On the Existence of n-Tuple Magic Rectangles
Phaisatcha Inpoonjai and Thiradet Jiarasuksakun

Abstract—Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph G is called degree-magic if there is a labelling of the edges by integers $1, 2, \ldots, |E(G)|$ such that the sum of the labels of the edges incident with any vertex v is equal to $(1+|E(G)|)\deg(v)/2$. In this paper we generalize magic rectangles to be n-tuple magic rectangles, and prove the necessary and sufficient conditions for the existence of even n-tuple magic rectangles. Using this existence we identify the sufficient condition for degree-magic labellings of the n-fold self-union of complete bipartite graphs to exist.

Keywords—magic squares, magic rectangles, degree-magic graphs

1. Introduction

Magic rectangles are a natural generalization of the magic squares which have widely intrigued mathematicians and the general public. A magic (p,q)-rectangle R is a $p \times q$ array in which the first pq positive integers are placed such that the sum over each row of R is constant and the sum over each column of R is another (different if $p \neq q$) constant. Harmuth [1, 2] studied magic rectangles over a century ago and proved that

Theorem 1 ([1, 2]) For $p, q > 1$, there is a magic (p, q)-rectangle R if and only if $p \equiv q \pmod{2}$ and $(p, q) \neq (2, 2)$.

In 1990, Sun [3] studied the existence of magic rectangles. Later, Bier and Rogers [4] studied balanced magic rectangles, and Bier and Kleinschmidt [5] studied centrally symmetric and magic rectangles. Then Hagedorn [6] presented a simplified modern proof of the necessary and sufficient conditions for a magic rectangle to exist. The concept of magic rectangles was generalized to n-dimensions and several existence theorems were proven by Hagedorn [7].

For simple graphs without isolated vertices, if G is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and the edge set of G, respectively. Cardinalities of these sets are called the order and size of G.

Let a graph G and a mapping f from $E(G)$ into positive integers be given. The index mapping of f is the mapping f^* from $V(G)$ into positive integers defined by

$$f^*(v) = \sum_{e \in E(G)} \eta(v, e)f(e) \text{ for every } v \in V(G),$$

where $\eta(v, e)$ is equal to 1 when e is an edge incident with a vertex v, and 0 otherwise. An injective mapping f from $E(G)$ into positive integers is called a magic labelling of G for an index λ if its index mapping f^* satisfies

$$f^*(v) = \lambda \text{ for all } v \in V(G).$$

A magic labelling f of a graph G is called a supermagic labelling if the set $\{f(e) : e \in E(G)\}$ consists of consecutive positive integers. A graph G is supermagic (magic) whenever a supermagic (magic) labelling of G exists.

A bijective mapping f from $E(G)$ into $\{1, 2, \ldots, |E(G)|\}$ is called a degree-magic labelling (or only d-magic labelling) of a graph G if its index mapping f^* satisfies

$$f^*(v) = \frac{1+|E(G)|}{2}\deg(v) \text{ for all } v \in V(G).$$

A d-magic labelling f of G is called balanced if for all $v \in V(G)$, the following equation is satisfied

$$\left|\left\{e \in E(G) : \eta(v, e) = 1, f(e) \leq \left\lfloor \frac{|E(G)|}{2} \right\rfloor \right\} \right| = \left|\left\{e \in E(G) : \eta(v, e) = 1, f(e) > \left\lfloor \frac{|E(G)|}{2} \right\rfloor \right\} \right|.$$

A graph G is degree-magic (balanced degree-magic) or only d-magic when a d-magic (balanced d-magic) labelling of G exists.

The concept of magic graphs was introduced by Sedláček [8]. Later, supermagic graphs were introduced by Stewart [9]. There are now many papers published on magic and supermagic graphs; we refer the reader to Gallian [10] for more comprehensive references. Recently, the concept of degree-magic graphs was introduced by Bezegová and Ivančo [11] as an extension of supermagic regular graphs. They also established the basic properties of degree-magic graphs and proved that

Proposition 1 ([11]) For $p, q > 1$, the complete bipartite graph $K_{p,q}$ is d-magic if and only if $p \equiv q \pmod{2}$ and $(p, q) \neq (2, 2)$.

Theorem 2 ([11]) The complete bipartite graph $K_{p,q}$ is balanced d-magic if and only if the following statements hold:

(i) $p \equiv q \equiv 0 \pmod{2}$;
(ii) if $p \equiv q \equiv 2 \pmod{4}$, then $\min\{p, q\} \geq 6$.

In this paper we introduce n-tuple magic rectangles. To show their existence, we introduce the closely related concept
of centrally \(n \)-tuple symmetric rectangles. Then we use the existence of centrally \(n \)-tuple symmetric rectangles to give a construction of even \(n \)-tuple magic rectangles. Finally, we identify the sufficient condition for \(d \)-magic labellings of the \(n \)-fold self-union of complete bipartite graphs to exist.

II. The \(n \)-Tuple Magic Rectangles

In this section we introduce \(n \)-tuple magic rectangles and prove the necessary and sufficient conditions for even \(n \)-tuple magic rectangles to exist.

Definition 1 An \(n \)-tuple magic \((p, q)\)-rectangle \(R := (r_{i,j}^1) \ldots (r_{i,j}^p) \) is a class of \(n \) arrays in which each array has \(p \) rows and \(q \) columns, and the first \(npq \) positive integers are placed such that the sum over each row of any array of \(R \) is constant and the sum over each column of \(R \) is another (different if \(p \neq q \)) constant.

Let \(R := (r_{i,j}^1) \ldots (r_{i,j}^p) \) be an \(n \)-tuple magic \((p, q)\)-rectangle. As each row sum of any array of \(R \) is constant and the sum over each column of \(R \) is another constant, \(p \neq q \), we then have

Proposition 2 If \(R \) is an \(n \)-tuple magic \((p, q)\)-rectangle, then the following statements hold:

(i) if \(n \) is odd, then \(p \equiv q \pmod{2} \);

(ii) if \(n \) is even, then \(p \equiv q \equiv 0 \pmod{2} \).

Proposition 2 allows the set of \(n \)-tuple magic rectangles to be divided into sets of odd and even rectangles. We quickly see that an \(n \)-tuple magic \((2, 2)\)-rectangle does not exist. To show the existence of other even \(n \)-tuple magic rectangles, we introduce the closely related concept of centrally \(n \)-tuple symmetric \((p, q)\)-rectangles as follows.

Definition 2 Let \(x > -1 \) and let \(R \) be a class of \(n \) even rectangular arrays in which each array has \(p \) rows and \(q \) columns and the entries of \(R \) are numbers \(\pm(x+1), \ldots, \pm(x+npq/2) \). \(R \) is a centrally \(n \)-tuple symmetric \((p, q)\)-rectangle of type \(x \) if the sum over each row and column of any array is zero. Additionally, if \(R \) has an equal number of positive and negative numbers in each row and column of any array, we say that \(R \) is balanced.

If \(R \) is an even \(n \)-tuple magic \((p, q)\)-rectangle, then by subtracting \((npq+1)/2 \) from each entry of \(R \), we obtain a centrally \(n \)-tuple symmetric \((p, q)\)-rectangle of type \(-1/2\). Similarly, every centrally \(n \)-tuple symmetric \((p, q)\)-rectangle of type \(-1/2\) determines an even \(n \)-tuple magic \((p, q)\)-rectangle. Thus, we can use the existence of centrally \(n \)-tuple symmetric \((p, q)\)-rectangles to prove the existence of even \(n \)-tuple magic \((p, q)\)-rectangles.

Lemma 1 For \(x, y > -1 \), if a balanced centrally \(n \)-tuple symmetric \((p, q)\)-rectangle of type \(x \) exists, then a balanced centrally \(n \)-tuple symmetric \((p, q)\)-rectangle of type \(y \) exists.

Proof. Suppose that \(R := (r_{i,j}^1) \ldots (r_{i,j}^p) \) is the given rectangle. Then we define a \((p, q)\)-rectangle \(S := (s_{i,j}^1) \ldots (s_{i,j}^q) \) by

\[
s_{i,j}^t = (y-x) \text{sgn}(r_{i,j}^t) + r_{i,j}^t, \quad \text{for every } t \in \{1, 2, \ldots, n\}.
\]

The entries of \(S \) are the numbers \(\pm(y+1), \ldots, \pm(y+npq/2) \). For any \(t \in \{1, 2, \ldots, n\} \) and \(1 \leq i \leq p \), the sum of each row is

\[
\sum_{j=1}^{q} s_{i,j}^t = \sum_{j=1}^{q} ((y-x) \text{sgn}(r_{i,j}^t) + r_{i,j}^t) = (y-x) \sum_{j=1}^{q} \text{sgn}(r_{i,j}^t) + \sum_{j=1}^{q} r_{i,j}^t = 0,
\]

and for all \(1 \leq j \leq q \), the sum of each column is

\[
\sum_{i=1}^{p} s_{i,j}^t = \sum_{i=1}^{p} ((y-x) \text{sgn}(r_{i,j}^t) + r_{i,j}^t) = (y-x) \sum_{i=1}^{p} \text{sgn}(r_{i,j}^t) + \sum_{i=1}^{p} r_{i,j}^t = 0.
\]

Thus, \(S \) is a centrally \(n \)-tuple symmetric \((p, q)\)-rectangle of type \(y \). For any \(t \in \{1, 2, \ldots, n\} \), if \(r_{i,j}^t \) is positive, then \(r_{i,j}^t = x+m \) for some \(m \geq 1 \). Hence, \(s_{i,j}^t = y+m \) is also positive. Similarly, \(r_{i,j}^t \) negative implies \(s_{i,j}^t \) negative. Therefore, \(S \) is balanced.

Proposition 3 If a balanced centrally \(n \)-tuple symmetric \((p, q)\)-rectangle exists, then an \(n \)-tuple magic \((p, q)\)-rectangle exists.

Proof. Suppose \(R \) is the given rectangle. If \(R \) has type \(x \), then by Lemma 1, there exists a balanced centrally \(n \)-tuple symmetric \((p, q)\)-rectangle of type \(-1/2\). Therefore, an \(n \)-tuple magic \((p, q)\)-rectangle exists.

Example 1 We consider a balanced centrally 5-tuple symmetric \((4, 2)\)-rectangle \(R := (r_{i,j}^1) \ldots (r_{i,j}^5) \) of type 1 as follows.

\[
R := \begin{pmatrix}
2 & -2 & 6 & -6 & 10 & -10 \\
-3 & 3 & -7 & 7 & 11 & -11 \\
-4 & 4 & -8 & 8 & 12 & -12 \\
5 & -5 & -9 & 9 & 13 & -13 \\
\end{pmatrix}
\]

Then we define a 5-tuple \((4, 2)\)-rectangle \(S := (s_{i,j}^1) \ldots (s_{i,j}^5) \) related to \(R \) by

\[
s_{i,j}^t = -\frac{3}{2} \text{sgn}(r_{i,j}^t) + r_{i,j}^t, \quad \text{for every } t \in \{1, 2, 3, 4, 5\}.
\]
Thus, S is a balanced centrally 5-tuple symmetric $(4, 2)$-rectangle S of type $-1/2$ as follows.

$$ S := \begin{pmatrix} 1 & 1 & 9 & 9 & 17 & 17 & 25 & 25 & 33 & 33 \\ 2 & 2 & \frac{2}{2} \\ 3 & 3 & 11 & 11 & 19 & 19 & 27 & 27 & 35 & 35 \\ 2 & 2 & \frac{2}{2} \\ 5 & 5 & 13 & 13 & 21 & 21 & 29 & 29 & 37 & 37 \\ 2 & 2 & \frac{2}{2} \\ 7 & 7 & 15 & 15 & 23 & 23 & 31 & 31 & 39 & 39 \\ 2 & 2 & \frac{2}{2} \end{pmatrix}. $$

By adding $41/2$ to each entry of S, we obtain a 5-tuple magic $(4, 2)$-rectangle T as below.

Clearly, the sum over each row of any array is 41 and the sum over each column is 82.

Proposition 4 If a balanced centrally n-tuple symmetric (p_i, q)-rectangle R and a centrally n-tuple symmetric (p^+_q, q)-rectangle S exist, then a centrally n-tuple symmetric $(p_i + p^+_q, q)$-rectangle T exists. If S is a balanced rectangle, then T can also be chosen to be balanced.

Proof. Suppose S has type x. By Lemma 1, we know that there exists a balanced centrally n-tuple symmetric (p_i, q)-rectangle R' of type $x + np_x q/2$. Then by stacking R' and S together, we obtain a rectangle T whose rows' and columns' sum is zero. Thus, T is a centrally n-tuple symmetric $(p_i + p^+_q, q)$-rectangle of type x. If S is balanced, then it is easy to see that T is also balanced.

Since n-tuple magic (p_i, q)-rectangles correspond to centrally n-tuple symmetric (p_i, q)-rectangles of type $-1/2$, we have the following corollary.

Corollary 1 Suppose an n-tuple magic (p_i, q)-rectangle and a balanced centrally n-tuple symmetric (p^+_q, q)-rectangle exist. Then an n-tuple magic $(p_i + p^+_q, q)$-rectangle exists.

Using the concept of a centrally n-tuple symmetric rectangle, we can prove the existence of even n-tuple magic rectangles. Our tools are the balanced centrally n-tuple symmetric $(2, 4)$-rectangle $A := (a^1_{i,j}, a^2_{i,j}, ..., a^n_{i,j})$ given by

$$ (a^t_{i,j}) = \begin{pmatrix} 4t - 3 & -4t + 2 & -4t + 1 & 4t \\ -4t + 3 & 4t - 2 & 4t - 1 & -4t \end{pmatrix}, $$

and the n-tuple magic $(2, 6)$-rectangle $B := (b^1_{i,j}, b^2_{i,j}, ..., b^n_{i,j})$ given by

$$ b^t_{i,j} = \begin{pmatrix} 1 + 12(n - t) & 11 + 12(n - t) & 3 + 12(n - t) \\ 9 + 12(n - t) & 8 + 12(n - t) & 7 + 12(n - t) \end{pmatrix} $$

for all $t \in \{1, 2, ..., n\}$.

Proposition 5 Let $q > 2$ be an even integer. Then an n-tuple magic $(2, q')$-rectangle exists.

Proof. We induct on q. The existence of n-tuple rectangles A and B shows that we need only prove the proposition for $q \geq 8$. Assume we know that an n-tuple magic $(2, q')$-rectangle exists for all even $q' < q$. Then we know an n-tuple magic $(2, q - 4)$-rectangle R exists. By Corollary 1, we can add R and A together to form an n-tuple magic $(2, q)$-rectangle.

Proposition 6 Let p and q be even positive integers with $(p, q) \neq (2, 2)$. Then an n-tuple magic (p, q)-rectangle exists.

Proof. By Proposition 5, we can assume that $q > 2$. Using A and Proposition 4, induction shows that a balanced centrally n-tuple symmetric $(p, 4)$-rectangle R exists. Thus, an n-tuple magic $(p, 4)$-rectangle exists and we can assume that $q > 4$. Now assume that an n-tuple magic (p, q')-rectangle exists for all even $q' < q$. We then know that an n-tuple magic $(p, q - 4)$-rectangle S exists. By Corollary 1, we can add R and S together to give an n-tuple magic (p, q)-rectangle.

Example 2 The following arrays are examples of even n-tuple magic rectangles.

A triple magic $(6, 4)$-rectangle

$$ \begin{pmatrix} 1 & 19 & 66 & 60 & 25 & 43 & 42 & 36 \\ 50 & 68 & 17 & 11 & 26 & 44 & 41 & 35 \\ 3 & 21 & 64 & 58 & 27 & 45 & 40 & 34 \\ 70 & 52 & 9 & 15 & 46 & 28 & 33 & 39 \\ 23 & 5 & 56 & 62 & 47 & 29 & 32 & 38 \\ 72 & 54 & 7 & 13 & 48 & 30 & 31 & 37 \end{pmatrix} $$

34
Then each row sum of any array is 146 and each column sum of any array is 219.

A 4-tuple magic \((4, 4)\)-rectangle

\[
\begin{pmatrix}
7 & 12 & 49 & 62 \\
50 & 61 & 8 & 11 \\
16 & 3 & 58 & 53 \\
57 & 54 & 15 & 4
\end{pmatrix}
\begin{pmatrix}
23 & 28 & 33 & 46 \\
34 & 45 & 24 & 27 \\
32 & 19 & 42 & 37 \\
41 & 38 & 31 & 20
\end{pmatrix}
\begin{pmatrix}
39 & 44 & 17 & 30 \\
18 & 29 & 40 & 43 \\
48 & 35 & 26 & 21 \\
25 & 22 & 47 & 36
\end{pmatrix}
\begin{pmatrix}
55 & 60 & 1 & 14 \\
2 & 13 & 56 & 59 \\
64 & 51 & 10 & 5 \\
9 & 6 & 63 & 52
\end{pmatrix}
\]

Then each row sum and each column sum of any array in a rectangle equals 130.

III. The n-Fold Self-Union of Complete Bipartite Graphs

For any integer \(n \geq 1\), the \(n\)-fold self-union of a graph \(G\), denoted by \(nG\), is the union of \(n\) disjoint copies of \(G\). In this section we identify the sufficient condition for degree-magic labellings of the \(n\)-fold self-union of complete bipartite graphs \(nK_{p,q}=K^1_{p,q} \cup K^2_{p,q} \cup \ldots \cup K^n_{p,q}\) to exist.

Theorem 3 For any integer \(n \geq 1\) and even integers \(p, q > 1\), let \(K^{\ast}_{p,q}\) be the \(t^\ast\) copy of \(K_{p,q}\) for all \(t \in \{1, 2, \ldots, n\}\). A mapping \(f\) from \(E(nK_{p,q})\) into positive integers given by

\[
f(u'_{i,j}) = r'_{i,j} \quad \text{for every} \quad u'_{i,j} \in E(K^{\ast}_{p,q}),
\]

is a d-magic labelling of \(nK_{p,q}\) if and only if \(R := (r'_{i,j}) (r'_{i,j}) \ldots (r'_{i,j})\) is an \(n\)-tuple magic \((p, q)\)-rectangle.

Proof. Let \(U' = \{u'_{1,1}, u'_{1,2}, \ldots, u'_{1,p}\}\) and \(V' = \{v'_{1}, v'_{2}, \ldots, v'_{q}\}\) be partite sets of \(K^{\ast}_{p,q}\). Suppose that \(R\) is an \(n\)-tuple magic \((p, q)\)-rectangle. Then \(f\) is a bijection from \(E(nK_{p,q})\) onto \(\{1, 2, \ldots, npq\}\). For any \(u'_{i} \in U'\), we have

\[
f^\ast(u') = \sum_{j=1}^{q} f(u'_{i,j}) = \sum_{j=1}^{q} r'_{i,j} = q(npq+1) = \frac{npq+1}{2} \deg(u'),
\]

and for any \(v'_{j} \in V'\), we have

\[
f^\ast(v') = \sum_{i=1}^{p} f(u'_{i,j}) = \sum_{i=1}^{p} r'_{i,j} = p(npq+1) = \frac{npq+1}{2} \deg(v'),
\]

i.e., \(f\) is a d-magic labelling of \(nK_{p,q}\).

Now suppose that \(f\) is a d-magic labelling of \(nK_{p,q}\). For all \(1 \leq i \neq s \leq p\), we have

\[
\sum_{j} r'_{i,j} = \sum_{j} f(u'_{i,j}) = f^\ast(u') = f^\ast(u') = \sum_{j} r'_{i,j}.
\]

For all \(1 \leq j \neq z \leq q\), we have

\[
\sum_{i} r'_{i,j} = \sum_{i} f(u'_{i,j}) = f^\ast(v') = f^\ast(v') = \sum_{i} r'_{i,j}.
\]

By (5), we have

\[
\sum_{j} r'_{i,j} = \sum_{j} q(npq+1) = \frac{npq+1}{2}.
\]

By (6), we have

\[
\sum_{i} r'_{i,j} = \sum_{i} p(npq+1) = \frac{npq+1}{2}.
\]

Therefore, \(R\) is an \(n\)-tuple magic \((p, q)\)-rectangle.

According to Theorem 3 and Proposition 6, we obtain the following result.

Proposition 7 Let \(p\) and \(q\) be even positive integers with \((p, q) \neq (2, 2)\). Then \(nK_{p,q}\) is a d-magic graph for all integers \(n \geq 1\).

Example 3 We can construct a d-magic graph \(3K_{4,8}\) (see Figure 1) with the labels on edges \(u'_{i,j}\) of \(3K_{4,8}\), where \(1 \leq i \leq 4, 1 \leq j \leq 8\) and \(1 \leq t \leq 3\), in TABLE I.

![Figure 1](image-url)
TABLE I. THE LABELS ON EDGES OF D-MAGIC GRAPH $3K_{4,8}$

<table>
<thead>
<tr>
<th>Vertices</th>
<th>v_1^1</th>
<th>v_2^1</th>
<th>v_3^1</th>
<th>v_4^1</th>
<th>v_5^1</th>
<th>v_6^1</th>
<th>v_7^1</th>
<th>v_8^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>u^1_1</td>
<td>1</td>
<td>8</td>
<td>93</td>
<td>92</td>
<td>9</td>
<td>16</td>
<td>85</td>
<td>84</td>
</tr>
<tr>
<td>u^1_2</td>
<td>6</td>
<td>3</td>
<td>90</td>
<td>95</td>
<td>14</td>
<td>11</td>
<td>82</td>
<td>87</td>
</tr>
<tr>
<td>u^1_3</td>
<td>91</td>
<td>94</td>
<td>4</td>
<td>5</td>
<td>83</td>
<td>86</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>u^1_4</td>
<td>96</td>
<td>89</td>
<td>7</td>
<td>2</td>
<td>88</td>
<td>81</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertices</th>
<th>v_1^2</th>
<th>v_2^2</th>
<th>v_3^2</th>
<th>v_4^2</th>
<th>v_5^2</th>
<th>v_6^2</th>
<th>v_7^2</th>
<th>v_8^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>u^2_1</td>
<td>33</td>
<td>40</td>
<td>61</td>
<td>60</td>
<td>41</td>
<td>48</td>
<td>53</td>
<td>52</td>
</tr>
<tr>
<td>u^2_2</td>
<td>38</td>
<td>35</td>
<td>58</td>
<td>63</td>
<td>46</td>
<td>43</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>u^2_3</td>
<td>59</td>
<td>62</td>
<td>36</td>
<td>37</td>
<td>51</td>
<td>54</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>u^2_4</td>
<td>64</td>
<td>57</td>
<td>39</td>
<td>34</td>
<td>56</td>
<td>49</td>
<td>47</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertices</th>
<th>v_1^3</th>
<th>v_2^3</th>
<th>v_3^3</th>
<th>v_4^3</th>
<th>v_5^3</th>
<th>v_6^3</th>
<th>v_7^3</th>
<th>v_8^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>u^3_1</td>
<td>65</td>
<td>72</td>
<td>29</td>
<td>28</td>
<td>73</td>
<td>80</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>u^3_2</td>
<td>70</td>
<td>67</td>
<td>26</td>
<td>31</td>
<td>78</td>
<td>75</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>u^3_3</td>
<td>27</td>
<td>30</td>
<td>68</td>
<td>69</td>
<td>19</td>
<td>22</td>
<td>76</td>
<td>77</td>
</tr>
<tr>
<td>u^3_4</td>
<td>32</td>
<td>25</td>
<td>71</td>
<td>66</td>
<td>24</td>
<td>17</td>
<td>79</td>
<td>74</td>
</tr>
</tbody>
</table>

Acknowledgments

This work was supported by Rajamangala University of Technology Lanna and Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Thailand.

References