing the user interface for a graphical window system. Therefore
today’s philosophy should be to design a user interface that matches the needs of the user

rather than the technology.

Tasks versus objects and operations

Users want to solve tasks when working with a computer, to solve a task it is typically
necessary to execute certain operations on certain objects. Operations represent functions

that can be executed on objects, for example copying or deleting a file. Objects represent

items on a computer, such as pictures or text documents. Often operations are
implemented in a very abstract way and therefore it is difficult for users to understand

them. Sophisticated systems should support users to work on tasks rather than with

objects or operations.

 42

Transactions can be executed by putting the emphasis on the operation, on the object or

on the task. I want to discuss these three approaches for the process of deleting a file.

Before the advent of window managers users had to execute the task of deleting a file by
typing in the term specifying the operation (e.g. delete) as well as the name of the file, the

important thing to know was the name of the operation, therefore this method of solving a

task is termed operation-centred approach. Users needed to have a proficient knowledge
about the context in order to solve this task, not only that they had to know the term

specifying the operation, they also had to know the exact name of the file being deleted.

Another approach, which was typically implemented by early window systems, is the
object-centred approach. To delete a file, users first had to select the file (the object)

typically from a list of files, and execute the operation subsequently. The operation could

be typically executed by either hitting a certain key, or clicking on a menu item or a
special button reserved for this operation from a toolbar. This approach represents a big

effort because it does not put the cognitive load of evoking the term specifying the

operation and the name of the file on users. It is easier for users to specify an item by
selecting it from a list rather than to remember the exact name of it. Donald Norman

classifies this as knowledge in the world versus knowledge in the head [Norman 1988]. In

his book The Design of Everyday Things he gives several examples how the usability of
products can be improved by relying on the knowledge in the world. He also discusses

the tradeoffs between knowledge in the world and in the head. When using knowledge in

the world no learning is required, the information is always there, always accessible,
waiting to be seen, waiting to be used. However knowledge in the world also has some

disadvantages compared to knowledge in the head, for example in certain situations the

latter can be very efficient. But those disadvantages can be addressed by providing
additional ways for solving a task, for instance shortcuts.

Finally the task-centred approach is a solution, which is implemented by recent window

systems. In this approach users are supported in executing their tasks by using items that
are familiar to the users from everyday life (knowledge in the world) and therefore the

process of solving tasks becomes more intuitive. In the case of deleting a file, the familiar

item is a trash can, represented as an icon on the desktop, and the task is executed by
moving the file over this icon and “dropping” it into the trash can.

User expectations

In chapters 5 and 6 I will present new means of interaction techniques to improve

usability of window managers. Some of these proposals were implemented as prototypes,

some represent merely possible ideas, and only a few were actually implemented as real
window managers. To get qualified feedback and to improve their functionality it would

be necessary to apply evaluation strategies and do user testing. Evaluation and user

testing are not part of the present document, but during the time I was working at my
thesis I talked to many people about the issue of window managers and about possible

 43

innovations to improve their functionality. Some results of these discussions shall be

presented in this section.

In the beginning of this chapter I showed that modern technologies made the overlapping
window approach obsolete. However, nearly all of the users I talked to stated that they

would not like the overlapping windows being replaced by tiled windows, though the

latter approach might have advantages such as no window obscuring. Some even affirmed
that they work with all applications in full-screen mode. This raises the question whether

this fact results from poor window systems, respectively applications, or if users

generally prefer to utilise the entire screen for single applications.

Some approaches that will be presented later on rely on three-dimensionality, while

others introduce intelligent window management, where windows are manipulated by the

window manager on behalf of the user. Both approaches were declined by several users I
talked to by giving strong arguments against them. Views against the first one are that

users prefer working with two-dimensional objects and are worried to get lost in a three-

dimensional environment. The second concept was especially disliked by users who need
to have strong control over their working environment.

Satisfying user expectations certainly represents a big challenge of human-computer

interaction research. It is not enough for researchers to come up with new breaking
innovations, which would reduce time spent for window housekeeping and allow users to

execute tasks much more rapidly than before. The best solution is worth nothing if it is

not accepted by users. I will try to consider this aspect when discussing new interaction
techniques in chapter 6, but to get qualified conclusions it will be necessary to do specific

usability evaluation on this issue. An introduction to usability engineering can be found in

[Nielsen 1993].

Possibly the dislike of users against new interaction techniques results from the fact that

people do not want their environment to change once they got used to it (even though

they are aware of the disadvantages). Generally it is a good attempt to help users
accepting new techniques by supporting techniques to which they were used to before. To

bring up the example of deleting a file again, it is still possible in later versions of

common window systems, which support the task-centred approach, to delete a file by
selecting it and hitting the delete-function key or selecting the corresponding item from

the menu.

Human factors
The motivation for improvement of human-computer interfaces so far has been mostly

oriented on technical aspects. In contrast this section focuses on human aspects in the
relation between human users and the computer. Matthias Müller-Prove presents three

different dimensions of human factors in [Müller-Prove 2002].

 44

The first part originates from the physical area, and covers implications for interface

design that can be deduced from the attributes of the human body. The psychologist Paul

Fitts has formulated a mathematical relation between the time it takes to acquire a target
with the hand and the distance and size of the target area. This formulation is known as

Fitt’s Law. Implications for interface design include making distant items larger, and to

consider that close targets can be acquired faster than far away ones.

The second dimension is based on Jean Piaget’s theory of human learning. He discovered

that human development can be classified into four stages, which are the sensorimotoric

stage, the preoperational stage, the concrete operational or visual stage, and the formal or
symbolic stage. This stage model of human learning is essential to understand how

humans create a mental model of the presented computer environment.

The third part compares conversations between two people with dialogues between
human and computer. This corresponds to the notion of interactivity. Matthias Müller-

Prove refers to Andrew Lippman who defines several corollaries that should be

considered for the design of interactive systems. The first corollary is interruptibility,
which means that each participant in an interactive dialogue should be allowed to

interrupt at any time. Other implications are that interactive computer systems should aim

to keep response times small and support suspending of requests that cannot be answered
for the moment, and the issue of flexibility.

Present development
The ills of contemporary window managers are not a recent problem. Lots of work has

been done by people from the HCI community during the last years to examine

improvements of window management techniques, many papers have been published,
which present new proposals, and many prototypes have been developed, but they have

never been accomplished nor implemented in a real window manager.

Nicolas Roussel points out that one of the reasons why many innovative graphical
interaction techniques were never taken to the point where they can be used in a real

window management context is to be found in the difference between the graphics

models available to applications and window managers. To address this problem he
introduces a mini-toolkit, designed for HCI researchers to explore new window

management techniques [Roussel 2003].

Approaches that propose novel metaphors, interaction techniques and layout algorithms
to enhance or replace the desktop metaphor will be presented in chapter 5.

Future prospects
It seems that the community is aware of design problems that are imposed by current

graphical user interfaces. However an examination of recent evolution of window
managers gives the impression that it is frozen. While innumerable new interaction

 45

techniques are proposed in the research world development of window systems available

for the mass market moves on fairly slowly. It can be reckoned that not much will change

in the next couple of years. Consequently evolution of human-computer interfaces wil l
likely happen in other areas than in commercial window managers. For instance games

are widely independent from common window systems and therefore allow more rapid

improvement of interaction techniques (see also chapter 2, p. 37).

Internet browsers represent another domain where experimenting with new interaction

techniques takes place. The Internet is used to solve more and more tasks, such as writing

emails, chatting with friends or colleagues, reading the news, even listening to the radio
or watching movies, and the browser is the window to the Internet. Furthermore many

applications have been integrated into browsers, for instance picture viewing, video

players or word processing, to name just a few. This implies that users spend increasingly
amounts of time using the Internet browser, and considering that browsers can consist of

several windows, frames or tabs to certain extend the function of window managers is

shifted to browsers. Certainly they cannot replace window managers totally. However due
to their dynamic manner it is easier to explore new experimental techniques. Examples

for new interaction features in browsers are tabs in Netscape9 7.1, pie menus in Mozil la10

(Fig. 2.3), or mouse gestures and session management in Opera11.

Similar to the desktop interface the Web interface is a graphical user interface. However

limited use of icons and no use of menus disqualify current Web interfaces from being

WIMP interfaces [Müller-Prove 2002]. Nevertheless browsers rely on windows to display
Web pages, and windows show similar behaviour to common document windows, except

that the content for Web windows typically originates from a remote document.

Regardless of the level on which new interaction techniques will be implemented, it can
be expected that innovation of human-computer interfaces will remain within the design

space of the windows metaphor for another decade.

9 http://www.netscape.com
10 http://www.mozilla.org
11 http://www.opera.com

 47

Chapter 4
4 State of the ar t in window

management

In the first chapter I have presented window systems that emerged shortly after the rise of

the graphical user interface. At that time numerous different variants existed. The
exposed ones represent just an excerpt of the manifoldness available in the beginning of

this period. However, similar to evolution history, only a few window systems turned out

to be successfully on the mass market. The selection that took place during the last
decades entailed to the state of the art where we only have three window systems that are

widely used.

It has to be noted that this fact does not imply that there are only three different window
managers available. The corresponding window systems are Microsoft Windows, the

Apple Macintosh OS and the X Window System for the GNU/Linux operating system.

While the first two are shipped together with a window manager the latter does not
include window management functionality. In fact there are several window managers

available that were written for this window system.

"The present is the necessary product of all the past, the necessary cause of all the future."

Robert Green Ingersoll, American politician

 48

This chapter intends to give an overview of the three window systems, focussing on their

window management functionality. The emphasis will be put on the user interface and

interaction techniques. Since the first two systems are too extensive to be discussed in
detail, features that will be presented here can only be considered as illustrations mainly

based on opinions of users I was talking to during my work. For the X Window System

some specific window managers will be presented.

Apple Mac OS
Apple Computer Inc. presented the first commercial computer system that provided users
with a graphical user interface in 1983. While the Apple Lisa (chapter 1, p. 20) was not

very successful, today the Mac OS is one of three widespread window systems. Apple

users have especially a high regard for the diligent design of its user interface. Like the X
Window System has been popular among programmers due to its modular approach, in

recent years the Apple Mac OS could gain its popularity amongst graphic designers due

to its rich graphical features, both in interface design and applications. This section gives
a short overview of Apple’s history and discusses some issues of its user interface

characteristics that are related to window management. For an in-deep introduction to the

Apple user interface the reader is advised to consider the Macintosh human interface
guidelines [Apple 1992].

History

The first two systems that were presented by Apple have already been described in

chapter 1. The Apple Lisa was presented in 1983, followed by the Macintosh in 1984 that
was running System 1. In contrast to most other window systems the Macintosh window

system has always been tightly coupled to the machines it was running on. This concept

guarantees a seamless cooperation of the operating system and the underlying technology
but is probably a reason why the Mac OS is not more widely used by today.

System 1 was followed by System 2 to 7. The last version of this product line was

released in 1990. It introduced the MultiFinder as a standard feature to make multitasking
available. Scaleable TrueType fonts were also first presented in this release.

The next version of Apple’s window system was named Mac12 OS 8 and was presented in

1997. It introduced a totally new interface to Mac users. User interface elements, such as
status bars, scroll bars, menu bars, icons and windows, featured a three-dimensional

appearance. In previous versions menu items were accessed by clicking on the menu title,

and dragging to the item while holding down the mouse button. In Mac OS 8 one mouse
click opened the menu items list and the selection was made by another mouse click. This

feature gave users time to search for the command they were looking for without

12 Apple changed the official spelling from Macintosh to Mac, therefore I will use this term in
further mentions.

 49

continuously holding down the mouse button. The context menu that is invoked on Apple
computers with a mouse click on an object while holding the control key was also

featured first in this release. (Apple systems use a one-button mouse.) Two years later

Apple presented Mac OS 9, which among other new features included improved speech
synthesis and recognition13.

The last significant visual change in the Mac user interface eventuated with Mac OS X14

that was introduced in 2001. It is largely based on the technology Apple acquired from
NeXT Inc. in 1996. Influences from the NEXTSTEP system can be found in the file

manager and the Dock. Mac OS X was followed by three other releases, v10.1 to v10.3.

The last one is codenamed Panther and was presented in 2003. The latest Mac OS also
brought some changes in technology to the Apple computer, for instance a Unix-like

BSD/Mach-based kernel. But its main difference to previous Mac operating systems for

users probably represented the new design of the graphical user interface, dubbed Aqua.
The following section will discuss some of its new features.

User exper ience

Aqua continues with Apple’s concept of adding translucency to the desktop elements.

Consequently Mac OS X exploits alpha-blending effects like transparent drop-down

menus and soft-shadows behind windows. The motivation for transparent menus was to
allow users to perceive text behind them but this technique led to visual clutter and

confusion and therefore had to be abandoned in a later release.

The Mac OS X window manager makes extensive use of animation to decrease cognitive
load on users. For example windows and documents visibly morph and shrink to fit into

the docking area at the bottom of the screen, as if they are being squeezed into the smaller

space. This effect is called genie effect.

13 http://macos.about.com/cs/os9/
14 http://www.apple.com/macosx/overview/

Fig. 4.1 System 7 and Mac OS 8. The two-dimensional desktop of System 7 was replaced by
the three-dimensional appearance of Mac OS 8, which was released in 1997.

 50

Fig. 4.2 The Mac OS X Dock. The docking area holds frequently used items like applications or
documents. Magnification allows easier browsing through the array of icons.

The OS X Dock allows instant access to frequently used objects. Any item can be drag-

and-dropped into that area. The array of icons dynamically adjusts its size to fit the

available space. Minimised windows are represented by a snapshot icon. QuickTime
movies can be minimised while they are playing and the icon still shows it playing. First

the Dock was restricted to a single position on the bottom of the Mac screen, but since

users wanted to have a greater flexibility Mac OS X v10.1 allowed positioning the Dock
at various places on the screen. The Dock also supports optional magnification. When the

cursor is moved over the icons they magnify in a wave-like effect. A non-intuitive

functionality that has been criticised by users is that while items from the desktop can be
dragged into the Dock, items that are already in it disappear when they are dragged out,

instead of reappearing on the desktop. A more appropriate metaphor for deleting items

from the Dock would be to encourage dragging them to the trash can. Another
disadvantageous design decision was that several folders being dropped into the

document area of the Dock all look identical by default.

As already mentioned in previous chapters the introduction of overlapping windows
along with multitasking to computers has raised the necessity for an efficient window

selection technique. Microsoft Windows relies on a keyboard-based mechanism and an

icon/title-based list-like representation of open windows to allow users switching between
applications, respectively windows. Since Apple’s philosophy has always been to provide

their users with a mainly pointing device-based user interface they did not support

keyboard-based window switching until recently. Instead Mac users were relying on
spatial recognition to manage their windows. They were merely clicking on a window to

select it. This might appear being a rather inefficient approach considering the number of

windows that are typically displayed on a desktop, and the fact that windows are
overlapping, hence obscuring each other, but in fact it imposes a minimum of cognitive

load on users. It is easier to recognise and manipulate coherent, stable objects in space

than choosing from lists or tree-like data structures. Additionally, windows in Mac
systems were layered within each application and each application was layered amongst

other applications, which reduced the choice of windows. In contrast Mac OS X allows

interleaving of windows from multiple applications, but to address the problem described

 51

in this paragraph the latest Mac OS X release, known as Panther, introduced a new

window management feature, called Exposé15.

Exposé tackles the problem that there are habitually too many windows on the desktop
obscuring each other, hiding content of windows that are beneath, causing visual clutter,

and making it difficult to find a particular window. It provides users with three new

operations to locate objects. The first one tiles all open windows, scales them and
arranges them neatly next to each other. In a way this represents a mapping function

between an overlapping windows view and tiled windows view (compare 2, p. 27). The

user can select any window from this view to make it become the active one. All
windows are restored to their original place and size. The second function allows users to

see all open windows within one single application in a similar manner. All windows

belonging to the active application are tiled while windows of other applications are faded
to a shade of grey. The last operation allows sliding all open windows to the sides to gain

access to the desktop. By default these three operations are placed on the function keys

F9 to F11. Assigning them to the corners of the desktop allows invoking them through
mouse gestures, which follows Apple’s philosophy of having the pointing device as main

interaction device. Again, all these actions are visualised with animations.

Two design aspects that can be found in all of Apple’s window systems regard the use of
a one-button mouse as pointing device and the concept of having a single menu bar for all

applications. The idea that motivates the design decision to restrain the number of mouse

buttons to singly one is that more would only confuse users. While this works well for the
see-and-point approach [Apple 1992] it lacks functionality when it comes to context

menus. In other systems the context menu is invoked with a right-hand mouse button

click. In Mac systems this is done by holding the control key and concurrently clicking on

15 See http://www.arstechnica.com/reviews/003/panther/macosx-10.3-8.html for a detailed review
of Exposé.

Fig. 4.3 Mac OS X Exposé. This new Mac OS X feature provides an overview for all windows
in a tiled manner where users can easily pick a particular window.

 52

an item. For users who are familiar with a two-button mouse this two-handed action

represents a considerable disadvantage.

In contrast the Mac menu bar exceeds in usability to menu bars used in other window
systems. For example Microsoft Windows places the menu bar inside the document

window, respectively inside the application window. This means that the menu bar is

never on the very top of the screen, like it is in Mac systems, even not when the
application window is maximised. According to Fitts’ law the Mac menu bar is much

faster accessible because it has a virtually unbounded height. Users cannot miss the

correct vertical mouse position no matter how fast they arrive at the menu bar.

Fig. 4.4 The Mac menu bar. According to Fitts’ law positioning the menu bar at the top edge of
the screen allows much faster access than placing it inside the document window.

Technology aspects

Most of the new graphical features in Apple Mac OS X, like full animation of window

operations, became only possible due to the new technique that is used to display graphics.
The Mac OS X window system is based on three different libraries, which are Quartz for

2D graphics, OpenGL for 3D graphics and QuickTime for dynamic media. Composition

and display of graphics rendered by these libraries is controlled by the Quartz compositor.
Quartz is based on the portable document format (PDF) and facilitates graphical effects

such as translucent menus and controls.

Since these effects resulted in delays on slower machines Mac OS X v10.2 included a
hardware-accelerated graphics engine to provide graphical user interface acceleration.

Microsoft Windows
Microsoft Windows is the window system that is shipped with the majority of desktop

computers, which has led to its wide spreading16. Certainly there are many aspects of this

window system that might be worth being discussed. However, since many of its
influences can be found in window systems that were developed in the 1980s, it appears

to be more interesting to look at those systems in order to understand window

management functionality. Therefore only a very short overview of Microsoft Windows
will be given here. Microsoft’s story of success can be found elsewhere.

16 In fact the widespread of Microsoft Windows is based on the widespread of IBM personal
computers which was a result of IBM’s philosophy to allow other vendors cloning their
architecture.

 53

Introduction

Like Apple Mac OS Microsoft Windows comes with an integrated window manager.

Since it is tightly coupled with the operating system it cannot be accessed or modified.
Originally the window manager was implemented as a user-mode application process, but

with the advent of Microsoft Windows NT 4.0 it was moved into a subsystem within the

Executive, which is a privileged portion of Windows NT. Fig. 4.5 shows the Microsoft
Windows 2000/XP architecture. The window manager that controls the user interface is

located within the Executive, above the graphics device drivers.

While Microsoft Windows’ window manager cannot be replaced several tools are
available that aim to improve and extend its functionality. For instance NVIDIA nView17

introduces the concept of virtual desktops to Microsoft Windows. However, compared to

the virtual desktops functionality of window managers for the X Window System it
provides Microsoft Windows users with less features, for example it is lacking a virtual

desktops overview.

Additionally alternative shells for Microsoft Windows, like LiteStep18, have emerged.
LiteStep aims to emulate the AfterStep environment (p. 65). It is not an actual window

manager, but it allows tailoring many elements of the graphical user interface. LiteStep’s

features include less memory utilisation, a built-in virtual desktop, customisable pop-up
menus and a customisable taskbar.

17 http://www.nvidia.com/object/feature_nview.html
18 http://www.litestep.net

Fig. 4.5 The Microsoft Windows 2000/XP architecture. The window manager that controls
the user interface is integrated within the Executive.

 54

History19

Microsoft Windows was built as a successor to MS-DOS and intended to supply the IBM
personal computer generation with a graphical user interface. It was strongly influenced

by the success of the Apple Macintosh, and used pull-down menus and dialogs, such as

known from the Xerox Star (chapter 1, p. 20). Originally it ran on top of MS-DOS which
means that it was more like a shell than a real operating system.

The development of Windows started in 1981 under the name Interface Manager. The

first release, Microsoft Windows 1.0, was presented in 1985 and was a tiling window
system. Its successor Windows 2.0 (Fig. 4.6) where windows could overlap and that came

with the first office applications was released in 1987. Next Windows 3.0 was released,

followed by Windows 3.1 in 1992. Its success came due its new graphical interface
design and improved graphics available on personal computers by this time.

Fig. 4.6 Microsoft Windows 2.0. This version of the Microsoft window system was presented in
1987 and featured WIMP elements such as overlapping windows and pull-down menus.

Windows NT, which stands for new technology, was initially derived from OS/2,
developed by IBM. OS/2 featured an object-oriented graphical user interface, the

Workspace Shell, which included a desktop. The first version of Windows NT 3.1 that

was presented in 1993 had the same graphical user interface that was used in Windows
3.1. The most recent version is Windows XP20, which finally merged the two different

19 http://www.computerhope.com/history/windows.htm
20 http://www.microsoft.com/windowsxp/

 55

product lines. It introduced an improved user interface, which will be discussed in the

next section.

User exper ience

This section contains a brief overview of some window management techniques used in

Microsoft Windows XP but mainly reflects experiences and opinions gained in
discussions with Windows XP users. As stated above most of the window management

techniques used in Windows XP can be found in early window systems. Nevertheless it

could be used to carry out extensive user testing in order to investigate how these
techniques could be improved.

Though Windows XP introduced an entirely newly designed user interface (called Luna)

to Windows users the basic functionality of the window manager part remained the same.
The main operations for windows are still open, close, move and resize, including

maximise and minimise operations. Windows overlap in the same manner as they used to

do in Windows 3.1, obscuring other information and encouraging users to operate their
applications in full-screen mode. Icons show improved graphical design but still offer the

same functionality. Pull-down menus are used for commands selection, and the system

relies on a mouse as pointing device together with the keyboard as main input devices. To
summarise Windows XP is just another variation of a system based on the WIMP

paradigm.

New features that have been introduced in the last generations of Microsoft Windows
include opaque window move, more support for context menus, customised pull-down

menus that initially only display the most frequently used items, and improved window

decorations. The latter include the graphical handle in the lower right corner of each
window which helps users employing the resize operation. Apparently the style of this

handle seems to differ among applications, as can be seen in Fig. 4.7. In Windows XP the

aesthetics of window borders has been further increased. Windows now have round upper
corners and support shadow. Some applications also use translucency and arbitrary

window shapes, but these are in fact still rectangular windows and the non-rectangular

appearance is achieved by making areas of the window transparent.

Fig. 4.7 Window decoration in Windows XP. The graphical handle in the lower right corner of
windows supports employing the resize operation.

The taskbar that holds actively running programs was introduced in Windows 95. In

recent versions it contains a customisable quick launch bar for frequently used

applications. Integrating this functionality into the taskbar has the advantage that no extra

 56

screen space is utilised. Another area in the task bar is dedicated to notification and

system icons, known as the system tray. In Windows XP this feature was refined and now

can be expanded or collapsed. Items that are not being used for a certain time are hidden.
The start menu has been adapted and now contains a list of most frequently used

applications in the first hierarchy.

A problem that was invoked by the taskbar in recent Windows versions was the clutter
due to many running applications. Windows XP addresses this problem by grouping or

stacking windows according to the type of application and joining them under a single

task bar button. This requires users to apply one extra mouse click to open an application
from the taskbar but reduces the visual disorder tremendously (compare Fig. 4.8).

Organising the taskbar in groups allows also employing group operations, such as

aligning all windows in an overlapping manner, displaying them as tiled windows,
minimising all windows, and closing the entire group. However users do not seem to

make us of these functions.

Fig. 4.8 The taskbar. The top picture shows the taskbar arrangement that was used in previous
Windows versions. In Windows XP windows are grouped and inactive icons in the
system tray are faded out.

To support users in solving object-related tasks Windows XP provides a context-sensitive

task menu. This is a menu that is dynamically displayed in the left area of the Windows
Explorer when a file is selected. The menu lists items for operations that are appropriate

for the type of the selected file. It seems that users do not use this feature frequently since

they are used to choose the operations from the pull-down menu or a context menu
invoked by a right-hand mouse button click on the object. Additionally the context-

sensitive task menu increases visual clutter of the screen.

A Problem that users experienced but which rather regards Windows XP’s file manager is
frequent loss of presentation settings. Since this is related to the general issue of task

persistence and session storage in window managers I want to mention it at this place as

well. Windows XP allows users to save appearance settings for each folder, such as
whether the objects are represented as a list, icons or miniature views. However, these

settings are permanently reset to the defaults. This aggravates maintaining and also

recognising users’ working environments for particular tasks.

Task persistence features that can be found in Windows XP include reopening

applications at the same position where they were located before, as well as restoring

their window size. No session storage is supported, which puts the burden on the users to
restore their working environment after restarting the system.

 57

Prospects

By the time this document is written Microsoft is working on the next version of
Windows, codenamed Longhorn21. Longhorn is based on three fundamental pillars, which

are presentation (Avalon), data (WinFS) and communication (Indigo). WinFS introduces

a new concept of file management based on metadata, which allows users to search and
manage files based on content. Indigo uses services to model reusable units of code and

support communication between applications. The pillar that corresponds to window

management is Avalon.

Avalon is the new user interface framework for Windows, which uses a declarative

language to describe windows. Improvements to the user interface can be expected due to

its vector-based characteristic and the use of Direct3D and a compositing process to
display graphics. The first addresses the problem that bitmap-based graphics tend to

disappear on very large sized screens. The latter supports scaleable interface elements and

graphic effects, such as transparency (alpha blending) or animated graphics and video in
previews.

Windows Longhorn will also feature a Dock, called sidebar. The sidebar follows the trend

towards widescreens. It can hold application functions such as the MSN Messenger
contact list, the system clock, the system tray, the quick launch buttons, and optionally all

the functions of the taskbar22.

Window managers for the GNU/L inux operating system23
I will start this chapter with a brief introduction to window managers for the GNU/Linux
operating system concerning general issues. Next the X Window System on which all

commonly used window mangers are built will be presented, followed by a short

overview of window managers that are popular by the time this thesis is written. Since
window managers for the GNU/Linux operating system have many features in common, I

will only present one window manager, namely Enlightenment, in detail and give a

discussion on interaction techniques by means of this example.

This chapter does not aim to compare the different window managers in any way,

especially not concerning their usability. To provide a qualitative comparison extensive

user testing, including interviews and heuristic evaluations, would have to be done.

21 http://www.microsoft.com/windows/longhorn/
22 http://www.livejournal.com/users/fireball1244/54734.html
23 In fact there are still other UNIX operating systems being used but since they are continuously
being displaced by the GNU/Linux operating system I will refer to GNU/Linux and other UNIX
systems generally by using the term “GNU/Linux operating systems” .

 58

Introduction

In contrast to Microsoft Windows and Macintosh OS, the GNU/Linux operating system
does not come with a window manager, which gives users the possibility of choosing any

window manager among many different that have been developed for The GNU/Linux

operating system. This freedom of choice, combined with the technological design of the
X Window System provides desktop users with a great flexibility and capability.

The X Window System is a standard graphical engine for The GNU/Linux operating

system; it will be presented in the next section. While the X Window System provides
basic functionality to handle displaying of graphics in windows and manage input devices,

the window manager controls the placement of windows, draws the borders and scrollbars,

and manages other elements of the user interface.

The window manager is loaded after the X server has finished loading. Fig. 4.9

demonstrates the hierarchical composition of the components. The window manager is

located above the X server, controlling the placement and look-and-feel of windows. X
applications communicate with the window manager via the X server.

Fig. 4.9 Component overview of GNU/Linux. The window manager is located above the X
server.

 59

The X Window System

Though the X24 Window System is not a window manager, but a window system, as its
idiom expresses, a brief depiction for this term will be given at this place. Since this

thesis does not aim to cover technical aspects of window managers or window systems I

will not give any detailed technical information about the X Window System and the X
protocol which is used for communication between the X Window System and its

applications. For further information see [Scheifler 1986], or the official Web site.25

The X Window System is one of three nowadays widely spread systems that support
GUIs. It is a window system for computers with bitmap graphical displays that was

developed at the Massachusetts Institute of Technology (MIT) in the 1980s, and today is

under the supervision of X.Org, which is a non-profit organisation, entirely concerned
with its maintenance and further development. The X Window System, which is also

referred to simply as X or X11 (as it is currently at version 11), is a standard graphical

engine for The GNU/Linux operating system, and is considered to be one of the most
successful free software, collaborative technologies. Its popularity comes due to its

independency from operating systems and hardware, its network transparency, and its

support for many popular desktops.

X supports functionality to create and manage windows on the screen, and provides a

mouse pointer, but it does not provide any user interface features like window title bars,

menus, buttons, or toolbars. These features are implemented by window managers or
other GUI toolkits. X is based on a client/server model that defines the relationship

between an application and its display, and is specified by the X Protocol. An X server is

a software package that manages a single screen, keyboard and mouse. The application
that displays on the X server is known as the X client. The X server therefore runs on the

local machine and displays drawing requests on the screen. It creates, maps, and destroys

windows, and manages the keyboard, mouse and display device. The X client is basically
an application that is written using certain X libraries and communicates with the X

server to display graphics.

Its independency, efficiency and wide vendor support are responsible that the X Window
System is used for the implementation of many applications, including many window

managers for The GNU/Linux operating system.

24 The ‘X’ in X Window System originates from an earlier window system, called W Window
System, which was developed at Stanford University by Paul Asente and Brian Reid. (In the
modern Roman alphabet the letter X comes right after W.)
25 http://www.x.org

 60

A descr iptive example

Enlightenment is a window manager for the X Window System, using the XFree8626
implementation. It was originally based on fvwm2 but was later completely rewritten and

by today it is sharing no code with any other window manager. According to its

developers “ its design goal is to be as configurable as possible - in look AND feel.” By
the time this thesis is being written, Enlightenment is merely a window manager, but is

aiming to become a desktop shell, which means that it will manage application windows,

be able to launch applications, and also manage files.

Some of Enlightenment’s features are fully configurable window borders, icon boxes to

store icons in, virtual desktops, window groups, miniature snapshot icons, and many more.

A complete list of its features can be found at Enlightenment’s official Web site27, some
of its features will be presented in the next sections.

Virtual desktops

Like FVWM, Window Maker and many other recent window managers, Enlightenment

supports virtual desktops (chapter 2, p. 32). Enlightenment provides an overview window
where each virtual workspace is represented as a small snapshot of the actual desktop.

This feature increases usability of the virtual desktops functionality tremendously,

because users can tell what is on each desktop without activating them, just by glancing at
the virtual desktops overview. Enlightenment even supports a zoom function to enlarge

each window in the snapshot view. It also supports user interaction, i.e. it is possible to

26 XFree86 is a freely redistributable open-source implementation of the X Window System. It
provides a client/server interface between display hardware and the desktop environment while
also providing both the window infrastructure and a standardised application interface (API). See
http://www.xfree86.org for further information
27 http://www.enlightenment.org

Fig. 4.10 Enlightenment themes. This picture shows four different themes for the
Enlightenment window manager to demonstrate its great configurability. The picture
shows how window borders and window titles can be changed, two different
implementations for the application dock, and support for arbitrary windows.

 61

move a window from one virtual workspace to another using the virtual desktop overview

representation.

Session storage

Users typically work on several tasks simultaneously. The concept of virtual desktops

supports them to arrange applications according to their tasks. Task execution is usually
spanned over a long period of time which implies that the window manager has to

provide functionality to restore a session at any later point. The simplest implementation

for task persistency is to restore the session after restarting the window manager. Another
approach is to provide session management where users can save and reload sessions at

any points in time.

Enlightenment provides task persistency by saving size and placement information for
running application windows for every virtual workspace. This information is used to

restore the working environment after the window manager is rebooted.

Application dock

The notion of application docks was already presented in NEXTSTEP (chapter 1, p. 21).
A dock is a container that usually holds frequently used documents and applications. In

Enlightenment the dock, like many other elements of the user interface, is fully

configurable.

Discovering 3D

Since performance of graphic processors improved during the last few years, it became
possible to think about interaction techniques for window managers, using 3D graphics.

However it is a very precarious challenge to come up with ideas that are not only “cool”

but also usable. At this place I want to mention an application that was developed for

Fig. 4.11 Virtual desktops in Enlightenment. The picture to the left shows an overview window
for six virtual desktops, where each virtual workspace is represented by a snapshot of
the desktop. If the mouse is moved over a window an enlarged view of that window is
shown, demonstrated in the picture in the middle. In the right picture the window
with the blue centred rectangle is moved from the right desktop in the second row to
the lower left one.

 62

Enlightenment and uses 3D graphics. I will give further examples and perspectives on
that topic later on.

3d-Desktop28 is an OpenGL program for switching between virtual desktops in a seamless

three-dimensional mode. All desktops are mapped into a 3D space where another screen
can be chosen. Several different visualisation modes are available.

This feature looks fancy, but it is definitely not a very usable tool for several reasons. As

it is not an actual part of the window manager the user has to switch to this program first
to be able to select another desktop, selecting the desired one by clicking on the virtual

desktops overview is a much faster way of solving this task. However, one advantage of

the three-dimensional representation is that a larger image view of the desktops is
provided. This supports users in finding the desired task (desktop). Another drawback is

that the navigation in the three-dimensional mode is not very intuitive, especially because

the user has to change from normal navigation on the two-dimensional (or
2½-dimensional) desktop to three-dimensional navigation only for switching virtual

desktops.

Desktop environments

As mentioned above desktop environments are software packages that come with several
applications. They usually also provide a window manager. Two desktop environments

that became popular among GNU/Linux users during the last few years shall be presented

here.

28 http://desk3d.sourceforge.net

Fig. 4.12 3d-Desktop. – A tool for virtual desktop navigation that maps a snapshot image of
each virtual desktop into a 3D space.

 63

The K Desktop Environment (KDE)

KDE’s objective is to provide an interface to X applications, which is consistent in both
appearance and function. KDE is a desktop environment, containing a set of applications

like a window manager (called k window manager, or shortly kwm), file manager,

terminal emulator, help system, and display configuration. Though KDE comes with its
own window manager, it is possible to define another window manger for a session.

Many of the recent window managers support this functionality, which enables users to

stick to their favourite window manager while taking advantage of the additional
functionality of KDE.

The GNU Network Object Model Environment (GNOME)

For the reason of completeness I want to mention GNOME here as well, which is another

desktop environment. However, it does not contain a window manager, and in fact has to
be run in association with a window manager.

Window managers

There are literally dozens of window managers available for The GNU/Linux operating

system. A wide range of window managers is available on the Freshmeat themes Web

site29. At this place only the most commonly used shall be presented, but I also want to
point out outstanding features of some other window managers that provide a notable

view on the concept of window management.

FVWM

FVWM is one of the oldest window managers that is still widely used and being
maintained. It was originally developed by Robert Nation in 1993, based on the TWM,

which stands for Tabbed Window Manager or Tom’s Window Manager and which was a

popular window manager at that time. In FVWM virtual desktops functionality has been
added and therefore the VWM in FVWM stands for Virtual Window Manager. FVWM

was quite successful in the early days because it came with a new appearance and many

new features, like the virtual desktops functionality mentioned above. Another reason for
its success is that it was designed to increase operation speed and reduce memory

consumption. In more recent times it has been overshadowed by newer window managers

and the KDE and GNOME desktop environments.

Some of its features are full support for keyboard operations, full colour shaped non-

rectangular icons, switching of virtual desktops by pushing the mouse pointer against the

edges of the screen and support for multiple policies for icon placement and initial
placement of opened windows. According to [Chapman 2003] many of these features,

29 http://themes.freshmeat.net

 64

which are supported nowadays by other window managers, were initially developed for
the FVWM.

Window Maker

Window Maker is a window manager, which was designed to reproduce the look and feel

of the NEXTSTEP user interface, which was originally developed by Steve Jobs and later
sold to Apple (see chapter 1, p. 21). Window Maker was written by Alfredo Kojima and

first released in 1997. It is an X11 window manager originally designed to provide

integration support for the GNUstep Desktop Environment. Compatibility options allow
Window Maker to work together with other desktop environments, like GNOME and

KDE.

An excellent usability feature of Window Maker is the built-in GUI configuration utility,
which allows the window manger settings to be adjusted without the need of editing the

configuration files directly with a text editor. The preferences utility is divided into

several sections that enable configuration of different subsets of options. The GUI was
modelled after the NEXTSTEP Preferences utility, and is very intuitive to use.

Some of the sections that can be controlled with the Window Maker Preferences utility,

also shortly referred to as WPrefs, are:

� Window handling options like initial window placement style, edge resistance

and opaque window move

� Various menu related options, such as scrolling speed and alignment of submenus

� Icon/Miniwindow options, including icon position area, size of icons and

miniaturisation animation style

� A menu editor, allowing extensive real-time display/editing of all menu items

Fig. 4.13 Window Maker’s Dock and Clip. The Dock shown above is the default Dock
configuration. It consists of the main Dock icon, an xterm shortcut and the WPRef’s
icon. The Clip serves as a Dock extender to which task specific icons can be
attached.

 65

� Miscellaneous options like window resize line display position and workspace

border width and position

For a detailed list see Window Maker’s official Web site30.

Other features are the application Dock, which is similar to the NEXTSTEP/MacOS X

Dock and can be configured using drag and drop, support for rudimentary session

management, the ability to change all menus and preferences without having to restart the
window manager and support for virtual desktops functionality.

Other window managers

AfterStep31 is a window manager for the X Window System that was originally based on

the look-and-feel of the NEXTSTEP interface. It puts the emphasis on aesthetic and

efficient usage of system resources.

The design objective of Ion32 was to provide a window manager for keyboard users. It is a

very minimal tiling tabbed window manager. The motivation for the design is that

graphical mouse-based search-and-click interfaces are not efficient except for some
specific applications, and that text mode programs are more usable for expert users, but

limited in their output capabilities. Windows in Ion are created by dividing the screen into

frames that always take up the entire screen space. Navigation between tabs is keyboard-
based.

Fluxbox33 allows grouping several windows and arranging them as tabs. This addresses

the problem of too many windows cluttering the screen. Windows belonging to the same
task can be combined and sequentially moved and resized with one operation. Switching

between applications is done by clicking on the tabs. This feature also allows users to

handle the numerous toolboxes of applications in a more efficient way (Fig. 4.14).

9wm34 is a window manager that aims to emulate the Plan 9 window manager, 8½. It

provides a simple user interface without icons, title bars or other decorations. Another

window manager for the X Window System that was inspired by 9wm is lwm35, which
stands for lightweight window manager. Like 9wm it intends to keep the user interface

simple, which means that there are no button bars, no icons, no icon docks, no root menus.

30 http://www.windowmaker.org
31 http://www.afterstep.org
32 http://modeemi.cs.tut.fi/~tuomov/ion/
33 http://fluxbox.sourceforge.net
34 http://unauthorised.org/dhog/9wm.html
35 http://www.jfc.org.uk/software/lwm.html

 66

Title bars are kept simple, windows do not show any decorations, and they can be hidden

with a right-button mouse click.

The last X window manager I want to present is piewm36. This is a window manager that
supports pie menus (presented in chapter 2 on p. 30). A shaped pie menu as it is used in

piewm is shown in Fig. 4.15.

Fig. 4.15 Pie menus in piewm. The picture shows a screen shot of a shaped pie menu in piewm.

Summary

Generally all window managers perform the same tasks, but in the global scheme of
things, they all tend to serve a particular purpose. This makes it difficult to provide a

qualitative comparison, since there are many factors involved, like usability,

customisation, documentation, stability, ease of installation, and so on. It is especially
difficult to compare GNU/Linux window managers concerning the usability, because

most of them offer the possibility to add many features through their modular approach.

Therefore it is, to a certain degree, up to the users how many and what kind of usability
features they want to have.

36 http://www.crynwr.com/piewm/

Fig. 4.14 The Fluxbox window manager. This picture shows how tabbed windows in Fluxbox
can be used to tackle the large number of toolboxes in Gimp.

 67

However some of the window managers listed above have implemented notable ideas,

like tabbed windows and pie menus, which could inspire future design of window

managers. I will recurrence to these aspects in the next chapter.

 69

Chapter 5
5 Visions of window management

The last few chapters have clearly shown that there is an urgent need for innovation of
window management techniques. Companies and research group all seem to be aware of

this need, and are working on design alternatives for window mangers, or novel methods

for window management. In fact usability of current window managers has slightly
increased during the last few years. Yet, the next generation of user interfaces for window

systems still seems to be far ahead.

In this chapter I want to present visions of novel window management techniques that
have been developed during the last few years. Some of the approaches suggest

improvement of specific functions or interaction techniques, without revolutionising

window managers from scratch. Others come up with totally new ideas that try to break
conservative interaction or presentation paradigms. Accordingly this chapter is

subdivided into a discussion of conservative novelties, experimental innovations and

other approaches. I will conclude this chapter with a debate about benefits and drawbacks
of presented approaches.

Between sheets of glass, exquisite metal irises […] open and close like those of the
human eye to control the level and intensity of daylight entering the building. This

is a tour de force, an example of how art, architecture, history and new building
technology can meld together and reinforce one another.

Institut du Monde Arabe, Paris (The Guardian)

 70

Conservative novelties
Approaches presented in this section mainly adhere to paradigms that are defined by
current window managers, like the desktop metaphor in general, while introducing

enhancements for specific techniques. Most of them present concepts to reduce window

housekeeping, for example by providing additional window operations.

Novel window operations

The four basic operations for windows, which are add (create a new window), delete

(remove an existing window), reposition (move a window to another position) and resize

(change the dimension of a window), have already been introduced in chapter 2 (p. 33).
These fundamental operations were developed as part of the WIMP paradigm

approximately twenty-five years ago. Though window managers nowadays also provide

additional operations, these four operations have remained largely unchanged, and they
have retained a high degree of stability. However nowadays users have to work on a large

number of various tasks simultaneously, and therefore need to manage several different

contexts, each involving many windows. Switching between tasks requires executing
several operations on every window independently. This leads to an enormous increase of

time spent on window management, respectively window housekeeping. Therefore

window operations that ignore completely other tasks and windows should be replaced by
new operations that support management of a various number of windows simultaneously.

Dugald Hutchings and John Stasko introduce a set of new operations for space

management and window management that should help users “ to simply maintain several
tasks simultaneously” [Hutchings and Stasko 2002]. They call the main operations

expand and shove, and also provide two variants called jostle and ram, as well as an undo

operation to enable reverting windows to earlier sizes and positions. The objective of
their work is to improve the reposition and resize operations in a way to support users in

administrating their screen real estate by preserving visible parts of other windows. Their

approach relies on the way people use their desktops in real life: if they need space on
their desktop for another task, while tasks that are already on the desk should still remain

visible, those other tasks are pushed out of the way, to the sides and corners of the desk.

The Flatland system [Mynatt et al. 1999], which is a tiling-based system, uses a similar
approach for windows interacting with each other. When a window (which is called

segment in Flatland) is moved by the user and “bumps” into other windows those inactive

windows are moved out of the way. They can even shrink to make space for the active
window that is being moved. An essential aspect of the shrinking feature is that the

information displayed in that window is not being changed. Other systems, such as the

personal role manager (p. 96) have implemented similar features where windows shrink
to allow more space for an active window that is being moved or enlarged, but without

shrinking the content displayed inside the inactive windows. In that way the original

 71

content is hidden or altered beyond recognition, making information invisible that the

user might still want to perceive.

Hutching and Stasko wanted to design a system that implements this functionality for
users who use overlapping windows on their desktops, arguing that this approach

represents the way papers can be piled on top of each other on a desk.

The four operations that are used to resize a window can be aligned along a scale that
constitutes the space-acquisition. Expand and shove represent the two endpoints of this

scale, the jostle and ram functions describe intermediate locations. Though all operations,

except for the expand function, involve several windows moving simultaneously only a
simple click of the mouse button is required to execute them, similar to the maximize

operation available in many window systems.

The expand operation provokes a window to grow independently in all directions until it
becomes adjacent to some other window or reaches the end of the screen. Compare Fig.

5.1. The shaded window W has been expanded in (b). This simple operation allows the

user to allocate unused space, without additional covering or repositioning of other
windows on the desktop.

Fig. 5.1 The expand operation. Figure (a) shows a simple desktop, (b) shows the situation after
the shaded window W has been expanded.

To enable windows to allocate even more empty space than the expand operation allows,

Hutching and Stasko introduce the jostle operation. Its effect is similar to expand, but this

function also moves windows that are in the neighbourhood. Two windows are
considered to be in the same neighbourhood if they overlap. The active window grows

until one of the moving windows becomes adjacent with the border of a non-moving

window or has reached the edge of the screen. For an example of this operation see Fig.
5.2. The shaded window W “ jostles” its neighbour N to the top and left to allocate more

space, but W does not grow rightwards once it has reached the edge of the window Z. The

idea of this concept is to reposition windows that are close to the resized window in order
to gain more space while maintaining the visible content of all windows. This operation

also supports assigning certain windows to fixed places on the screen.

 72

Fig. 5.2 The jostle operation. Figure (a) again shows the same desktop layout as in Fig. 5.1, (b)
shows the desktop after a jostle operation has been performed on the shaded window W.

Contrary to the jostle operation, which seems well suited for a working environment

where it is important to have fixed windows near the edge of the display space, the
concept of the ram operation implements the case where nearby windows should remain

stationary. In that case windows that are far away, i.e. not in the neighbourhood, are

inconsequential for the current task and can be repositioned in order to gain more space.
Fig. 5.3 shows a simple example for an execution of the ram operation. The shadowed

window W grows into all directions, and when it becomes adjacent with the window Z it

“ rams” Z to the edge of the desktop.

Fig. 5.3 The ram operation. Figure (b) shows the window layout after the ram operation has
been employed on the shaded window W in (a).

The shove operation executed on a window causes the window to allocate as much space

as possible by moving all other windows on the desktop towards the edges of the screen,

while still maintaining their visible content. This functionality can be achieved through
combining the ram and jostle functions. For example in Fig. 5.4 the shadowed window W

jostles N to the top and left, and also rams Z to the right.

Fig. 5.4 The shove operation. Figure (b) demonstrates how the shaded window W in (a) is
transformed by applying the shove operation.

 73

As executing one of the operations described above automatically changes more than

only the selected window, users might not be able to foresee the resulting layout and end

up having an undesired window composition on their desktop. Therefore Hutching and
Stasko implemented an undo function that allows users to recover back through any

uninterrupted series of moving, resizing or one of their proposed operations. Providing an

undo function does not only aid users to recover back after resulting into an unexpected
window composition, it makes it also possible to effortlessly switch between tasks.

For all operations animation is used to show the actual movement of the windows on the

screen. By providing this animation, and since the operations are based on physical
movement of objects, Hutching and Stasko believe that users will find it easy to learn and

understand the operations.

The operations introduced above minimise the amount of time users have to spend on
managing windows on their desktop. Enlarging a window without obscuring any other

visible information only requires one simple operation. However, those operations are

still expressed on a lower level through direct manipulation, ignoring task-relevant
dependencies that might exist. Usually users work on a task and not within a particular

window. Badros et al. introduce the Scheme Constraint Window Manager (SCWM),

which is a constraint-based system, to address this problem [Badros et al. 2000]. Their
objective is to aid users to express their high-level intention by providing window

operations that are based on constraints and relationships.

They provide a set of different constraint classes that can be applied to windows.
Examples for constraints are vertical or horizontal alignment, vertical or horizontal

relative size and strict relative position. Applying constraints to a certain window is done

using a toolbar. Each constraint class is represented by a button on the toolbar. Users can
employ a constraint by clicking the corresponding button and selecting the windows

afterwards, or by highlighting the windows first and then clicking on the button

representing the desired constraint. Fig. 5.5 shows the constraint toolbar of the Scheme
Constraint Window Manager.

Fig. 5.5 SCWM’s constraint toolbar. A constraint is typically employed to windows by selecting
the corresponding constraint in the toolbar and subsequently selecting the windows.

Badros et al. state that preliminary user studies have demonstrated that users can guess
the represented relationship reasonably well from the icons, due to SCWM’s intuitive

user interface. The notion of constraints might be confusing and difficult to understand by

users because of its rather abstract manner. But users working with the Scheme
Constraint Window Manager do not have to be familiar with the abstract notion of

 74

constraints to use the system. The constraint classes are masked by allowing users to
assign relationships specific to the notion of a window. Voice recognition that is also

implemented in SCWM additionally supports this approach and encourages users to

express their higher level intentions.

To manage constraints once they have been applied to windows the Scheme Constraint

Window Manager provides a constraint investigation interface. This interface enables

users to remove, change or simply track applied constraints through visual representations
superimposed directly on the windows, which the relationship involves. See Fig. 5.6 for

an example.

The Scheme Constraint Window Manager represents an innovative and interesting
approach, however, [Hutchings and Stasko 2002] points out two potential pitfalls of

relationship-based systems. The first is that users habitually forget, and if a user forgets

that a relationship exists, and creates a new one that unintentionally breaks another
relationship, the consequences might be confusing and devastating. The second is that

defining a routine that accounts for all other windows and the edges of the desktop

requires defining and subsequently maintaining a large number of relationships.

Fig. 5.6 Visual representation of constraints. This figure demonstrates the visual
representation of constraints in SCWM, and the constraint investigator that allows
users to manage constraints. In this example XTerm A is constrained to be left of
XTerm B and above XTerm. XTerm C is constrained to have a minimum width, and
XEmacs is anchored at its lower right position.

 75

Moreover relationships must be defined per session, which may be a time-consuming

process since user desktops can change many times per session.

Dynamic space management

This section discusses the problem of space allocation that occurs when new windows are

created or existing windows are deleted. Applications commonly adopt a simplistic
approach to allocate space. In fact the method of space allocation is typified by window

managers, that position newly created windows at arbitrary locations or – in case of a

tiling-based system – apply tiling strategies to acquire empty space for new windows. In
many situations it is necessary to allocate space for an object without intersecting other

visible objects. Graphical systems commonly provide a hierarchical representation of the

space occupied by objects, typified by the window trees of 2D window systems and the
bounding volume hierarchy of 3D graphics packages. These space representations allow

determining whether a conflict has occurred when new windows are instantiated, but they

do not make it easy to determine how the conflict can be avoided by either modifying a
desired placement or selecting a new one. Bell and Feiner address this problem by

introducing an efficient approach for representing, building and querying empty space

[Bell and Feiner 2000].

Their idea is to partition space into two distinct categories: full and empty. The users can

specify a set of rectangles that represent the objects of interest. The system uses these

full-space rectangles to create a representation of the remaining empty space. Based on
this representation customised spatial allocation strategies can be built that avoid

overlapping the full-space rectangles. For further information about the representation,

the algorithms for adding and deleting rectangles, or querying the empty-space
representation see [Bell and Feiner 2000]. In this context I only want to present two

prototype applications that feature an implementation of their algorithm.

The first application is a window manager testbed that pursues to provide benefits of a
tiled window representation, such as no window obscuration, within an overlapping

window system (Fig. 5.7). This is achieved through providing a simple possibility to

determine available empty space by examining a list of largest empty-space rectangles.
Bell and Feiner introduce two new approaches to avoid overlapping when a window is

moved to another position.

In the first approach the window manager determines whether the dragged window would
overlap any existing windows at the location it was dropped, and queries the empty-space

representation to find the closest empty space for placing the dragged window. If that

space is within a certain distance from the original destination it is moved there by the
system. Otherwise it is placed at the position where the user dropped the window. This

algorithm allows users to move windows in a context where no window obscuration is

 76

desired quickly and sloppy, knowing that the system will place the window at the nearest
position where it does not overlap other windows.

In the second approach the dragged window is placed at the location where it was

dropped by the user. If it obscures any other windows the system queries the empty-space
representation to find the closest empty space and moves each window to a new

destination to avoid overlap. If no possible solution is found some windows stay at their

position despite overlap. The pitfall of this algorithm is that it can fragment space, and
that it gives priority to windows that are processed fist. Bell and Feiner suggest

addressing this problem by allowing the motion of the windows being moved out of the

way to occur dynamically.

For the second prototype application Bell and Feiner have integrated their space manager

into an existing research system, namely IMPROVISE [Zhou and Feiner 1998].

IMPROVISE is a system that automatically creates 3D information visualisations. Fig.
5.9 shows how it displays a timeline that represents a patient’s surgery. Each of the

folders contains information about the patient and the user may want to enlarge it to

explore it in more detail. Enlarging the folder in a conventional way without regard to

Fig. 5.7 Improved drag operation. This figure shows two approaches to place a dragged
window without obscuring visible content. From left top to lower right: (1) the
original desktop, (2) traditional drag operation and placement, (3) automatically
moving the dragged window to the closest empty space, (4) repositioning any
obscured windows.

 77

other folders can cause a loss of context. Therefore the space manager is used to find the

largest empty-space rectangle for the enlarged folder.

Bell and Feiner also suggest using the space manager as an addition to the earlier

presented Scheme Constraint Window Manager since it lacks a useful representation of

empty space.

Hutchings and Stasko have developed a different concept to manage empty space in order

to support expand, jostle, ram and shove operations. The objective of their concept is to

create virtual empty space since the desktop must hold some amount of empty space to
enable an efficient use of the described operations. Users can draw rectangles to define a

relevant region that should always be visible for each application. This rectangular region

serves as the new virtual border of the applications, and is used to acquire empty space if
one of the operations is employed to another window on the desktop. For an example

consider Fig. 5.9. First the user marks the region in an email client that shows a list of

Fig. 5.9 Maintaining relevant regions. In the left picture a relevant region for the email client
is outlined to show new messages. This region is used as the window border if
another window is expanded, shown in the picture on the right.

Fig. 5.8 The space manager integrated in an information visualisation system. The folders
displayed in the picture on the left contain data about a patient. The right picture
demonstrates how the information visualisation system uses the space manager to
find the largest empty-space for enlarging the folder named Anaesthetics without
overlapping other objects.

 78

new messages as the relevant region. If the user employs an expand operation on the web

browser afterwards the relevant region acts as the email client’s border, allowing the

window that contains the web browser to grow until it becomes adjacent with this defined
region.

Hutching and Stasko furthermore suggest as a future directive for relevant regions to

actually hide the remaining portion of the window. They state that this could support
general desktop management since each window displayed on the desktop is much

smaller and therefore easier to move and place. See Fig. 5.10 for an example. The first

picture shows a desktop view that is rather complex. Defining a relevant region of interest
for each application allows hiding remaining space. The desktop gains more open-space

and appears to be easier to manage. As another approach they suggest reverse relevant

regions with the idea to hide space that is irrelevant or annoying.

Fig. 5.10 Removing irrelevant regions. By defining relevant regions for each application visual
clutter can be reduced, since irrelevant regions are blinded out.

Improved tiled windows

In chapter 2 two different concepts for window layout have been introduced, which are

the tiled windows strategy and the overlapping windows strategy. Opinions about which
strategy provides better usability diverge. Bly and Rosenberg studied the performance of

users in both systems [Bly and Rosenberg 1986]. The conclusion of their comparison was

that tasks that required little window management, which they called regular tasks, could
be carried out more quickly using tiled windows. However, for irregular tasks users

seemed to be divided into two groups, slow users and fast users. Fast users showed better

performance using overlapping windows, while slow users showed the opposite
behaviour.

An earlier study that has been carried out to compare users’ performance in windowed

systems to non-windowed systems showed that benefits of windowing can be
overshadowed by additional time spent on window housekeeping activities [Bury et al.

1985]. While actual times spent on solving a task were lower in windowed environments,

the study revealed that task-completion time in windowed systems can be longer

 79

compared to non-windowed systems due to time spent on window arrangement.

Kandogan and Shneiderman use these conclusions and the fact that overlapping windows

were proposed as a solution to the small-screen problem of the 1980s to motivate their
concept of elastic windows [Kandogan and Shneiderman 1996]. Furthermore they

describe several problems that result from the independent overlapping windows

approach.

“With the increase in the number of windows, visualizing simultaneously all the

necessary information for a task became difficult. As the number of windows per task

increases, task-switching becomes more time-consuming since more windows need to be
opened/closed or moved/resized under the independent overlapping windows approach.

[…] Longer delays due to housekeeping further increase task-completion time because of

the loss of users’ mental task context, kept in short-term memory. Increase in the number
of windows also prevents users to see the overview of their desktop due to overlapping

windows. This might delay users to switch to unfinished tasks.” [Kandogan and

Shneiderman 1996]

Elastic windows are based on the principles of hierarchical window organisation, space-

filling tiled layout and multi-window operations. The hierarchical window organisation

supports users to organise their working environment according to tasks. The nested
rectangle tree structure indicates the semantic relationship between the windows. Fig.

5.11 shows an application that employs hierarchical window organisation.

Fig. 5.11 Elastic windows. The picture shows an application that uses elastic windows.
Windows are organised in a hierarchical manner, and therefore support users to
arrange their windows accordingly to tasks.

 80

Multi-window operations are introduced to decrease the cognitive load on users by

decreasing the number of window operations. In elastic windows multiple operations are

simultaneously applied to a group of windows at any level of the hierarchy. Another way
to apply multi-window operations is to highlight an operation and selecting the windows

sequentially.

The main characteristic of elastic windows is space-filling tiled layout. This approach is
used to overcome drawbacks of overlapping windows. Advantages of the tiled layout are

efficient utilisation of available screen space and a clearly arranged application layout.

The term “elastic windows” originates in the way groups of windows are stretched like an
elastic material when they are resized. Fig. 5.12 shows an example for a resize operation

applied to window HCIL under the UMD group. (Compare Fig. 5.11 for the original

window layout.)

Due to the space-filling tiled arrangement of windows, changing the size of a specific

window causes resizing of other windows as well. The size of the affected windows is

changed proportionally according to the window sizes. The resize operation results in
either a push or a pull, depending on the border dragged and direction of drag (Fig. 5.13).

In figure Fig. 5.13 (a) window C pulls windows A and B, as the left border of C is

dragged to the right. Windows D and E are not affected by this dragging operation since
they are located to the right of window C. In figure Fig. 5.13 (b) window B pushes

Fig. 5.12 Resizing of elastic windows. The window HCIL from Fig. 5.11 is being enlarged, and
the neighbouring windows accordingly shrink. This picture shows the layout after the
resize operation.

 81

windows C, D and E as the right border of B is dragged in order to enlarge that window.

In this case window A, which is located to the left of B, is not affected. When windows

are resized a window might reach its minimum window size. This can lead to a change in
window size proportions since the other windows can be further decreased. However, the

system keeps those proportions to make every resize operation reversible, as shown in

figure Fig. 5.13 (c). Kandogan and Shneiderman leave the question whether the content
of windows should be affected by a resize to the application, as different strategies might

be appropriate for different applications.

Further information on elastic windows can be found in [Kandogan and Shneiderman
1996] and [Kandogan and Shneiderman 1997]. The personal role manager, which is a

scenario based on elastic windows, and provides a task-centred desktop environment for

users, will be discussed later on.

According to [Chandresh et al. 2002] there are several shortcomings in the concept of

elastic windows. It points out that this concept only works with systems that follow the

hierarchical approach of windows arrangement, which does not give users the same
flexibility as the overlapping windows strategy does. In contrast Chandresh et al. present

the Tiled View Manager [Chandresh et al. 2002], a window manager that intends to

combine the benefits of tiled and overlapping windows strategies. The objective of this
design proposal is to provide users with a simultaneous view of information in all

windows, while also giving them flexibility in assigning positions and size of windows.

In particular the Tiled View Manager supports organising multiple windows within one

Fig. 5.13 Effect of resize operations on other windows. (a) Pull effect (b) Push effect (c)
Recovering proportions

 82

single window. This concept is called Workspace approach and used by many

applications that allow having multiple documents within the same parent window.

The design basically focuses on three functions, which are opening, moving and resizing

a window. To open a new window the user first has to switch to the open window mode,

which is done by clicking on a toggle button in the toolbar. The position for the new
window is indicated by dragging an edge of one or more windows. The new window is

created within the space that arises from the resize operation. If two or more windows are

resized simultaneously in order to create a new window those windows have to be
adjacent to each other and aligned at least on one edge. New windows can only be opened

above or besides existing windows depending upon which edges are being dragged. In

Fig. 5.14, top row, a new window is created above window B. The lower screens in Fig.
5.14 show an example where two window borders are dragged simultaneously in order to

create a new window.

For resizing windows a similar strategy to elastic windows is used. If the size of a
window is changed it affects the size of neighbouring windows. Additionally users can

select multiple windows to be resized simultaneously. Multiple window selection in the

Tiled View Manager is done by right-clicking the windows subsequently. The coupling is
valid till the mouse is released after performing the desired operation.

Fig. 5.14 The Tiled View Manager. The top row screenshots demonstrate how a new window is
created by dragging the edge of window B. In the lower left picture windows A and C
are both selected and subsequently dragged to create a new window, shown in the
lower right picture.

 83

To move a window to a different location it simply has to be dragged to that position. In

order to accommodate the moved window the window that is occupying the target

position is swapped to the original position of the moved window. The border of the
window being overlapped by the moved window is highlighted to provide some cognitive

assistance to users.

Snapping and zipping techniques described in [Beaudouin-Lafon 2001] allow using tiled
windows in an overlapping windows system. Snapping enables users to join several

windows into a single unit. Snapped windows can be moved together by a single

operation. When windows of similar sizes are snapped, the common edge of the windows
becomes a divider which can be moved. This technique is called zipping. Zipped

windows are moved and resized together unless the user unzips them again.

Exper imental innovations
In the last section I have presented new approaches that address shortcomings of current

window managers. The discussed proposals introduce improved techniques while
maintaining the basic characteristics of window managers commonly used today. In this

section I want to present proposals that suggest more experimental innovations. Many of

them still rely on traditional windows layout and the WIMP paradigm but present
methods that could indicate a first step towards the next generation of human-computer

interaction.

Many attempts discussed in this section introduce a three-dimensional working
environment. Opinions whether three-dimensionality is an appropriate approach for novel

user interfaces diverge. Most three-dimensional effects are fancy but rather useless, if not

unusable. Therefore the challenge is to explore interaction techniques to make three-
dimensional user interfaces usable. I will give a discussion for this aspect in the next

section.

Since window management innovation can certainly be motivated by improving the
means of user interaction or file management, I want to mention a few proposals

regarding these aspects as well.

Adaptive window management

Window systems that are based on adaptive (intelligent) window management aim to
minimise users’ involvement in window management activities to reduce time spent on

window housekeeping activities. Stefan Stille et al. presented an adaptive automatic

display layout system (A²DL) to handle “ the visual chaos in graphical user interfaces”
[Stille et al. 1996]. A²DL is based on an approach of automatic display layout (ADL) that

suggested using layout algorithms to automatically organise windows on the screen

[Lüders and Ernst 1995]. The disadvantage of this system was that users had to specify
input parameters for the ADL layout algorithms. Therefore they were required to have

 84

knowledge about the details of the layout computations. To address this A²DL puts the

emphasis on relieving users from explicitly specifying any parameters for the layout

algorithms. Instead the adaptive layout algorithms suggest a window layout and learn the
required layout parameters from manual corrections by users. In the beginning A²DL

relied on a keyboard focus analysis to detect the current working set of windows. This

approach turned out to be inadequate mainly because keyboard focus cannot be taken as
indication for window usage. Windows can also remain of interest for users without

having the focus, for example for monitoring activities. Therefore users can now describe

the relation between tasks and windows in a so-called AIW model.

Another approach that attempts to reduce the number of window management operations

is the vanishing windows approach [Miah and Alty 1999]. This system determines which

windows are currently not used and steadily decreases the screen real estate that is
utilised by them. This is achieved through reducing them in size and moving them

towards the sides of the screen. The minimum size of a window is an icon. Miah and Alty

present several strategies for active window determination, and shrinking and migrating
operations. For example they suggest removing unnecessary information in inactive

windows. However the vanishing windows concept raises several problems, such as

distraction and reduced user control.

Zooming user inter faces

Zooming (or zoomable) user interfaces, also known as ZUIs, represent a promising

approach to display several windows simultaneously, whilst avoiding clutter. In an

Fig. 5.15 The spatial data management system. A wall-size projection screen in front of the
user shows the detail view of a large data surface. Navigation devices and a small
display that shows the entire data surface are arranged around the user.

 85

ordinary window system windows have to be arranged on the relatively limited desktop

surface, resulting in either overlapping or tiling, depending on the applied approach. In a

zooming user interface objects can be placed anywhere on a single large information
surface. To locate and work with objects users can navigate over the surface, and also

scale the objects. This approach relies on the spatial metaphor which is motivated in

natural and spatial ways of thinking of humans. The concept of a large data surface also
allows several users to work simultaneously in the same environment. This section gives

a brief overview of systems with zooming user interfaces.

A minimal implementation of a zooming user interface is the earlier mentioned room
metaphor or spatial metaphor, also known as virtual workspace or virtual desktop. Users

work with a planar data surface that is much bigger than a single screen, holding several

virtual desktops. An iconic map, representing the virtual desktops or rooms, allows users
to navigate between different workspaces. However this concept does not support

zooming.

The first system that provided rudimentary zooming was Ivan Sutherland’s visionary
Sketchpad [Sutherland 1963] (chapter 1, p. 14). Sketchpad was presented at MIT forty

years ago. The next system that supported zooming as part of the user interface was the

Spatial Data Management System (SDMS) [Donelson 1978]. It was the first system that
presented a zooming technique for locating information. The setup for SDMS required an

entire room, including several machines and displays, where all user controls where

arranged around a single chair (Fig. 5.15). The large screen in the middle of the room was

Fig. 5.16 Pad. Magnifying lenses are used to navigate through an infinite information surface.

 86

used to display the detail view of an up to a hundred times larger data surface. An

overview of the entire data surface was provided on the small monitor to the right of the

user, called the world view monitor, which acted as a navigation control.

Several years later Kevin Perlin who was a student at the New York University developed

a system called Pad [Perlin 1993]. Pad is based on an infinite planar information surface

where objects are organised geographically. It also supported multiple user access.
Magnifying lenses, called portals, were used for navigation (Fig. 5.16).

Ben Bederson, who is responsible for most of recent research that has been done in the

domain of zooming user interfaces, developed Pad++ [Bederson and Hollan
1994][Bederson and Meyer 1998], a direct successor to Pad. Pad++ supports the creation

of graphical data objects of any size, and implies zooming as a fundamental interaction

technique (Fig. 5.17). Standard objects that are supported are coloured text, text files,
hypertext, graphics and images. For navigation control the system typically uses a three

button mouse, where the middle button zooms in and the right button zooms out. In

systems with a two button mouse the right button is used to initiate a zoom operation, and

Fig. 5.17 Pad++, the successor to Pad, developed by Ben Bederson and his team. The picture
shows a sequence of snapshots (from left to the right and from top to bottom) where
the view is zoomed in to the detail view of a picture.

 87

the mouse movement determines the direction of the zooming. Ben Bederson’s research

work has led to the development of Jazz37, an extensible zoomable user interface graphics

toolkit, implemented in Java [Bederson et al. 2000]. However there are no proposals for
the implementation of a window manager using the approach of zooming user interfaces

yet, and more research work has to be done to explore possible zooming interaction

techniques in the context of window management.

Stuart Pook did his doctoral thesis about interaction and context in zoomable user

interfaces. Part of his research work was Zomit38 [Pook 2001], a development tool for

zoomable user interfaces. Zomit provides all the standard interfaces of a zooming
environment, such as semantic zooming, magic lenses and portals. Additionally it

features a novel control menu for user navigation. While traditional zooming user

interfaces rely on a multi-button mouse for zooming and panning, Zomit’s navigation
system only requires one mouse button. Functions are accessed via a mouse click

followed by a gesture of the mouse pointer. The navigation menu is shown in Fig. 5.18.

Fig. 5.18 Navigation in Zomit. The left picture shows Zomit’s navigation menu, which is invoked
by a single mouse click. A menu item is selected by moving the mouse. The picture to
the right shows a gesture for invoking several zooming operations sequentially. The
first part (a) selects the zoom operation. (b) to (d) indicate a level for zooming or
dezooming.

Other user interaction techniques that are based on zooming include lenses [Fox 1998]
and fisheye views [Furnas 1986] (Fig. 5.19). For further information consider the

references in the appendix, for example [Pook 2001] provides a comprehensive

discussion on distorted views and zoomable user interfaces. A more specific discussion
about this issue at this place would go beyond the scope of this document.

37 See http://www.cs.umd.edu/hcil/jazz/play/ for demo applications using Jazz.
38 http://www.infres.enst.fr/net/zomit/

 88

Fig. 5.19 Examples for a data lens and fisheye view application. The picture on the left shows a
schedule application that uses a lens to display all notes for a selected day while also
providing miniature views of the remaining days and weeks. The right picture shows a
java applet for a menu using a fisheye view. (Both examples were published by Ben
Bederson.)

Three dimensional windows

Windows in a system that follows the overlapping windows approach are often called

2½-dimensional since windows can overlap, but no three-dimensional representation of
windows is provided. While current window managers still implement windows in a

2½-dimensional manner several proposals have been presented to add three-dimensional

representations.

Michel Beaudouin-Lafon introduced the concept of tabbed windows [Beaudouin-Lafon

2001] which includes techniques for peeling-back windows, applying a three-dimensional

representation for windows. The general idea of this concept is to improve window
management by raising the tab technique, as used for dialog boxes, to the level of

document windows. Users can move pages from one window to another by dragging

them via their tabs, or assemble several windows into a single entity by snapping or
zipping them (see previous section). Furthermore it is possible to rotate windows and peel

back windows. Both techniques provide a simple way to access stacked windows that

have about the same size. A pane is peeled back by clicking one of its corners and
dragging it. When the mouse button is released the window goes back into its original

position. This behaviour is visualised through an animation.

The previously mentioned toolkit Ametista which was recently presented by Nicolas
Roussel features peeling-back techniques for windows as described in [Beaudouin-Lafon

2001] among many other features. Using OpenGL to display windows it supports various

techniques, like alpha blending for creating translucent objects and shadows, scaling,
rotation and translation as well as perspective projection (Fig. 5.21).

 89

 [Roussel 2003] also provides a discussion about benefits and disadvantages of 3D user

interfaces, and points out that the two prime difficulties are navigation problems and a

need for better input devices. To allow exploration of three-dimensional techniques for
window management Ametista supports geometric transformations. For example scale

transformations combined with a perspective view could be used for improved navigation

in zoomable interfaces (Fig. 5.20). The motivation for such an interface is that scaling
individual windows might be a much better approach than scaling the whole workspace.

A perspective view would allow users to move away objects while bringing others closer.

The AttrActive Windows project [Denoue et al. 2003], which was designed for a public

Fig. 5.21 A perspective view in Ametista. Perspective views combined with scale
transformations could be used for improved navigation in zooming user interfaces.

Fig. 5.20 Peeled-back windows and three-dimensional windows in Ametista.

 90

network of large screen bulletin boards, ads further 3D animation techniques to those

described in [Beaudouin-Lafon 2001]. The aim of this proposal is to simulate sheets of

papers attached to a virtual corkboard. This is achieved by using techniques, such as cloth
animation, which give windows a paper-like behaviour, like fluttering in the wind (Fig.

5.22). AttrActive Windows present an interesting approach since it does an attempt to

move away from the desktop metaphor. However the corkboard metaphor might be
appropriate for public bulletin boards but not for personal computers.

Fig. 5.22 AttrActive Windows. Windows in this system behave like papers attached to a virtual
corkboard. The content originates from a server on which standard GUI windows are
actively running.

The Task Gallery [Robertson et al. 2000] is a 3D user interface research prototype that

was developed by Microsoft Research. It replaces the desktop metaphor with an art
gallery metaphor. In this environment tasks can be hung artworks-like on the walls, or

even put on the ceiling or the floor. A task can involve several windows or applications.

To work on a task it is placed on the stage at the end of the virtual gallery. The Task
Gallery intends to adopt metaphors from the real world for its 3D representation in order

to provide an intuitively usable user interface and to remove mental load from the users.

A common problem with 3D environments is that users tend to get lost if the system
requires them to navigate. The Task Gallery addresses this problem by keeping the 3D

space simple and providing a few simple on-screen controls for navigation (Fig. 5.24).

The space is constrained by a linear hallway, represented as a sequence of rooms, in
which users can only move forwards or backwards. While moving back more rooms are

revealed without limit. Users can only move between entire rooms. Additionally a bird

eye’s view is provided to show all tasks in the Task Gallery.

Moving a task onto the stage is done by clicking on the corresponding task view in the

virtual gallery. The task that was on the stage before is moved back to its position in the

gallery, and the new task is moved to the stage, leaving a ghost view at the place where it
was before to show its position in the gallery. Tasks can also be moved between walls,

 91

the ceiling, floor and stage by dragging them. Newly created tasks are placed on the floor
in front of the stage. All activities are visualised by short animations to help users

understanding the results of their actions. Audio cues are provided to help users locating

objects and keeping track of their actions. Since users can arrange their tasks in any order
inside the Task Gallery task persistence is an important concern to assure that after a

restart users will find exactly the same layout last seen before they left the virtual gallery.

Consequently information to launch the applications and assign them to their previous
places in the gallery is recorded. However it is not possible yet to restore the state within

each application as there is no standard way for determining the state of open files and

sub-windows within applications.

The start menu, known from recent Microsoft Windows releases, is replaced by a start

palette, a Data Mountain held in the user’s left hand. To provide consistency within the

system following the art gallery metaphor it has the shape of an artist’s palette. This
palette contains favourite documents and frequently used applications presented by icons

or snapshots. It is also used to initiate a new task, and is accessed via the on-screen

navigation controls.

To work on a task users have to switch to the primary view which is a close-up view of

the main stage. Several techniques for improved window management are available at the

main stage, including a loose stack, an ordered stack and a selected windows set. Selected
windows are displayed to the right of the stage. If several windows are displayed

Fig. 5.23 The Task Gallery. Microsoft’s Research team used a gallery metaphor for their
approach of a three-dimensional window manager. Inactive task can be put on the
walls, the floor or the ceiling while the active task is placed on the main stage at the
end of the virtual gallery.

 92

simultaneously they are moved by the system in a way so that all windows are visible,

hence avoiding overlapping. If the size of a window needs to be changed its content is
scaled as well. Inactive windows can be placed either on the loose stack or the ordered

stack by clicking on the corresponding icon in the window manipulation control bar. This

control bar appears above the window banner when the user points on the banner.

The loose stack is organised as overlapping windows similar to the current desktop

metaphor. Clicking on a window moves it to the selected window set by exchanging its

position with the currently selected window. Clicking on the “Add to Selection” Icon in
the windows control bar adds the window to the selected window region. The ordered

stack is used to keep currently unused windows organised. Windows placed in the

ordered stack appear aligned on a podium (Fig. 5.26). Like in the unordered stack
clicking on a window moves it to the selected window region. Windows can be moved in

any possible way between the two stacks and the selected window region.

Fig. 5.24 The start palette, a Data Mountain held that has the shape of an artist’s palette. It
allows fast access to documents and applications.

Fig. 5.25 Navigation within the virtual gallery. The Task Gallery provides simple navigation
to avoid that users get lost within the 3D environment. Therefore rooms are arranged
as a linear hallway where users can only move back- or forwards. The left picture
shows the navigation controls.

 93

The current implementation of the Task Gallery works with any Microsoft Windows

application since redirection is used to bring existing, unmodified applications into the 3D

environment of the Task Gallery. This technology also enables a smooth transition
between the standard 2D desktop interface and 3D virtual gallery representation. The

Task Gallery represents an interesting approach for a 3D user interfaces since it aims to

leverage human spatial cognition and perception. However it also implicates several
pitfalls. A discussion on those pitfalls will follow in a later section.

Vir tual reality environments

The 3Dwm project39 intends to create a three-dimensional workspace manager40 designed

to run on several different platforms, including ordinary desktop computers, but
especially aiming at virtual environments like Caves and wearable computers. A Cave is

a typically three-meter wide cubical space with projections of three-dimensional images

onto the walls. Some Caves additionally support projections onto the floor and the ceiling.
Caves are used to explore Virtual Reality applications since they allow users to move

around in a 3D environment in an immersive way. The 3Dwm project does not anticipate

creating the next generation of 3D user interfaces, but on the contrary it intends to
provide a research platform for exploring different approaches of 3D user interfaces.41

Furthermore 3Dwm’s project goal is to define a common, high-level platform for

development and research of 3D user interfaces, while also providing backwards
compatibility to existing windowing system, such as the X windowing system. However

3Dwm only provides the high-level primitives required for user interface design. The

39 http://www.3dwm.org
40 Note that “wm” in 3Dwm stands for the term “workspace manager”, and not for “window
manager” as misleadingly could be thought.
41 Some researchers that worked on 3Dwm before are now part of the fresco project group,
formerly known as the Berlin Consortium, which strives to build a new windowing system from
scratch, supporting 3D user interfaces. (http://www.fresco.org)

Fig. 5.26 Ordered stack of windows and multiple selected windows. New window management
techniques are used for the main task to reduce window housekeeping in the Task
Gallery.

 94

actual implementation of the user interface is the responsibility of a special client

application.

Fig. 5.27 shows some example screenshots for 3Dwm applications on desktop computers.

The 3Dwm technology allows perspective views of standard X windowing system

applications, zooming techniques and projection of applications onto geometric spheres.

While the term “windows” works well in conventional two-dimensional window systems

it does not constitute an intuitive abstraction in a three-dimensional environment. Since

windows depict a two-dimensional entity, while three-dimensional environments call for
three-dimensional objects, new terms have to be defined. Consequently the 3Dwm project

introduced the term space. A space is defined as “a three-dimensional convex volume”

that “ is bounded by a set of 3D vertices – these are mapped into a convex hull and serves
as the space border” . While windows are usually defined as rectangular shapes this

definition of a space compromises that a space does not have to be squarish with six sides

and square angles. Another term that has already been mentioned since it is derived from
the project’s name is the notion of workspaces, which is the analogy to the term

“desktop” in two-dimensional environments.

3D user interfaces encourage exploring new approaches for human-computer interaction.
The 3Dwm project presents a set of concepts on their Web site, including the Necklace

approach and the Cybercity approach. These concepts address the problem of session

management. In 3D environments users are required to navigate through space. This
represents a challenging problem to user interface designers since inexperienced users

tend to get lost. Solutions have to keep the three-dimensional environment simple, while

providing constraints. The Necklace approach suggests aligning all workspaces in a circle,
like pearls on a necklace (Fig. 5.28). Only one workspace is allowed to fill the entire

virtual environment. In the beginning only one workspace, the root workspace (marked in

red), is on the necklace, but more workspaces are beaded onto the virtual necklace when
users create new tasks. The other approach shown in Fig. 5.28 is the Cybercity approach.

In this model applications are represented by buildings and users can zoom in and out on

Fig. 5.27 Example applications for desktop computers using 3Dwm. The left picture shows an
application that uses zooming. The picture in the middle represents a perspective
view of a window, and the picture to the right shows how standard X applications
can be projected onto a cube.

 95

the workspace. More information about an application becomes visible if users come

closer to an application building. Entering a building selects the application.

The pile metaphor

This section is rather related to file management than window management, but changing
the way we organise our files would certainly initiate development of new window

management techniques as well. A different approach to current means of file

management is the pile metaphor, which was developed at Apple Computer about a
decade ago. It adapts the way people use piles to organise their real desktops for the

computer interface.

The Human Interface Group at Apple Computer conducted a study, which revealed that
users prefer to group documents spatially and to organise them by creating piles, rather

than categorising them into specific folders [Mander et al. 1992]. Piles represent a way to

quickly and informally manage large amounts of information. However state of the art
file management systems force users to immediately place files into folders, which are

organised in a rigid hierarchy. Therefore users have to deal with the difficulty of deciding

where to put a new file, while piling requires less mental effort.

Richard Mander et al. used the results of this study as motivation for their design of a pile

metaphor for supporting casual organisation of information [Mander et al. 1992]. They

developed different techniques to browse documents in a pile. For instance a mouse
gestures as shown in Fig. 5.29 would view a miniature version of the first page of the

item under the pointer. The viewing cone that contains the miniature picture follows the

vertical position of the pointer. An item is selected by clicking the mouse button. Another
technique is to spread out a pile with a horizontal mouse gesture. Individual items can

then be directly manipulated. They also suggest providing an office assistant that would

automatically create and maintain piles based on scripts written by users or developed
through user-system collaboration. These piles would have a neat appearance while piles

created by users would appear in a dishevelled manner.

Fig. 5.28 Session management in 3Dwm. The Necklace and the Cybercity approaches are two
attempts to address the problem of session management in virtual environments.

 96

Piles have many advantages to folders. For instance the pile representation can give hints

concerning the number of documents a pile contains, and users could get an overview

about what a pile contains quickly by pulling through it.

Piles, unlike traditional folders, give a lot of hints about their contents. It is possible to

judge the number of documents in the pile by its height. A pile’s composition can be

determined very rapidly by pulling through it.

Gesture-based interaction

According to Bruce Tognazzini, founder of the Apple Human Interface Group, “gesture is

the obvious next step in input” 42. He points out that clutter of words, icons and buttons

that obscure the screen result from the limited vocabulary of the mouse pointer. Gesture-
based interaction techniques include mouse gestures, as well as pen, finger and hand

gestures. Mouse gestures have already been mentioned in other sections of this document.

For instance the pile metaphor approach, mentioned above, relies on mouse gestures for
viewing a pile’s content. Another example is the marking menu where mouse gestures are

used to make selections in a menu (see chapter 2, p. 30).

Jörg Geißler presented three different gesture-based operations for interaction with
objects on very large displays such as interactive walls [Geißler 1998]. Two devices, that

support gesture-based user interaction, are described in [Rekimoto 2001] and [Rekimoto

2002].

Other approaches
An approach that attempts to add a new level to window management by introducing
roles is based on the earlier mentioned elastic windows, the Personal Role Manager

[Kandogan and Shneiderman 1996]. It enables users to structure the screen layout to

match their roles through providing a role-centred environment. The idea is that each
person has several different roles, where each role involves different partners, schedules,

tools and tasks. To support users in working on their roles the scheme has to provide fast

42 http://www.asktog.com/columns/035SquanAdv.html (Nov 2003)

Fig. 5.29 The pile metaphor. A mouse gesture initiates pulling through the pile of documents.
The document at the current pointer position is displayed in a viewing cone.
Selecting a document places it next to the pile.

 97

access to partners, schedules, tools and documents regarding each role, and fast switching
between roles must be possible. For an example see Fig. 5.30 which shows the different

roles of a student. All items of each role are mapped hierarchically into different windows.

In this example the roles embrace taking courses at university, home duties and job
responsibilities.

The choice of elastic windows for the layout assures that users are provided with an

overview of the roles all the time, even while they are working on another role. Due to the
features of elastic windows users can easily switch between roles, pick any task regarding

a role and customise the layout for tasks.

Kandogan and Shneiderman also propose elastic windows for web browsers with multiple
page operations and hierarchical page organisation [Kandogan and Shneiderman 1998].

Their elastic windows browser opens a new page inside the parent window, placed on the

right. Thus it provides users with an overview of the site they are browsing, which gives
them a sense of location and also provides fast access to a hierarchy of pages. Opening

another page in the same hierarchy can either replace the last page, or the new page can

be placed next to the last one. The elastic windows browser also supports hierarchicons
to decrease real estate utilised by inactive pages, while still providing access to them. A

hierarchicon is a thumbnail image of a hierarchy of visited pages.

Fig. 5.30 The personal role manager. This application relies on elastic windows to allow users
structuring their screen layout according to different roles.

 98

People are using the Web for solving more and more tasks and therefore spend

increasingly amount of time using the Web browser. Accordingly it seems to be

predictable that Web browsers will take over some of the window manager functionality.
Currently they feature rather bad window management techniques but while state-of-the-

art window managers are developing very slowly Web browsers have the capability to

change quickly in order to adapt new interaction techniques. Some examples for
integration of new user interface techniques in Web browsers have already been

presented in chapter 3, p. 44.

Discussion
In this section I want to examine the proposals presented above. I will put the main focus
on discussing the benefits, since these should be accounted by forthcoming window

managers. However it is impossible to give a comprehensive discussion about all benefits

and disadvantages of techniques presented in this chapter, further user testing and studies
would be necessary in order to attain a complete evaluation.

Introducing new operations that affect neighbour windows, multiple window operations

and constraints define a major aspect to reduce window housekeeping. New operations
have to be intuitive to use, and should not require to be learned. Ordinary window

operations like move and resize represent simple techniques that can be memorised and

Fig. 5.31 Elastic windows browser. This picture demonstrates how pages in this elastic
windows-based browser are opened side by side to allow hierarchical nesting. It also
shows the use of hierarchicons.

 99

employed easily. Even if one would call the move-operation “drag”, users would stil l

comprehend that it is the same operation, since there exists only one operation in the

system to move a window. Constraints like this reduce user’s cognitive memory loads. In
contrast the new window operations presented in [Hutchings and Stasko 2002], which are

expand, shove, jostle and ram, provide four different ways of moving a window. This

imposes that users might constantly confuse those operations unless they have memorised
the operations accordingly to their synonyms. However the implementation of an undo-

operation is a good attempt to support users in learning, following the try and error

approach. Another important aspect is how these operations are employed. An intuitive
user interface could reduce the need to learn their utilisation. However Hutchings and

Stasko do not present any proposals in this respect. By contrast the Scheme Constraint

Window Manager comprises an implementation of a toolbar for employing constraints on
windows (Fig. 5.5). Though Badros et al. have done a considerable effort in designing

this toolbar I believe that novices would be overwhelmed by the number of operations

displayed on that toolbar. The Tiled View Manager addresses the need for new operations
that reduce time spent on arranging windows by introducing multiple window operations.

This technique does not require new operations but in contrast it provokes the difficulty

of selecting several windows. A drawback of the solution implemented by the Tiled View
Manager is that users have to select the windows again if they decide to employ another

operation, since multiple selections are only valid until the mouse is released after

performing an operation. Considering how users interact with windows in nowadays’
window managers it is hardly ever the case that a window is placed to the desired position

with one operation. Usually this invokes several alternating move- and resize-operations.

Constraints as used in SCWM represent a different approach for multiple window
operations. Instead of applying an operation to several windows users can define

constraints. Drag or resize operations are accordingly simply applied to a single window,

thus involving several windows depending on the defined constraints. While constraint-
based window managers introduce an attempt that leads towards intelligent or adaptive

window management, where users are relieved from the burden of window arrangement,

they also hold some drawbacks. As already mentioned previously in this chapter SCWM
requires users to define and subsequently maintain a large number of constraints.

Ben Shneiderman’s elastic windows represent an interesting approach of a space-filling

tiling system to utilise a maximum of the available screen space, and for simplifying
window operations. However the tiling windows approach holds numerous drawbacks

that will be discussed in the next section. A disadvantage of the role manager approach is

that it makes multitasking across roles impossible since the windows of inactive tasks are
shrunk automatically. For example a user cannot write at a paper for a class and maintain

instant messaging with a friend. It also inhibits to run applications that are only surveyed

by users and do not belong to a certain task, for example a clock or server statistics. (A
problem that is also applicable for adaptive window managers.)

 100

As earlier mentioned, many studies have been carried out to compare tiled window

systems to overlapping window systems. Yet opinions which strategy is preferable

diverge since different user studies in different contexts have shown different results [Bly
and Rosenberg 1986][Gaylin 1986]. Space-filling tiling as used in the role manager is the

only approach, which limits the number of windows that can be displayed simultaneously.

For this reason and considering the pros and cons of both approaches I believe that a
combination of both techniques would embody a substantial approach for future window

managers. The window operations introduced in [Hutchings and Stasko 2002] support a

system following this approach. Windows are enlarged while preventing obscuring, as it
is the case in a tiling system, but neighbour windows can also overlap in a desktop-like

manner. The Tiled View Manager also tries to combine the benefits of the tiled and

overlapping windows strategies. Although it does not give users a great flexibility since
documents within a single task are always arranged as tiled windows. An approach that

gives users more flexibility are tabs, introduced in [Beaudouin-Lafon 2001].

The Task Gallery demonstrates how windows can be arranged within a 3D environment.
It tackles the problem that users tend to get lost in 3D spaces by providing constraints

combined with simple navigation. This unquestionably states a primary criterion that

should be accounted by other 3D window managers too. Another feature, which supports
users in navigating, and working with 3D user interfaces, is the usage of video and audio

cues43. In many 3D environments objects tend to float loosely in space, making it difficult

for users to determine where in depth each object is located. By contrast in real world
there are many cues, like shadows, atmospheric shading, binocular disparity, and physical

connection through gravitational force. Therefore the Task Gallery has implemented

similar cues in its virtual environment, for example shadows and lighting effects to
support perception of objects, or stands and podiums to connect objects to the ground (Fig.

5.32). Additionally animation is used to show smooth transitions between different states.

This decreases the cognitive load on users while taking advantage of natural perceptual
abilities. [Thomas and Demczuk 2002] provides an examination of effectiveness of

animation to improve indirect manipulation in graphical user interfaces. Interactive audio

is used in the Task Gallery to reduce the need for users to visually focus on each action.
Every gesture has assigned a specific sound, aiming to describe it in an auditory manner.

Sounds caused by moving objects are also spatially dynamic, for example as an object is

moved further away from the user’s viewpoint its sound becomes more distant. Spatial
constraints as well as video and audio cues are also found in 3D first and third person

perspective games. Since 3D games have a longer tradition hints for implementing a 3D

window manager could be found there.

43 http://research.microsoft.com/adapt/taskgallery/pages/cues.htm

 101

Though the Task Gallery presents numerous considerable techniques for 3D user
interfaces I doubt that 3D third person perspective environments will replace nowadays’

window managers. The difficulty is obviously to find a suitable metaphor for such an

environment. Using a gallery metaphor seems to be a good attempt as art galleries are
commonly known. In contrast the design of the Data Mountain held as an artist’s palette

might appear too abstract to users. Also further research would be necessary to assimilate

a file manager into this metaphor. In the current design state of the Task Gallery files are
accessed via an ordinary standard file browser shown in the user’s virtual right hand.

Another shortcoming of the current implementation is that since only a screenshot of

inactive tasks is shown users are not aware of the current states of these tasks. For
example an event could change the state of an inactive task, or a task might wait for input,

but this cannot be perceived by the user.

3Dwm presents a 3D environment that is mainly designed for virtual reality environments.
Yet no actual approaches for virtual reality working environments have been presented so

far. More research in this domain is necessary before user studies can be done to examine

whether these environments possess the potential of replacing ordinary window systems.
However I doubt that virtual reality systems will be widely used as long as special virtual

reality technologies like VR helmets or Caves are required. Caves simply do not represent

a technology for office applications, and VR tools that have to be put on might not be
accepted by users since they restrain the freedom of movement. As an example consider

headphones and loudspeakers. Headphones hold several technical benefits compared to

loudspeakers, and therefore provide a better quality for sound. Yet everybody uses
loudspeakers, for the simple reason that they do not restrict us in our freedom of

Fig. 5.32 Video cues used in the Task Gallery. Stands and Podiums support users to perceive
how each object relates to its surrounding environment, and high-quality textures
with lighting effects are used.

 102

movement. Analogical holographic techniques would doubtlessly make waves in the

domain of virtual reality interfaces, considering that they will be available for mass

market sometime in the future.

Certainly zooming interfaces that use a spatial metaphor hold vast possibilities for future

window managers. Techniques implemented in existing toolkits, like Pad++ or Zomit,

combined with window manager toolkits, like Ametista, provide a substantial potentiality
for exploring new interaction techniques. Particularly the navigation menu introduced in

Zomit (Fig. 5.18) has to be accredited since it combines a simply interaction device (a one

button mouse) with intuitive gesture movements for navigation in a zooming environment.
However more research has to be done in this domain of user interfaces as well.

Fundamental directions for new designs

As a summary of the examination of different approaches to enhance window manager

techniques I want to conclude this chapter with a list of primary criteria for window

manager techniques. The issues listed below do not focus on a certain approach. They
rather represent general issues that should be taken into consideration by new proposals

for window management innovation.

� Assuring cultural and international independency.
This criterion is a general issue for designing user interfaces, and therefore is also

found in standard HCI literature, for example in [Shneiderman 1998]. Whereas in

early years of computer user interface design little to no emphasis has been put
on this perspective, designers of new user interaction techniques are especially

advised to consider cultural and international diversity. This regards simple

factors of user interfaces, like icons, buttons and colours, but also aspects of
navigation and higher level issues, for instance metaphors.

� Supporting user navigation through constraints.

As discussed for the Task Gallery constraints provide a considerable assistance
for users to interact with complex working environments. As shown in the Task

Gallery constraints can efficiently be adopted from real world. For instance

physical characteristics of objects trim down possible ways of placing an object
in an environment, consider as an example a pile of papers that you want to put

on a table, the surface of the table combined with geometric characteristics of

paper and force of gravity assure that the document can only be placed flatly on
top of the table. Physical constraints evoke spatial memory and cognition, and

therefore simplify user navigation and orientation. Additionally new techniques

require defining new constraints that anticipate loose states of objects. For
example rotation of windows as introduced in [Beaudouin-Lafon 2001] would

allow users to rotate a window upside down, which does not make sense in an

 103

ordinary desktop application. Therefore a constraint was added that allows users

to turn windows only up to a certain angle.

� Scalability.
Since recent past showed an enormous growth in number of task-related objects,

including windows and files, new window managers or systems that aim to

replace window mangers should indispensably provide scalability. For instance
as a conclusion of this principle techniques that are based on simple window

tiling should be evaded as space-filling tiling limits the number of windows that

can be displayed simultaneously.

� Reverse compatibility.

Whatever direction working environments of tomorrow will pursue, a reverse

compatibility with previous applications up to a certain degree will be obligatory.
This could be implemented in a very simple way, for instance think about the

command line interface in Microsoft Windows. However systems that do not

provide any compatibility would probably never become accepted or successful
in a wider market, even if they would introduce the perfect solution to

shortcomings of nowadays’ user interfaces.

� Encourage users to experiment.
New techniques usually necessitate new ways of interaction, which have to be

adopted and cognitively memorised by users in order to be able to use them

efficiently. This does not only impose that new interaction methods should be
intuitively and give adequate feedback, but also that users should be encouraged

to try new techniques by providing a possibility to undo every operation. This can

be achieved by raising the well-known undo-operation to the level of window
management, as suggested by [Hutchings and Stasko 2002].

� Task persistency.

A substantial shortcoming of many window managers is that they do not keep the
exact state and arrangement of tasks and windows or files within tasks after a

reboot. Typically users are working on several tasks, each involving many

windows that contain documents, toolboxes, etc. Consequently considerable time
is spent on restoring the working environment every time the system is restarted.

Probably everyone who is working in an office has experienced the situation of

coming to the office in the morning and finding a chaos on ones table. Actually
not a chaos, but neatly ordered piles of papers which one had thoroughly kept

spread all over the desk before. What appears to be a clutter of a lot of documents

to someone else is actually a working space arrangement where every document
has its place and is rapidly accessible, just by grasping it. A co-worker or cleaner

who puts them together on a pile does not do this on purpose, but causes a lot of

 104

frustration. While I am working on this document I have to use several papers,

documents and books, and I have experienced this situation myself. It took me

more than a week to restore the original arrangement. Microsoft Windows forces
us to do that every day. The problem could be simply addressed by providing

session management. Some approaches presented in this chapter already tried to

tackle this problem. However a standardisation for acquiring information about
the state within applications will be necessary in order to be able to provide

overall persistency.

� Technological issues.
Finally an important perspective is that novel techniques should be based on

commonly available technology. For instance a system that can only be run in a

Cave will never be available for the mass market. Furthermore new technology
proposals have to be intuitively adaptable by any users (this issue also links back

to the first principle of this list), and should tend not to restrict users in their

freedom of movement. The first issue can be achieved by adapting metaphors
from the real world that users are familiar with, the latter has already been

discussed above on the basis of VR tools.

Certainly this list cannot be considered as complete, and probably could be continued
almost indefinitely. However, general criteria for user interface design can be found in

other literature, such as [Shneiderman 1998] or [Preece et al. 1994].

 105

Chapter 6
6 Drafts for new designs

I want to start this chapter discussing some issues that in my opinion are valuable for
window management or, in the broader sense, for human-computer interaction innovation.

These issues can be considered as an extension to the general perspectives that were

presented in the last chapter, but like the entire chapter they represent my personal
opinions, and therefore should not be taken for granted. I will also provide a brief

discussion of alternative user interfaces and present some sketches to illustrate possible

new interaction techniques that could be implemented by future user interfaces.

Specific issues
Many of the approaches presented in the last chapter introduce new interaction techniques
that have to be learned by users in order to work with them. For example Hutchings and

Stasko introduced expand, shove, jostle and ram operations for improved window

management [Hutchings and Stasko 2002]. Users who are not familiar with these
operations might easily confuse them because their functionality is relatively similar. As a

main objective new interaction methods have to be intuitive and should not put any

cognitive load on the users but should rather take advantage of knowledge in the world
[Norman 1988].

The best way to predict the future is to invent it.

Alan Kay

 106

The use of icons could be much more exploited than they currently are. Objects in state-
of-the-art window systems are basically represented in two or three different states. They

can be either opened (window representation) or minimised (icon representation), the

third state is closed (file representation) but this can in some cases correspond to the icon
representation. Enhancements of icon functionality include additional status information,

as presented in the Sapphire window system (chapter 1) and providing cues about their

state, or content in the case of folder icons, by changing the graphical representation. For
example objects that have not been used for a long time could show cracks, and the size

of a folder icon could change accordingly to the number of files it contains.

An ultimate implementation of icons would allow users to change from the icon
representation to the window representation in a seamless manner, where the icon is

being more and more enlarged, showing more and more details of its content and finally

allows users to manipulate the document, as shown in Fig. 6.1. The use of miniature
representations of documents raises the question of what content to display according to

which size. Approaches range from simply showing a scaled version of the document to

content analysis for showing only characterising elements of the document.

To reduce the visual clutter, redundant information in inactive windows such as menu

bars or toolbars can be removed, as suggested in the vanishing windows approach [Miah

and Alty 1999]. The Apple Macintosh Interface Guidelines also suggest that toolboxes in
inactive applications should be concealed [Apple 1992].

Innovation should not only happen on the screen but new approaches should also aim to

improve the means of user interaction. The mouse, in its basic functionality, was
introduced forty years ago, and still it is the main input device for graphical user

interfaces. Trackballs and mouse pads used for laptops represent just variations.

Additional functions have been added by increasing the number of mouse buttons, but
this also leads to confusion. Apple Computer uses this argument to motivate their one-

button mouse as pointing device (chapter 4). New means of user interaction include

earlier mentioned gesture-based interaction methods.

Fig. 6.1 Icon to document view. Further enlarging of an icon shows more details of the
document.

 107

Since recent improvements in graphics display technology allow extensive use of three-

dimensional methods it became attractive to implement computer environments that rely

on three-dimensional interaction techniques. However, as mentioned in the last chapter,
three-dimensional interfaces can easily lead to disorientation. Another argument against

three-dimensional environments is that humans generally build two-dimensional models

of the environment they perceive and, furthermore, the entities we have to work with, like
documents are typically two-dimensional. If a user interface implements three-

dimensional elements great emphasis has to be put on intuitive navigation and the use of

constraints. Constraints taken from real world, like the fact that documents can only be
put horizontally on top of a desktop, help users to understand navigation and interaction

within a three-dimensional environment.

Beyond the desktop metaphor
As mentioned earlier the desktop metaphor was invented at Xerox PARC more than

twenty years ago. Today we have to deal with an incomparable mass of electronic data in
both our professional and personal lives. However, state-of-the-art window systems still

rely on the same metaphor and demand from us to handle the vast mass of data with the

same basic interaction techniques that were used by window systems in the 1980s. While
this document mainly discussed systems that are based on the window metaphor,

respectively on the desktop metaphor, in this section I want to mention some innovations

in human-computer interaction that go beyond the desktop metaphor in this section.

All approaches presented in chapter 5 are located within the design space of the WIMP

paradigm. Even though some attempt to describe new metaphors, they still rely on

windows for presenting information. Metaphors like the spatial metaphor [Henderson and
Card 1986], the corkboard metaphor [Denoue et al. 2003] or the art gallery metaphor

[Robertson et al. 2000] can only enhance the existing desktop metaphor.

A basic question that remains is whether we still depend on windows for viewing
electronic data. Already about a decade ago Axel Kramer presented a different approach

to the window metaphor. He introduced the notion of translucent patches to dissolve the

tight connection between windows, their content and applications [Kramer 1994]. His
work showed a direction towards a non-desktop like computer interface.

I even believe that there is a trend towards real desktop-less working environments. Or, at

least, that the context of our working sets changes, and therefore common physical offices
will disappear. For instance architects need to work on the site, or physicians rather treat

patients in hospitals than sit at desktops, and there are a good deal more of examples,

including our personal lives. People who did not necessarily have to work on desktops
before were forced to do so due to the advent of desktop computers. New technologies

like the wireless local network area protocol allow us again to move away from our

desktops. This should not misleadingly be interpreted as a motivation to equip architects

 108

and physicians with common laptops! Moreover the trend towards desktop-independent

working environments raises some questions. Why should we learn and try to understand

the meaning of icons that represent objects in a real office if we are not working in an
office? Moreover why should people who have never worked in an office be confronted

with the office metaphor? Therefore I suggest that the common metaphor should be

replaced by something new, matching the current technology and the needs of the time,
providing a user interface which is intuitive even for people who have never worked on a

desktop and are not familiar with systems that are based on the desktop metaphor.

Additionally common computer systems supply users only with one or more screens,
maybe loudspeakers, a keyboard and pointing device as means of user interaction. They

restrain the users’ working environment solely to the screen and completely disregard that

tasks typically involve other objects such as Post-its, documents, or other physical entities.
This relates directly to the notion of tangible user interfaces.

Brygg Ullmer, who is responsible for significant research in this field defines tangible

user interfaces, also called TUIs, as “user interfaces which use physical objects,
instruments, surfaces, and spaces as physical interfaces to digital information”

[Ullmer 1997]. Tangible user interfaces aim to replace or enhance the current dominant

modality of human-computer interaction, graphical user interfaces, which form the basic
paradigm for most of the techniques discussed in this document. Graphic user interfaces

are based on graphical representations of virtual user interface elements such as windows,

icons and menus, and use physical devices such as a mouse as means of input. In contrast,
tangible user interfaces are based on tangible entities, which physically represent both,

the digital information and interfaces they represent. These tangible entities are also

called physical icons, or phicons.

Tangible user interfaces are obviously superior to graphical user interfaces in usability

aspects. In graphical interfaces, users have to learn the mapping between real world

objects and their virtual counterparts to be able to use them. Tangible interfaces reduce
cognitive memory load required of the users since they strongly rely on the familiarity of

everyday objects for interaction with digital information.

During his research at the Tangible Media Group at MIT, Brygg Ullmers has developed a
tangible user interface based on mediaBlocks [Ullmer et al. 1998]. MediaBlocks are small,

electronically tagged wooden blocks used as physical icons that allow containment,

transport and manipulation of online media. Notable work in the area of tangible and
ubiquitous computing has also been carried out by Durell Bishop, who is well-known for

his design of an answering machine that uses marbles as containers for voice messages

[Abrams 1999].

The concept of tangible and ubiquitous computing reveals an entirely new design space

for computer interface design. The research work mentioned above could inspire new

 109

approaches to tackle the problem of representing and organising large amounts of

information we have to deal with at the present time. Tangible interfaces could be

seamlessly integrated in existing graphical user interfaces to enhance current interaction
techniques, but as a further prospect it can be considered that they might as well replace

the desktop metaphor.

Another issue that is strongly related to ubiquitous computing and the idea of
disappearing computers is the quest for screen alternatives. Ever since the era when

computers were used in batch mode with punched-cards input was replaced by

mainframes and minicomputers screens have been used for output. Surely screen
technology has improved, and we have bigger screens with higher resolutions at our

disposal than forty years ago. Flat computer screens which hit the market a few years ago

have also led to aesthetical improvements. However they still remain common screens in
their basic functionality. Alternative solutions that could be explored in combination with

new metaphors include projections on tables or walls, graphical tablets, holographic

screens and direct on-eye projections.

Sketches
In this section I want to demonstrate some possible future directions of human-computer

interfaces. Most of them are located within the design space of the WIMP paradigm but I

will also present some ideas how tangible user interfaces could be used to enhance
current window systems. Some drafts were inspired by approaches presented in the last

chapter, and I will also mention further references if available.

A little step towards innovation is to provide translucent windows to support changing the
active window in a 2½-dimensional working environment (Fig. 6.2). The active window

can be made translucent to provide a view on the window that is located beneath. If the

obscured window should become the active window the top window can be made totally
transparent. This method works in both directions, thus top windows that are currently

transparent can be made translucent, and respectively opaque. With an appropriate

interaction device such as a scroll wheel developed by Microsoft users could rapidly pull
through the different layers of windows.

Fig. 6.2 Transparent windows. This draft allows users to rapidly pull back- and forwards
through the layers of windows.

 110

This method represents another approach for the Microsoft Alt Tab function of changing

windows by going through a stack-like list representation. The major problem of this

draft is the lack of an overview, hence users do not know which layer they are currently
in and whether a looked-for window lies below or above the current position.

Edward Ishak and Steven Feiner presented a similar approach where unimportant screen

space is made translucent to view screen content that lies beneath these regions with the
objective of maximizing the simultaneously visible information [Ishak and Feiner 2003].

Another proposal is raising the concept of zooming user interface to the level of window

management. Current implementations of the zooming view have only been explored in
specific applications, though Pad++ developed by Ben Bederson and his group suggests a

general zooming graphical user interface. Fig. 6.3 shows the basic concept of a window

interface that is based on zooming. The advantage of such a user interface is, obviously,
that users are provided with a workspace that is not restricted by the physical screen.

However the difficulties of zooming user interfaces are mainly related to navigation. As a

colleague in my lab who has been using zooming interfaces stated, “The problem with
zooming interfaces is that if you are working with it you get seasick after some time, if

you are watching someone using it you get seasick only after a couple of minutes.” Hence

navigation in zooming user interfaces is a very sensitive issue.

In Fig. 6.3 we notice that users do not have any assistance to understand their current

position within the working environment once they are in a close-up view. A simple

solution to this problem is to provide a context view that shows the entire workspace and
highlights the current detail view. This concept of a bi-focal view has already been

introduced for the Spatial Data Management System in 1978, where the context view was

displayed on an additional screen (Fig. 5.15).

A different attempt of providing users with a context view is the fisheye view, a method

that is widely spread in the market by today, but has not been explored for window

managers yet. In contrast to the zooming view, users have constantly access to every

Fig. 6.3 Zooming windows. This draft suggests a zoomable user interface where users are
provided with a large desktop and can zoom onto specific windows to work on tasks.

 111

other window since they do not disappear from the screen but are displayed as distorted

miniature views (Fig. 6.4). As mentioned earlier miniature views can be represented as

scaled documents or contain only characteristic information.

The next proposal that I want to present is the document window approach. The idea is to

dissolve the tight connection between documents and applications. This also corresponds

to the docucentric approach presented by Ben Shneiderman [Shneiderman 1998]. The
motivation for this idea is that users typically intend to work with objects rather than with

applications (see also chapter 3, p. 41). Hence, they should not be forced to select the

application first and open the document sequentially. The ultimate objective is that the
notion of applications disappears. In such a scenario, users would merely select the

document they want to edit, without deciding in advance whether they want to apply

image manipulation, word processing or any other procedure.

Fig. 6.5 shows a draft for the document window approach. Several techniques that have

been discussed earlier are employed in this scenario, such as piles, rotated and peeled-

back windows and tabs. Rotated windows in piles can be used as bookmarks. A
dishevelled pile also provides a view on the content of documents within the pile.

Peeling-back techniques allow rapid pulling through a pile. Every object can be scaled to

provide a better view to the content. If a document reaches a certain size, toolboxes that
have been previously assigned to this document are displayed, and the object becomes

editable. Any toolbox can be attached to any document. Scaling can also be applied to

piles to identify less frequently used ones.

Though documents represented in the draft above show rectangular opaque behaviour,

they certainly can have any arbitrary shapes. Differences in shapes also support users to

recognize documents, for instance all documents belonging to a certain task could have
the right upper corner ripped-off.

Techniques that have already been experienced in window managers can be adapted for

this scheme. However this approach is rather based on a document metaphor than on the

Fig. 6.4 Fisheye view. In this draft users can work on a task while windows for other tasks
appear as distorted images close to the screen edges.

 112

window metaphor. The notion of windows is to provide a view to an application.
However there are not any (visible) applications in this approach. Scrolling, which is an

essential technique for window interfaces to display extensive document contents, could

be enhanced or replaced by tabs, fisheye techniques or data lenses.

Certainly there are some shortcomings that can be found in this approach. For instance

piles work well with a few objects that are currently used, but the scheme would have to

be extended with a hierarchy-like file system for long-time storage. Furthermore means
for session management would have to be provided.

Another proposal that takes advantage of tangible interfaces suggests new means of file

organisation. Hence it is more related to file management than window management.
Today users are confronted with such a mass of electronic data, that storing and

especially finding information has become a serious concern. One attempt to tackle this

problem is using phicons, such as cards, to manage electronic data. Certainly it is
impossible to assign every file to a single card, but for instance one could have all files

for a certain task stored on one card. Considering the current development of the Internet

we can also imagine that we could go anywhere with these cards and have access to our
files from everywhere. This also includes other devices than computers, such as

handhelds, mobile phones, or even VCR players. Brygg Ullmers and his group at MIT

have developed a similar concept, namely the earlier mentioned mediaBlocks.

Furthermore phicons can be used to support session management. Correspondingly the

physical object such as a card would not only contain files used within a session, but

would also store information about applications and window positions. Hence sessions
could be simply changed or restored by applying the matching card.

Fig. 6.5 Document windows. This draft shows a scenario where the tight coupling of
applications and documents is dissolved. Users work with documents rather than
with applications.

 113

Provisions for the future
As mentioned above, the proposed solutions for window management innovation, which
were presented in the last chapter, are all located within the design space of the WIMP

paradigm. It is a matter of definition whether the notion of Post-WIMP user interfaces

describes interfaces that enhance the existing WIMP paradigm while still relying on the
WIMP elements, or if this notion constitutes user interfaces that aim to replace it with a

different concept. However, I believe that effective changes of the existing metaphor, no

matter whether they enhance or replace it, can also be initiated by changing the
underlying hierarchic file system. Most approaches attempt to tackle the problems

current window managers are facing by introducing new interaction techniques for

window management. In contrast, I suggest that first the way we organise our documents
within the virtual working environment has to be changed, and that this will

consequentially impose the development of new interaction techniques on the level of

window management.

For instance the document window approach presented as a sketch earlier in this chapter

uses piles for organising documents. This imposes several new interaction techniques

such as rotating and peeling-back operations.

A promising solution to address this aspect would be the design of a file system that uses

metadata for organising documents. DSpace44 which was developed at MIT represents

such a metadata-based system, but like most projects in this scope, it rather supports
organisation of huge archives than familiar data.

Similar research on the use of metadata is being conducted as part of the Micromegas

project45. One of the goals of this project is to explore new visualisation techniques for
familiar data sets. Although window management is not the primary focus of this project,

it will probably explore and demonstrate new interaction techniques that might be

adapted for that purpose.

44 http://www.dspace.org
45 http://insitu.lri.fr/micromegas

 115

7 Synopsis

I started this document with a reminder of the history of user interfaces, based on Andries

van Dam’s stages model. Van Dam argues that the evolution of human-computer

interaction can be classified into four main periods, where most of the time there was
stasis and evolution proceeded by sudden bursts. This model brings up an analogy to

evolution theory as suggested by Eldridge and Gould [Eldridge and Gould 1972].

The present document has shown that the roots of graphical user interfaces that rely on
windows, icons, menus and a pointing device date back to the 1960s. The mouse as a

graphical pointing device was presented in 1963 by Douglas Engelbart, overlapping

windows were first used in the Smalltalk environment in 1975, and the concept of pull-
down menus was formed during the development of the Xerox Star that was presented in

1981. All of these fundamentals were developed at Xerox PARC. The graphical user

interface standard as it is used in window systems today was defined by Apple Computer
in the late 1980s.

The survey of the state-of-the-art window systems in chapter 4 revealed that there are

currently three widespread graphical user interface systems available, which are Apple
Mac OS, Microsoft Windows and the X Window System along with its numerous

window manager variants. As a matter of fact, they all still rely on the WIMP paradigm.

Window management has undergone a few innovations, such as the taskbar in Microsoft
Windows or Exposé in Mac OS X, but overall it appears that development of interaction

techniques has come to a halt sometime in the late 1980s.

One problem we are facing is the fact that the design space is extremely large. In contrast
to real windows, which are limited in their functionality due to the large number of real-

world constraints, windows in WIMP graphical user interfaces are very little constrained.

It is possible to manipulate their size and position, and they can have arbitrary shapes,
show translucent behaviour, while several windows may overlap, and so on. This explains

the various dimensions we have to deal with in the design space. Consequently there

remains room for a variety of new innovations. Chapter 5 presented an overview of recent
approaches that explore new directions of window interface evolution, including adaptive

window layout, zooming user interfaces and three-dimensional workspaces.

These approaches certainly represent interesting ideas but, nevertheless, we should not
forget that the WIMP graphical user interface is just one species of graphical user

interfaces. For this reason I suggested in the last chapter to think beyond the desktop

metaphor, which represents the common model for WIMP interfaces.

 116

Tangible computing represents another trend in human-computer interaction research that

might sustain the capacity to lead us into the next generation of human-computer

interfaces. At least currently it seems to be a common trend to treat tangible computing as
the remedy for all the ills of WIMP graphical user interfaces, a position that may be

strengthened by Jean Piaget’s understanding of children’s development of spatial

perception [Piaget and Inhelder 1956].

Piaget suggested that the development of spatial perception can be classified into three

phases. The first area that is already developed in small babies is haptic perception. In the

next stage representational capability is developed. This allows them to evoke abstract
thought in reference to absent or hidden objects. In the final phase they develop

recognition of complex forms, which allows symbolic function. This means they can

perform intelligent acts and language can be used to communicate.

By contrast human-computer interaction has developed in reverse order. The first means

of interaction with computers was through symbolic, linguistic commands. Next,

graphical user interfaces were developed that used iconic representations, known as the
desktop metaphor. This allowed us to recognise functionality of objects by their graphical

representation. Finally, tangible computing introduces tactile means of handling

electronic information, which corresponds to haptic interaction.

To conclude, WIMP interfaces have reached a state of equilibrium, which allows us to

explore thousands of inventions within this paradigm. However, we have to recall that

there might be other species of graphical user interfaces just one step aside, or to say it
with Rob Pike’s words [Pike 2000], “Only one GUI has ever been seriously tried, and its

best ideas date from the 1970s. […] Surely there are other possibilities.”

 117

8 APPENDIX

 119

Acronyms

3Dwm 3D Workspace Manager

ADL Automatic Display Layout

A²DL Adaptive Automatic Display Layout

ARC Augmentation Research Center at SRI

CAD Computer Aided Drafting

CMU Carnegie Mellon University, Pittsburgh, PA

FVWM Virtual Window Manager (the author of FVWM could not tell what the F
stood for originally)

GNOME GNU Network Object Model Environment

GUI Graphical User Interface

HCI Human Computer Interaction

HP-PA Hewlett Packard Precision Architecture workstations

IBM International Business Machines

KDE K Desktop Environment

LISP List Processing Language

MIT Massachusetts Institute of Technology

MS-DOS MicroSoft Disk Operating System

MSN MicroSoft Networks

NeWS Network Extensible Window System

NLS oN-Line System

NT (Microsoft Windows) New Technology

OpenGL Open Graphics Library

PARC (Xerox) Palo Alto Research Center

PC Personal Computer

PDF Adobe Portable Document Format

Sapphire Screen Allocation Package Providing Helpful Icons And Rectangular
Environments

SCWM Scheme Constraint Window Manager

SDMS Spatial Data Management System

SPARC (Sun) Scalable Processor ARChitecture

SRI Stanford Research Institute

TUI Tangible User Interface

TWM Tabbed Window Manager

WIMP Windows, Icons, Menus and a Pointing Device

 120

XP (Microsoft Windows) eXPerience

ZUI Zoomable User Interface

 121

Credits to figures

Front picture http://www.robertjkelly.com (Nov 2003)

Origins of window management

Title picture: the Getty Center, Los Angeles (designed by Richard Meier)
http://academic.reed.edu/getty (Nov 2003)

 Fig. 1.1 Command Line http://www.math.ohio-
state.edu/support/ssh/mac/nifty/terminal.jpg (Oct
2003)

Fig. 1.2 Sketchpad Console adopted from [Müller-Prove 2002], originally
taken from: Schwarz, Hans-Peter (ed.): Medien –
Kunst – Geschichte. p. 61, ZKM, Zentrum für
Kunst- und Medientechnologie Karlsruhe, Prestel,
München, 1997 – section

Fig. 1.3 First mouse adopted from [Müller-Prove 2002], originally
taken from
http://sloan.stanford.edu/mousesite/ (Mar 2001)

Fig. 1.4 Xerox Alto II (a) and Smalltalk (b)
adopted from [Müller-Prove 2002], originally
taken from
(a) Johnson, Jeff / Roberts, Theresa L. / Verplank,
William L. / Smith, David Canfield / Irby,
Charles / Beard, Marian / Mackey, Kevin: The
Xerox Star: A Retrospective. In Computer 22(9),
p. 11-29, 1989: Fig. 9, p. 22
(b) Kay, Alan Curtis: The Early History of
Smalltalk. In Bergin, Thomas, J and Gibson,
Richard G. (eds): History of Programming
Languages II, p. 511, Addison-Wesley, Reading,
MA, 1996: Fig. 11.53, p. 554

Fig. 1.5 Window systems genealogy the author

Fig. 1.6 Icons in Cedar taken from [Myers 1988]

Fig. 1.7 Icons in Sapphire taken from [Myers 1988]

Fig. 1.8 Xerox Star adopted from [Müller-Prove 2002], originally
taken from Smith, David Canfield / Irby, Charles /
Kimball, Ralph / Verplank, William L. / Harslem,
Eric: Designing the Star User Interface. In:
Degano, Pierpaolo and Sandewall, Erik (eds):
Integrated Interactive Computing Systems. ECICS
82, Stresa, Italy, p. 297-313, 1982. Reprinted from
Byte 7(4), 1982: p. 303

Fig. 1.9 Apple Lisa adopted from [Prove 2002], originally taken from
Bolt, Richard A.: The Human Interface: Where

 122

People and Computers Meet. Lifelong Learning
Publications, Belmont CA, 1984: p. 27

Fig. 1.10 Apple Macintosh http://fp3.antelecom.net/gcifu/applemuseum/
(Oct 2003)

Fig. 1.11 NEXTSTEP desktop http://www.futuretg.com/FTOSX/Documents/
Why_FTOSX/ (Nov 2003)

Fig. 1.12 NEXTSTEP icons http://members.fortunecity.com/pcmuseum/
next.htm (Oct 2003)

The concept of window managers

Title picture Neufert, Ernst: Architect©s data. 2nd ed., New
York, Halsted Press, 1980

Fig. 2.1 Window layout the author

Fig. 2.2 Icons in Microsoft Windows the author

Fig. 2.3 Menus first and second: the author (thanks to Nicolas
Gaudron)
third: http://www.radialthinking.de/radialcontext/
(Nov 2003)

Fig. 2.4 Scrollbars taken from [Shneiderman 1998]

Fig. 2.5 Virtual workspaces the author

Fig. 2.6 Window system for handhelds and embedded systems
http://www.picogui.org (Nov 2003)

Directions for innovation of human-computer interfaces

Title picture http://www.danhaller.com (Nov 2003)

State of the art in window management

Title picture http://www.danhaller.com (Nov 2003)

Fig. 4.1 System 7 and Mac OS 8 first: http://neurosis.hungry.com/~ben/
software/MacMoon.html (Nov 2003)
second:
http://winmac.emuunlim.com/SSFrame.html
(Nov 2003)

Fig. 4.2 Mac OS X Dock http://www.marc-denzer.de/seiten/apple/ (Nov
2003)

Fig. 4.3 Max OS X Exposé the author (thanks to Nicolas Roussel)

Fig. 4.4 Macintosh menu bar http://www.futuretg.com/FTOSX/Documents/
Why_FTOSX/ (Oct 2003), edited by the author

Fig. 4.5 The Microsoft Windows 2000/XP architecture
http://www.security-
project.org/seprov2/win_architektur.htm
(Nov 2003)

 123

Fig. 4.6 Microsoft Windows 2.0 http://www.infosatellite.com/news/2001/10/
a251001windowshistory_screenshots.html
(Nov 2003)

Fig. 4.7 Window decoration in XP the author

Fig. 4.8 The taskbar the author

Fig. 4.9 Component overview of GNU/Linux
the author

Fig. 4.10 Enlightenment themes http://www.freshmeat.net (Sep 2003)

Fig. 4.11 Virtual desktops in Enlightenment
the author (thanks to Loic Dachary)

Fig. 4.12 3d-Desktop http://desk3d.sourceforge.net/screenshots.php
(Nov 2003)

Fig. 4.13 Window Maker’s Dock and Clip
http://www.freshmeat.net (Sep 2003)

Fig. 4.15 Pie menus in piewm http://www.crynwr.com/piewm/ (Oct 2003)

Visions of window management

Title picture: Institut du Monde Arabe, Paris (designed by Jean Nouvel)
http://www.divecult.de (Dec 2003)

Fig. 5.1 Expand operation taken from [Hutchings and Stasko 2002]

Fig. 5.2 Jostle operation taken from [Hutchings and Stasko 2002]

Fig. 5.3 Ram operation taken from [Hutchings and Stasko 2002]

Fig. 5.4 Shove operation taken from [Hutchings and Stasko 2002]

Fig. 5.5 Constraint toolbar in SCWM taken from [Badros et al. 2000]

Fig. 5.6 Constraint navigator in SCWM
taken from [Badros et al. 2000]

Fig. 5.7 Improved drag operation taken from [Bell and Feiner 2000]

Fig. 5.8 Space manager application taken from [Bell and Feiner 2000]

Fig. 5.9 Maintaining relevant regions taken from [Hutchings and Stasko 2002]

Fig. 5.10 Removing irrelevant regions taken from [Hutchings and Stasko 2002]

Fig. 5.11 Elastic windows taken from [Kandogan and Shneiderman 1996]

Fig. 5.12 Resizing of elastic windows taken from [Kandogan and Shneiderman 1996]

Fig. 5.13 Effect of resize operations on other windows
taken from [Kandogan and Shneiderman 1996]

Fig. 5.14 Tiled Window Manager taken from [Chandresh et al. 2002]

Fig. 5.15 Spatial data management system
adopted from [Müller-Prove 2002], originally
taken from Brand, Stewart: The Media Lab:
Inventing the Future at MIT. Viking-Pinguin,
New York, 1987

Fig. 5.16 Pad taken from [Perlin 1993]

 124

Fig. 5.17 Pad++ taken from [Bederson and Hollan 1994]

Fig. 5.18 Zomit Navigation taken from [Pook 2001]

Fig. 5.19 Date lens and fisheye menu http://www.cs.umd.edu/~bederson/ (Nov 2003)

Fig. 5.20 Window manipulation in Ametista
taken from [Roussel 2003]

Fig. 5.21 Perspective view in Ametista
taken from [Roussel 2003]

Fig. 5.22 AttrActive Windows taken from [Denoue et al. 2003]

Fig. 5.23 Task Gallery taken from [Robertson et al. 2000]

Fig. 5.24 Start palette of the Task Gallery
taken from [Robertson et al. 2000]

Fig. 5.25 Navigation within the Task Gallery
taken from [Robertson et al. 2000]

Fig. 5.26 Window management in the Task Gallery
taken from [Robertson et al. 2000]

Fig. 5.27 3Dwm desktop applications http://www.3dwm.org (Oct 2003)

Fig. 5.28 3Dwm session management http://www.3dwm.org (Oct 2003)

Fig. 5.29 Pile metaphor taken from [Mander et al. 1992]

Fig. 5.30 Personal role manager taken from [Kandogan and Shneiderman 1996]

Fig. 5.31 Elastic windows browser http://www.cs.umd.edu/hcil/elastic-
windows/script.html (Nov 2003)

Fig. 5.32 Video cues in the Task Gallery
http://research.microsoft.com/adapt/taskgallery/
(Oct 2003)

Drafts for new designs

Title picture: the Hundertwasser house, Vienna (designed by Friedensreich
Hundertwasser)
the author

Fig. 6.1 Icon views the author

Fig. 6.2 Transparent windows the author

Fig. 6.3 Zooming windows the author

Fig. 6.4 Fisheye view the author

Fig. 6.5 Document windows the author

 125

Bibliography

[Abrams 1999] Abrams, Rachel: Adventures in Tangible Computing: The
Work of Interaction Designer, Durell Bishop, In Context.
Master’s thesis, Central School of Art, London, 1999

[Apple 1992] Apple Computer Inc.: Macintosh Human Interface
Guidelines. Reading, MA, Addison-Wesley, 1992

[Badros et al. 2000] Badros, Greg J. / Nichols, Jeffrey / Borning, Alan: SCWM: An
Intelligent Constraint-Enabled Window Manager. In
Proceedings of AAAI Spring Symposium on Smart Graphics,

IEEE Computer Society Press, 2000

[Beaudouin-Lafon 2001] Beaudouin-Lafon, Michel: Novel interaction techniques for
overlapping windows. In Proceedings of ACM Symposium

on User Interface Software and Technology, UIST 2001,

Orlando (USA), ACM Press, p.153-154, 2001

[Bederson and Hollan 1994] Bederson, Benjamin B. and Hollan, James D.: Pad++: a
zooming graphical interface for exploring alternate
interface physics. In Proceedings of UIST 94, Symposium on
User Interface Software and Technology, Marina del Rey, CA,

ACM Press, p.17-26, 1994

[Bederson and Meyer 1998] Bederson, Benjamin B. and Meyer, John: Implementing a
Zooming User Interface: Experience Building Pad++. In

Software: Practice and Experience, vol. 28, n. 10, p. 1101-1135,

1998.

[Bederson et al. 2000] Bederson, Benjamin B. / Meyer, John / Good, Lance: Jazz: An
Extensible Zoomable User Interface Graphics Toolkit in
Java. In Proceedings of UIST 2000, Symposium on User
Interface Software and Technology, San Diego, CA, ACM

Press, p.171-180, 2000

[Bell and Feiner 2000] Bell, Blaine A. and Feiner, Steven K.: Dynamic Space
Management for User Interfaces. In Proceedings of UIST

2000, Symposium on User Interface Software and Technology,

San Diego, CA, ACM Press, p.238-248, 2000

 126

[Bennett 2001] Bennett, Graeme: A Mac OS X Overview. 2001, updated 2003.

http://thetechnozone.com/macbuyersguide/software/system/Ma

cOSX.html (Nov 2003)

[Bennett 2000] Bennett, Graeme: Alternative GUIs for Computers. 2000,

updated 2003.

http://thetechnozone.com/pcbuyersguide/software/system/Alter
native_GUIs.html (Nov 2003)

[Bly and Rosenberg 1986] Bly, Sara and Rosenberg, Jarett: A comparison of Tiled and
Overlapping Windows. In Proceedings of ACM CHI 86,
Conference on Human Factors in Computer, ACM Press, 1986

[Bury et al. 1985] Bury, K. F. / Davis, S. E. / Darnell, M. J.: Window
management: A review of issues and some results from
user testing. IBM Human Factors Center Report HFC-53, San

Jose, CA, 1985

[Chandresh et al. 2002] Chandresh, Chhatpar /Lester, Lobo / Ulziidelger, Magsarjav /
Unnikrishnan, Ravindranathan: Tiled View Manager.
Laboratory for Information Visualization and Evaluation,

Virginia Tech, 2002

[Chapman 2002] Chapman, M.: Window Managers. In Category Reviews,

2002. http://themes.freshmeat.net/articles/view/639/ (Sep 2003)

[Denoue et al. 2003] Denoue, L. / Nelson, L. / Churchill, E.: Attractive windows:
Dynamic windows for digital bulletin boards. In

Proceedings of ACM CHI 2003, Conference on Human

Factors in Computer, Florida, 2003

[Dix et al. 1998] Dix, Alan / Finlay, Janet / Abowd, Gregory / Beale, Russell:

Human-Computer Interaction. Second edition. Prentice Hall

Europe, Hemel Hempstead, Hertfordshire

[Donelson 1978] Donelson, William C.: Spatial Management of Information.
In Proceedings of ACM SIGGRAPH 78, Conference on

Computer Graphics, New York, ACM Press, p. 203-209, 1978

[Edwards 1994] Edwards, Alistair D. N.: The Rise of the Graphical User
Interface. Department of Computer Science, University Of

York, York, England.
http://www.rit.edu/~easi/itd/itdv02n4/article3.html (Sep 2003)

 127

[Eldridge and Gould 1972] Eldridge, N. and Gould, S. J.: Punctuated equilibrium: an
alternative pyletic gradualism. In Schopf, T. J. M., ed.

Models in Paleobiology, Freeman, Cooper, and Co., 1972

[Elmqvist 2001] Elmqvist, Niklas: 3Dwm: Three-Dimensional User
Interfaces Using Fast Constructive Solid Geometry.
Master’s thesis, Chalmers University of Technology,
Gothenburg, 2001

[Engelbart 1988] Engelbart, D.: Toward high-performance knowledge
workers. In Computer-supported Cooperative Work: a Book
of Readings (Grief I, ed.), 1988

[Fox 1998] Fox, David: Composing Magic Lenses. In Proceedings of

ACM CHI 98, Conference on Human Factors in Computer,
Los Angeles, ACM Press, p. 519-525, 1998

[Funke et al. 1993] Funke, Douglas J. / Neal Jeannette G. / Paul, Rajendra D.: An
Approach to Intelligent Automated Window Management.
International Journal of Man-Machine Studies 38, p. 949-983,

1993

[Furnas 1986] Furnas, G. W.: Generalized fisheye views. In Proceedings of
ACM CHI 86, Conference on Human Factors in Computing

Systems, Boston, ACM Press, p. 16-23, 1986

[Gaylin 1986] Gaylin, Kenneth B.: How are Windows Used? Some Notes
on Creating an Empirically-Based Windowing
Benchmark Task. In Proceedings of ACM CHI 86,

Conference on Human Factors in Computer, ACM Press, 1986

[Geißler 1998] Geißler, Jörg: Shuffle, throw or take it! Working Efficiently
with an Interactive Wall. In Proceedings of ACM CHI 98,

Conference on Human Factors in Computer, Los Angeles,
ACM Press, 1998

[Henderson and Card 1986] Henderson, D. A. Jr. and Card, S. K.: Rooms: The use of
multiple virtual workspaces to reduce space contention in
a window-based graphical user interface. ACM Trans. on

Graphics 5, 3, p.211-243, 1986

[Hopgood et al. 1986] Hopgood, F. R. A. / Duce, D. A. / Fielding, E. V. C. /
Robinson, K. / Williams, A. S.: Methodology of Window

 128

Management. Proceedings of an Alvey Workshop at

Cosener’s House, Abingdon, UK, 1985, Springer-Verlag, 1986

[Hopkins 1991] Hopkins, Don: The Design and Implementation of Pie
Menus. Dr. Dobb's Journal, lead article, user interface issue,

Dec 1991.

Available at http://catalog.com/hopkins/piemenus/ddj/
piemenus.html (Nov 2003)

[Hutchings and Stasko 2002] Hutchings, Dugald Ralph and Stasko, John: New
Operations for Display Management and Window
Management. Technical Report GIT-GVU-0-18, Atlanta,

2002

[Ishak and Feiner 2003] Ishak, Edward W. and Feiner, Steven K.: Free-Space
Transparency: exposing hidden content through
unimportant screen space. In Proceedings of ACM

Symposium on User Interface Software and Technology, UIST
2003, Vancouver (Canada), ACM Press, p.75-76, 2003

[Jansen 1998] Jansen, B.J.: The Graphical User Interface: An
Introduction. SIGCHI Bulletin. 30 (2), p.22-26, 1998.
http://jimjansen.tripod.com/academic/pubs/chi.html (Sep 2003)

[Kahn and Charnock 1995] Kahn, M. J. and Charnock, E.: How to prevent
“ Windowitis” in your Graphical Interface? In Proceedings
of the Silicon Valley Ergonomics Conference & Exposition,

ErgoCon 95, p. 18-25, 1995

[Kandogan and Shneiderman 1996] Kandogan, Eser and Shneiderman, Ben: Elastic
Windows: Improved Spatial Layout and Rapid Multiple
Window Operations. In Proceedings of Advanced Visual

Interfaces 96, ACM, New York, NY, p. 211-243, 1996

[Kandogan and Shneiderman 1997] Kandogan, Eser and Shneiderman, Ben: Elastic
Windows: Evaluation of Multi-Window Operations. In

Proceedings of SIGCHI 97, Atlanta, GA, ACM Press, p. 250-
257, 1997

[Kandogan 1998] Kandogan, Eser: Hierarchical Multi-Window Management
with Elastic Layout Dynamics. Ph. D. Dissertation, 1998

[Kandogan and Shneiderman 1998] Kandogan, Eser and Shneiderman, Ben: Using
Elastic Windows for World-Wide Web Browsing. In

 129

Proceedings of ACM CHI 1998, Conference on Human

Factors in Computer, ACM Press, 1998

[Kay 1972] Kay, Alan Curtis: A Personal Computer for Children of All
Ages. In Proceedings of the ACM National Conference, 1972

[Kramer 1994] Kramer, Axel: Translucent Patches: Dissolving Windows. In

Proceedings of UIST 94, Symposium on User Interface
Software and Technology, ACM Press, p.121-130, 1994

[Loli-Queru 2003] Loli-Queru, Eugenia: Introducing NeXT – The Wonders of
NEXTSTEP and OpenStep.
http://www.osnews.com/story.php?news_id=4042 (Oct 2003)

[Lüders and Ernst 1995] Lüders, Peter and Ernst, Rolf: Research report: improving
browsing in information by the automatic display layout.
Proceedings on Information Vizualisation, Atlanta, Georgia,

USA, 1995

[Mander et al. 1992] Mander, Richard / Salomon, Gitta / Wong, Yin Yin: A ‘Pile’
Metaphor for Supporting Casual Organization of
Information. In Proceedings of ACM CHI 92, Conference on

Human Factors in Computer, ACM Press, p. 627-634, 1992

[Miah and Alty 1999] Miah, T and Alty, J. L.: Vanishing windows: an approach to

adoptive window management. Knowledge-Based Systems, 12

(1999), p. 381-389, 1999

[Moriarty and Scamardella 2001] Moriarty, Kevin and Scamardella, Joe: Windows XP –
A brief Look. Computer and Operations Support / Computing

Facilities Management, 2001
http://www.oit.umass.edu/publications/at_oit/fall01/finalxp.ht

ml (Nov 2003)

[Müller-Prove 2002] Müller-Prove, Matthias: Vision and Reality of Hypertext
and Graphical User Interfaces. University of Hamburg,

Report 237, Hamburg, Germany, 2002

[Myers 1988] Myers, Brad A.: Window Interfaces: A Taxonomy of
Window Manager User Interfaces. IEEE Computer

Graphics and Applications, 8, 5, p.65-84, 1988

 130

[Myers 1995] Myers, Brad A.: State of the art in user interface tools. In

Readings in Human Computer Interaction: Toward the Year

2000, Morgan Kaufman, p.323-343, 1995

[Mynatt et al. 1999] Mynatt, E. D. / Igarashi, T. / Edwards, W. K. / LaMarca, A.:

Flatland: New dimensions in office whiteboards. In

Proceedings of ACM CHI 1999, Conference on Human
Factors in Computer, Pittsburgh, PA, ACM Press, p.346-353,

1999

[Nielsen 1993] Nielsen, Jakob: Usability Engineering. Academic Press,
Boston, MA, 1993

[Norman 1988] Norman, Donald A.: The Psychology of Everyday Things.
Basic Books, 1988 (Republished as The Design of Everyday
Things by Penguin, 1991)

[Perlin 1993] Perlin, Ken and Fox, David: Pad: An Alternative Approach
to the Computer Interface. Proceedings of ACM
SIGGRAPH 93, Conference on Computer Graphics, New York,

ACM Press, p. 57-64, 1993

[Piaget and Inhelder 1956] Piaget, J. and Inhelder, B.: The Child’s Conception of
Space. Routledge, London, 1956

[Pike 1983] Pike, Rob: The Blit: A Multiplexed Graphics Terminal.
AT&T Bell Laboratories Technical Journal, vol. 63, p. 1607-
1631, Oct 1984

[Pike 1991] Pike, Rob: 8 ½, the Plan 9 window system. In Proceedings

of the 1991 Summer USENIX Technical Conference,
Nashville, TN, USA, p. 257-65, 1991.

[Pike 2000] Pike, Rob: Systems Software Research is Irrelevant – A
Polemic. Bell Labs, Lucent Technologies, 2000

[Pook 2001] Pook, Stuart: Interaction and Context in Zoomable User
Interfaces. Doctorial Thesis, Ecole National Supérieure des

Télécommunications, Paris, France, 2001

[Preece et al. 1994] Preece, Jenny / Rogers, Yvonne / Sharp, Helen / Benyon,

David / Holland, Simon / Carey, Tom: Human-Computer
Interaction. Addison-Wesley, Reading, MA, 1994

 131

[Raskin 1994] Raskin, Jef: Holes in History. In: Interactions 1, 1994

[Rekimoto 2001] Rekimoto, Jun: GestureWrist and GesturePad:
Unobtrusive Wearable Interaction Devices. In Proceedings
of ISWC 01, International Symposium on Wearable Computers,

Zurich, Switzerland, p. 21-27, 2001

[Rekimoto 2002] Rekimoto, Jun: SmartSkin: An Infrastructure for Freehand
Manipulation on Interactive Surfaces. In Proceedings of

ACM CHI 2002, Conference on Human Factors in Computer,

ACM Press, p.113-120, 2002

[Ringel 2003] Ringel, Meredith: When one isn’ t enough: an analysis of
virtual desktop usage strategies and their implications for
design. In Proceedings of ACM CHI 2003, Conference on
Human Factors in Computer, Florida, ACM Press, p.762-763,

2003

[Robertson et al. 2000] Robertson, Georg / van Dantzich, Maarten / Robbins, Daniel /
Czerwinski, Mary / Hinckley, Ken / Risden, Kirsten / Thiel,

David / Gorokhovsky, Vadim: The Task Gallery: A 3D
Window Manager. In Proceedings of ACM CHI 2000,
Conference on Human Factors in Computer Systems,

Amsterdam, ACM Press, p. 494-501, 2000

[Roussel 2003] Roussel, Nicolas: Ametista: a mini-toolkit for exploring
new window management techniques. In Proceedings of

CLIHC 03, Latin American conference on Human-computer

interaction, Rio de Janeiro, ACM Press, p.117-124, 2003

[Scheifler 1986] Scheifler, Robert W. and Gettys, Jim: The X Window System.
ACM Transactions on Graphics, Vol. 5, No. 2, 1986

[Shneiderman 1998] Shneiderman, Ben: Designing the User Interface:
Strategies for Effective Human-Computer Interaction.
Third edition. Addison-Wesley, Reading, Massachusetts, 1998

[Smith 1977] Smith, D. C.: Pygmalion: A Computer Program to Model
and Stimulate Creative Thought. Birkhauser, Basel, 1977

[Stille et al. 1996] Stille, Stefan / Minocha, Shailey / Ernst, Rolf: A2DL: an
Adaptive Automatic Display Layout system. In Proceedings
of HICS 96, Symposium on Human Interaction with Complex

Systems, Washington, DC, p. 243, 1996

 132

[Sutherland 1963] Sutherland, Ivan E.: Sketchpad: A Man-Machine Graphical
Communication System. Tech Report #296, MIT, Lincoln

Labs, Cambridge, MA, 1963, Reissued 1965

[Thomas and Demczuk 2002] Thomas, B. H. and Demczuk, V.: Which animation
effects improve indirect manipulation? Interacting with

computers, 14(3), p. 211-229, Apr 2002

[Ullmer 1997] Ullmer, Brygg A: Models and Mechanisms for Tangible
User Interfaces. Master’s thesis, Massachusetts Institute of

Technology, 1997

[Ullmer et al. 1998] Ullmer, Brygg A. / Ishii, Hiroshi / Glas, Dylan: mediaBlocks:
Physical Containers, Transports, and Controls for Online
Media. In Proceedings of SIGGRAPH 98, ACM Press, 1998

[van Dam 1997] van Dam, Andries: Post-WIMP User Interfaces. In:

Communications of the ACM 40(2), 1997

[Zhou and Feiner 1998] Zhou, M and Feiner, S.: Visual Task Characterization for
Automated Visual Discourse Synthesis. In Proceedings of

ACM CHI 98, Conference on Human Factors in Computer,

Los Angeles, CA, ACM Press, p. 392-399, 1998

