GENERALIZED DOMINATION, INDEPENDENCE AND IRREDUNDANCE IN GRAPHS

MIECZYSŁAW BOROWIECKI
DANUTA MICHALAK
ELŻBIETA SIDOROWICZ

Institute of Mathematics, Technical University of Zielona Góra
Podgórna 50, 65–246 Zielona Góra, Poland

e-mail: m.borowiecki@im.pz.zgora.pl
d.michalak@im.pz.zgora.pl
e.sidorowicz@im.pz.zgora.pl

Abstract

The purpose of this paper is to present some basic properties of P-dominating, P-independent, and P-irredundant sets in graphs which generalize well-known properties of dominating, independent and irredundant sets, respectively.

Keywords: hereditary property of graphs, generalized domination, independence and irredundance numbers.

1991 Mathematics Subject Classification: 05C35.

1

In this paper we will consider finite undirected graphs with no multiple edges, and with no loops. For a graph G we will refer to $V(G)$ (or V) and $E(G)$ (or E) as the vertex and edge set, respectively.

A nonempty subset D of the vertex set V of a graph G is a dominating set if every vertex in $V - D$ is adjacent to a member of D. If $u \in D$ and $v \in V - D$, and $uv \in E$, we say that u dominates v and v is dominated by u.

The minimum (maximum) of the cardinalities of the minimal dominating sets in G is called the upper domination number of G and it is denoted by $\gamma(G)$ ($\Gamma(G)$).
We write $H \leq G$ if H is an induced subgraph of G. We use the notation $G[A]$ for the subgraph of G induced by $A \subseteq V(G)$.

A set $S \subseteq V(G)$ is said to be independent if $G[S]$ is totally disconnected (i.e., $G[S]$ is an edgeless graph). Obviously, each maximal independent set is a minimal dominating set. If S is a maximal independent set of G, then $G[S \cup \{v\}]$ contains as a subgraph K_2, i.e., the subgraph which is forbidden for the property "to be totally disconnected".

For $v \in V$, we denote by $N(v)$ a set of vertices adjacent to v (neighbours of v) and by $N(A)$ a set of neighbours of vertices of A. By $N[v]$ and $N[A]$ we denote $N(v) \cup \{v\}$ and $N(A) \cup A$, respectively.

A set $R \subseteq V(G)$ is called irredundant in G, if for each vertex $v \in R$, $N[v] - N[R - \{v\}] \neq \emptyset$.

This definition fits intuitive ideas of redundancy, for in the context of communication network, any vertex that may receive a communication from some vertex x in R, may also be informed from some vertex in $R - \{x\}$, i.e., x may be removed from R without affecting the totality of accessible vertices. It is apparent that irredundance is a hereditary property and that any independent set of vertices is also an irredundant set.

The minimum (maximum) of the cardinalities of the maximal irredundant sets of G is called the lower (upper) irredundance number and it is denoted by $ir(G)$, ($IR(G)$).

The study of domination in graphs has been initiated by Ore [6], for a survey see a special volume of the Discrete Mathematics 86 (1990). Applications of minimum dominating sets have been suggested by many authors. The determination of the domination number is an NP-complete problem (see [4]). It should be noted that bounds on $\gamma(G)$ do exist through the parameters which are also difficult to determine.

2

Let \mathcal{I} denote the class of all finite simple graphs. A graph property is a non-empty isomorphism-closed subclass of \mathcal{I}. (We also say that a graph has the property \mathcal{P} if $G \in \mathcal{P}$).

A property \mathcal{P} of graphs is said to be induced hereditary if whenever $G \in \mathcal{P}$ and $H \leq G$, then also $H \in \mathcal{P}$. For hereditary properties with respect to other partial order on \mathcal{I} we refer the reader to [1].

Any induced hereditary property \mathcal{P} of graphs is uniquely determined by the set of all its forbidden induced subgraphs

$$C(\mathcal{P}) = \{ H \in \mathcal{I} : H \notin \mathcal{P} \text{ but } (H - v) \in \mathcal{P} \text{ for any } v \in V(H) \}.$$
Let us denote by \mathcal{M} the set of all induced hereditary properties of graphs. According to [1] we list below some of the induced hereditary properties.

Let $N \subseteq X$ such that $v \in N$ containing v. Especially, $N(v) = N_G(v)$.

Next, for a vertex $v \in V(G)$ we denote the set of all forbidden subgraphs containing v by $C_{G,P}(v) = \{H' \leq G : v \in V(H'), H' \simeq H \in C(P)\}$.

The number $|C_{G,P}(v)|$ is called P-degree of v in G and is denoted by $\deg_{G,P}(v)$.

If $\deg_{G,P}(v) = 1$, then v is said to be P-pendant in G and if $\deg_{G,P}(v) = 0$, then v is said to be P-isolated in G.

A set $D \subseteq V$ is said to be P-dominating in G if $N_P(v) \cap D \neq \emptyset$ for any $v \in V - D$.

A set $D \subseteq V$ is said to be strongly P-dominating in G if for each $v \in V - D$ there is $H' \leq G$ containing v such that $H' \simeq H \in C(P)$ and $V(H') - \{v\} \subseteq D$.

The minimum (maximum) of the cardinalities of the minimal P-dominating sets in G is called the lower (upper) P-domination number of G and it is denoted by $\gamma_P(G)$, $(\Gamma_P(G))$, respectively.

The minimum (maximum) of the cardinalities of the minimal strongly P-dominating sets in G is called the lower (upper) strong P-domination number and it is denoted by $\gamma'_P(G)$, $(\Gamma'_P(G))$, respectively.

If $P = I_{n-2}$, then the I_{n-2}-dominating sets are also called K_n-dominating sets in G (see [5]).

A set $R \subseteq V$ is called P-irredundant if for every vertex $v \in R$, $N_P[v] - N_P[R - \{v\}] \neq \emptyset$.

The minimum (maximum) of the cardinalities of the maximal P-irredundant sets is called the lower (upper) P-irredundance number of G and is denoted by $ir_P(G)$, $(IR_P(G))$, respectively.
A set $S \subseteq V(G)$ is \mathcal{P}-independent in G if $G[S] \in \mathcal{P}$. A set $S \subseteq V(G)$ is said to be strongly \mathcal{P}-independent in G if for every $v \in S$, $N_{\mathcal{P}}(v) \cap S = \emptyset$.

The minimum (maximum) of the cardinalities of the maximal strongly \mathcal{P}-independent sets in G, is called the strong \mathcal{P}-independence number of G and it is denoted by $\iota'_\mathcal{P}(G)$, $(\alpha'_{\mathcal{P}}(G))$.

The minimum (maximum) of the cardinalities of the maximal \mathcal{P}-independent sets in G, is called the \mathcal{P}-independence number of G and it is denoted by $\iota_{\mathcal{P}}(G)$, $(\alpha_{\mathcal{P}}(G))$.

Notice, that if $\mathcal{P} = \mathcal{O}$, then \mathcal{P}-dominating and strongly \mathcal{P}-dominating sets in G are dominating sets, \mathcal{P}-independent and strongly \mathcal{P}-independent sets are independent sets, also \mathcal{P}-irredundant sets are irredundant sets in an ordinary sense.

The following theorem generalizes a clasical result of Ore [6].

Theorem 1. Let D be a \mathcal{P}-dominating set of a graph G. Then D is a minimal \mathcal{P}-dominating set of G if and only if for each vertex $d \in D$, d has one of the following properties:

(i) there exists a vertex $v \in V - D$ such that $N_{\mathcal{P}}(v) \cap D = \{d\}$,

(ii) $N_{\mathcal{P}}(d) \cap D = \emptyset$.

Proof. Suppose that D is a minimal \mathcal{P}-dominating set of G. Then for each vertex $d \in D$, the set $D - \{d\}$ is not a \mathcal{P}-dominating set of G. Hence, there is a vertex $v \in V - (D - \{d\})$ that is \mathcal{P}-adjacent to no vertex of $D - \{d\}$. If $v = d$, d is \mathcal{P}-adjacent to no vertex of D, while if $v \in V - D$, then since D is a \mathcal{P}-dominating set of G, $N_{\mathcal{P}}(v) \cap D = \{d\}$.

Conversely, if every vertex $d \in D$ has at least one of the properties (i) or (ii), then $D - \{d\}$ is not a \mathcal{P}-dominating set of G.

Theorem 2. If G is a graph without \mathcal{P}-isolated vertices, then there exists a minimum \mathcal{P}-dominating set of vertices of G in which every vertex has property (i).

Proof. Among all the \mathcal{P}-dominating sets of G with cardinality equal to $\gamma_{\mathcal{P}}(G)$, let D be chosen so that D contains the maximum possible numbers of vertices which are \mathcal{P}-adjacent to some vertex of D in G. Suppose there exists a vertex $d \in D$, that d has no property (i). However, by Theorem 1, d has the property (ii). This implies that d is \mathcal{P}-adjacent to no vertex
of \(D \). Since \(G \) is a graph without isolated vertices, then there exists a vertex \(w \in N_P(d) \) and \(w \in V(G) - (D - \{d\}) \). The vertex \(w \) is \(P \)-adjacent to some vertex of \(D - \{d\} \). Let \(D' = (D - \{d\}) \cup \{w\} \). Necessarily \(D' \) is a \(P \)-dominating set of \(G \) with \(|D'| = \gamma_P(G) \) and the set \(D' \) contains more vertices than the set \(D \) which are \(P \)-adjacent to some vertices of \(D' \). This contradicts our choice of \(D \).

Now we shall establish some properties of \(P \)-dominating, strongly \(P \)-dominating, \(P \)-independent and strongly \(P \)-independent sets, and \(P \)-irredundant sets.

Proposition 3. If \(D \subseteq V(G) \) is a minimal strongly \(P \)-dominating set in \(G \), then \(D \) is \(P \)-dominating in \(G \).

Proposition 3 implies the following inequality.

For any graph \(G \),

\[
\gamma_P(G) \leq \gamma'_P(G).
\]

Proposition 4. Let \(G \) be a graph. If \(X \) is a maximal \(P \)-independent set in \(G \), then \(X \) is a minimal strongly \(P \)-dominating set in \(G \).

Proof. For each vertex \(v \in V - X \) a subgraph \(G[X \cup \{v\}] \) has no property \(P \). Hence, there exists an induced subgraph \(H' \) of \(G \), \(H' \simeq H, H \in C(P) \), such that \(V(H') \cap X = V(H') - \{v\} \). It implies that \(X \) is the strongly \(P \)-dominating set. Moreover, for each vertex \(x \in X \) the set \(X - \{x\} \) is not strongly \(P \)-dominating. It follows from the fact that there is no induced subgraph \(H' \simeq H \in C(P) \) containig the vertex \(x \) and \(V(H') \subseteq X \). Thus, \(X \) is a minimal strongly \(P \)-dominating set.

From Proposition 4, we obtain the following inequalities.

For any graph \(G \),

\[
\gamma'_P(G) \leq i_P(G) \leq \alpha_P(G) \leq \Gamma'_P(G).
\]

Proposition 5. Let \(G \) be a graph. If \(X \) is a maximal strongly \(P \)-independent set, then \(X \) is a minimal \(P \)-dominating set.

Proof. Let \(X \) be a maximal strongly \(P \)-independent set in \(G \). Suppose there exists a vertex \(v \in V - X \) such that each induced subgraph \(H' \) of \(G \) such that \(v \in V(H') \), \(H' \simeq H \in C(P) \) has no common vertices with the set \(X \),
thus $X \cup \{v\}$ is strongly \mathcal{P}-independent, a contradiction. Hence, for each vertex $v \in V - X$ there is $H' \leq G, H' \simeq H, v \in V(H'), H \in C(P)$ such that $N_{\mathcal{P}}(v) \cap X \neq \emptyset$. Hence, X is \mathcal{P}-dominating. Moreover, by the definition of a strongly \mathcal{P}-independent set, for each $x \in X, N_{\mathcal{P}}(x) \cap (X - \{x\}) = \emptyset$, thus, X is a minimal \mathcal{P}-dominating set in G.

Proposition 5 implies the following property.

For any graph G,

$$\gamma_{\mathcal{P}}(G) \leq \gamma'_{\mathcal{P}}(G) \leq \alpha'_{\mathcal{P}}(G) \leq \Gamma_{\mathcal{P}}(G). \quad (3)$$

Proposition 6. Let G be a graph without \mathcal{P}-isolated vertices. If S is a maximal strongly \mathcal{P}-independent set in G, then $V - S$ is strongly \mathcal{P}-dominating.

Proof. By the definition of the strongly \mathcal{P}-independent set, for each vertex $v \in S$ there is a subgraph $H', H' \leq G$ such that $v \in V(H'), H' \simeq H \in C(\mathcal{P})$ and $V(H') \cap (V - S) = V(H') - \{v\}$. Therefore, we obtain.

Let G be a graph without \mathcal{P}-isolated vertices. Then

$$\gamma'_{\mathcal{P}}(G) \leq |V(G)| - \gamma_{\mathcal{P}}(G). \quad (4)$$

Proposition 7. Let G be a graph. If D is a minimal \mathcal{P}-dominating set, then D is maximal \mathcal{P}-irredundant.

Proof. Let D be a minimal \mathcal{P}-dominating. By Theorem 1, every vertex $d \in D$ has one of the properties (i) or (ii).

Assume d has the property (i). Thus there exists vertex $v \in V - D$ such that $N_{\mathcal{P}}(v) \cap D = \{d\}$, then $v \in N_{\mathcal{P}}[d]$ and $v \notin N_{\mathcal{P}}[D - \{d\}]$. It implies that $v \in (N_{\mathcal{P}}[d] - N_{\mathcal{P}}[D - \{d\}]).$

Suppose that d has the property (ii) and d has no property (i). Therefore, $d \notin N_{\mathcal{P}}[D - \{d\}]$ and $d \in (N_{\mathcal{P}}[d] - N_{\mathcal{P}}[D - \{d\}]).$ Thus, D is an irredundant set in G. Moreover, $N_{\mathcal{P}}(D) = V(G)$ and hence for each $v \in V - D$, the set $D \cup \{v\}$ is not \mathcal{P}-irredundant. Hence, D is a maximal \mathcal{P}-irredundant set.

From this theorem we have.

For any graph G,

$$ir_{\mathcal{P}}(G) \leq \gamma_{\mathcal{P}}(G) \leq \Gamma_{\mathcal{P}}(G) \leq IR_{\mathcal{P}}(G). \quad (5)$$
Theorem 8. For any graph G we have the following inequalities:

\begin{align*}
\text{ir}_P(G) & \leq \gamma_P(G) \leq \iota_P'(G) \leq \Gamma_P(G) \leq 1R_P(G). \\
\text{ir}_P''(G) & \leq \gamma_P''(G) \leq \iota_P''(G) \leq \alpha_P''(G) \leq \Gamma_P''(G).
\end{align*}

Proof. (6) is obtained from (3) and (5) and (7) from (1), (2), (5).

Remark 1. Notice that the inequalities (6) are generalizations of results of Cokayne and Hedetniemi [3].

Remark 2. We know that some of the inequalities are strict for some properties and some graphs.

References

Received 26 February 1997
Revised 3 April 1997