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 Deep learning (DL) algorithms achieved state-of-the-art performance in 

computer vision, speech recognition, and natural language processing (NLP). 

In this paper, we enhance the convolutional neural network (CNN) algorithm 

to classify cancer articles according to cancer hallmarks. The model 

implements a recent word embedding technique in the embedding layer. This 

technique uses the concept of distributed phrase representation and multi-

word phrases embedding. The proposed model enhances the performance of 

the existing model used for biomedical text classification. The result of the 

proposed model overcomes the previous model by achieving an F-score 

equal to 83.87% using an unsupervised technique that trained on PubMed 

abstracts called PMC vectors (PMCVec) embedding. Also, we made another 

experiment on the same dataset using the recurrent neural network (RNN) 

algorithm with two different word embeddings Google news and PMCVec 

which achieving F-score equal to 74.9% and 76.26%, respectively. 
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1. INTRODUCTION 

Cancer is a harmful disease that has led to millions of humans deaths. Cancer is regularly depicted 

within biomedical literature by its hallmarks; A group of related biological behaviors and properties that 

empower cancer to pass into the body. The major objective of cancer researches is to know the biological 

tumor mechanisms developments beginning within the body sustained, and turning to be malignant. Six 

hallmarks of cancer were introduced the first time in the seminal paper published in cell journal [1] then they 

were extended by another four in this work [2], forming a set of cancer hallmarks that are known till now. 

The existing set of hallmarks summarizes our knowledge of the disease into a fixed set of changes in cell 

physiology that influence malignant growth of the tumor (such as evasion of programmed cell death, self-

sufficiency in growth signals, sustained angiogenesis, insensitivity to growth-inhibitors, limitless replicative 

potential and tissue invasion). Over 150k research in cancer published yearly on PubMed. Cancer researchers 

and oncologists advantage enormously from text mining field information sources in biomedicine such as 

PubMed. In this paper, we enhance the performance of the classification model [3], which was used to 

classify PubMed articles based on the 10 hallmarks of cancer. 

First, the text classification tasks can accomplish using machine learning (ML) or deep learning 

(DL) techniques which are both of them under the umbrella of artificial intelligence (AI). DL techniques 

have the ability to capture the features automatically from the text. On the other hand, ML techniques have to 
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be fed manually with the extracted features as input. This difference affects the performance of deep learning 

algorithms making them outperform over ML techniques in the text classification task. Second, the normal 

(natural) text differs from the biomedical text in the following characteristics, a medical term may be written 

abbreviated like this cell type name called (OR) means outer root cell type, not that proposition letter. Also, a 

very important characteristic, the medical term may consist of phrases or compound-words like this protein 

name (hypoxia-inducible) or symptom like high-blood-pressure all of these characteristics may cause 

dispersion problems in classification [4]. 

Despite the achievement of high-quality vector space models, for example, Word2vec and Glove, 

they just give unigram word representation and the semantics for phrases consist of multi-word must be 

approximated through the compositional approaches. In biomedical text processing, it is difficult to write 

technical phrases for symptoms, medications, and diseases as single words to capture the right meaning. To 

solve this problem, in this work, we use a recently un-supervised technique, that uses the concept of the 

multi-word (phrase) embedding, called PMC vectors (PMCVec) [5] (which is pertained to biomedical 

articles) for preprocessing to extract the distributed semantic phrases from cancer’s abstracts for better 

classification performance. The PMCVec was implemented in the embedding layer of the convolutional 

neural network (CNN) algorithm used for biomedical text classification according to cancer hallmarks. Also, 

we prove that changing in word embeddings technique can improve the performance of classification and 

also, compares the convolutional neural networks versus recurrent neural networks on the same dataset using 

two different concepts on embedding uni-gram embedding and multi-word embedding. 

DL algorithms and architectures have already made superior advances in speech recognition, 

computer vision, and natural language processing (NLP) fields [6]. CNN proposed as the first time for image 

processing by [7] and still working till now and achieves perfect results in various computer vision tasks such 

as object detection [8], image classification [9], medical image analysis [10], improving the performance of 

breast cancer detection [11], and a lot of image processing tasks. Also, CNN was applied to speech 

recognition, for example, it was used to recognize the baby cry and achieved an accuracy of 78.6% on 5 types 

of baby cries [12], also, used to recognize speech emotions [13]. However, the convolutional neural network 

(CNN) is used in general NLP tasks, particularly text classification tasks [14]. There are a huge number of 

researchers applied the CNN algorithm to detect the polarity of a text, the text may be a sentence, paragraph, 

or document as well to detect the opinion is positive; negative; or neutral, this step is called sentiment 

analysis. Also, in this work [15] it’s used for sentence-level classification, they applied 4 models of the 

algorithm on different datasets and the algorithm has improved four of seven tasks which include question 

classification and sentiment analysis. In the biomedical natural processing (Bio-NLP) topic, this work [16] 

authors used rule-based features with a knowledge-guided convolutional neural network to classify clinical 

text. However, A convolutional neural network was applied on clinical notes to categorize text fragments, the 

system [17] outperformed the other ML approaches by almost 15% while the training dataset contains 4000 

sentences and the accuracy was 68%. In [18] authors have achieved 54,79% accuracy while classifying 

biomedical abstracts published in Ohsumed, and the dataset was contained 11,566 medical abstracts.  

Furthermore, in the “Cancer” topic, authors in [19] applied the ML algorithm “support vector 

machine (SVM)” to classify 1,852 biomedical abstracts according to the ten hallmarks of cancer with manual 

feature engineering achieving average F-score 69.2% with bag-of-words (BOW) methodology, then, they 

improve the performance using rich features technique achieving F-score 76.8%. Then, the authors compared 

the result of SVM with the CNN algorithm in this work [3] and they achieved F-Score 76.6% using Google 

News word vector. Then, the authors made some modifications in the dataset, filter sizes of the model, and 

word embedding algorithms which improve their model achieving F-score 81.0% with Chiu-win-2 word 

vector [20]. The paper is organized abeing as: section 2, describes the proposed method, the experimental 

setup in this research, and clarifies the dataset used. Section 3 evaluates and discusses the proposed 

technique. Finally, section 4 shows our conclusion. 

 

 

2. RESEARCH METHOD 

2.1.  Model layers 

The proposed model to classify cancer articles based on cancer hallmarks is illustrated in Figure 1. 

The model consists of CNN algorithm layers, which start from the embedding layer followed by 1 

convolution layer, then 1 max-pooling layer, and a dense layer. 

The input articles should be pre-processed before entering the CNN layers. In the pre-processing 

process, we use the PMCvec that extract useful phrases from the text by removing the numbers, then chunk 

the sentences based on the predefined stop words. Then, filter the phrases initially based on frequency 

statistics then, rank and filter again the extracted phrases by a ranking algorithm; Information Frequency 

(Info_Freq). Then, tagging the phrases by underscores’. After preparing the data in the preprocessing phase 
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the extracted phrases pass the word embedding layer; the process of mapping the vocabularies into vectors 

which consist of real numbers using language modeling and feature learning methods in NLP. 

 

 

 
 

Figure 1. Proposed model 

 

 

The quality of the word vector can affect the total quality of the text classification. There are a lot of 

word embeddings available publically like GoogleNews, GloVe and BioNLP. They were mentioned in this 

survey paper [21] and they compared with PMCvec on five different datasets in [5]. The main differences 

between them: 

− Google News [22]: A popular embedding model used as state-of-the-art, it is trained on Google News 

dataset. That is a Word2Vec model trained on a general (non-biomedical) corpus. It is a 300- 

dimensional vector representation. 

− GloVe [23]: Combines the power of the Word2Vec model with the effectiveness of the global Co-

occurrence statistics method, which is also trained on a general (non-biomedical) corpus of Wikipedia. 

It is a 300- dimensional vector representation. 

− BioNLP [24]: Induced from PubMed, PMC, and their combination using the Word2vec model. It is a 

200- dimensional vector representation. 

− PMCVec [5]: A Recently word-embedding vectors, which trained on PubMed articles and supports 

unigram word and multi-word phrases representations. It is a 200- dimensional vector representation. 

Therefore, we select the PMCvec because it uses multi-word (phrase) embedding but the other 

vectors use uni-word embedding. As we mention the biomedical terms, symptoms, and medications are 

usually written in phrases. So, the PMCvec is the better in our case because the articles in the dataset are 

about cancer disease which is in the medical domain. After the word-embedding layer, the matrix that 

contains the values of embedding will enter the convolution layer. Convolutional layer; uses a mathematical 

model that contains the ReLU activation function (rectified linear unit) that applies the filter sizes to the 

given text and passes its results to the max-pooling layer in a 2D array. However, in Max-Pooling layer 

reduces the pooled features to the max by applying a filter matrix. Then, the model should convert the 2-D 

array to 1-D via the flattening and concat all the 1D-arrays and passes the results to the fully connected layer 

(dense layer) which is considered as the output layer to decide if the given article positive/negative for the 

given hallmark. Algorithm 1 describes the steps of the proposed model. 

 

Algorithm 1: Proposed model for cancer text classification based on cancer hallmarks using CNN algorithm 

and PMCVec embeddings. 

• Suppose that  

D = { label_1, label_2,…. , label-a} Set of 10 files, one for each hallmark. 

AbTr = { ab1, ab2 , …. , abn } Set of n abstracts in Training dataset 
AbTe= { ab1, ab2 , …. , abn } Set of n abstracts in Testing dataset 

• Training Phase:  

- Convert D into XML format. 

For each file in D 

For each Abi in AbTr 

1. Remove numbers and special characters.  

2. Identify noun phrases. 
3. Initial filtering by removing any single word occurred once. 

4. Ranking using Info_freq ranking algorithm using this formula for two words phrases: 

 

info_freq (A,B)=log 
p(A, B)

p(A)p(B)
*log (freq(A,B)) 
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, and this formula for 3 word phrases 

 

info_freq (A,B,C)= log 
p(A,B,C)

info_freq (A,B)p(C)
*log (freq(A,B,C)) 

 

5. Tagging phrases and build embedding matrix. 

6. Apply convolution on embedding matrix using different filter sizes. 

7. Generate Max-Pooling on each feature map.  
8. Flattening (Convert a 2D array into 1D Array). 

9. Apply a fully-connected layer with dropout. 

10. Save Abi in the trained module. 

End For 

End For 

• Testing Phase: 
- For each Abi in AbTe do  

While EOF (Abi ) do 

1. Load trained module 

2. Evaluate Si on the trained module 

3. Calculate the F-score of AbTe 

End For 

 

2.2.  Setting model parameters 

The proposed model is based on a simple CNN architecture by Kim [15], implementing the neural 

network (NN) using Keras [25], and TensorFlow was used as a backend tool. The proposed model consists of 

the PMCvec in the embedding layer followed by one convolution layer of various filter sizes, then 1 max-

pooling layer, then finally the output layer. We used the model hyperparameters like the tuned version of 

S.baker’s work [3] except for the embedding layer, where the filter-sizes were 2, 3, 4, number of filters 128, 

dropout keep probability 0.5, and lambda regularization as default. The training parameters were batch size 

64, the number of training epochs 250, and evaluate every 100 steps. Parameters are summarized in Table 1. 

 

 

Table 1. Model parameters 
Parameter Value 

Word Vector Size 200 (Pmcvec) 

Filter Sizes 2,3,4 

Dropout Probability 0.5 
Number of Filters 128 

Batch Size 50 

 

 

2.3.  Dataset 

The same corpus of [19] was used, which contains 1852 biomedical abstracts for training and testing 

our model. Dataset annotated by an expert with 15+ years of involvement with cancer research. The task is 

multi-label classification; each abstract may be labeled with zero or more of the ten hallmarks. We split the 

dataset into 10 Binary-labeled datasets (one for every hallmark), the positive samples in each dataset are the 

abstracts annotated with that hallmark, where the negative samples are those that aren’t annotated with that 

hallmark. The ten hallmarks are briefly described is: 

− Sustaining proliferative signaling: Normal cells need molecules that act as signs for them to grow up 

and divide. On the other hand, cancer cells, are able to grow up without these external signs. 

− Evading growth suppressors: Non-Cancer cells, have operations that can stop the cell growth or 

division. In Cancer cells, these operations are changed so that they don’t deny cell division effectively. 

− Resisting cell death: Programmed Cell Death is a technique by which cells can be programmed to die if 

damaged. But, cancer cells are capable to override these techniques. 

− Enabling replicative immortality: Healthy cell dies after a particular number of divisions. But, cancer 

cells are able to grow and divide endlessly. 

− Inducing angiogenesis: Cancer cells; are capable to start angiogenesis, the procedure by which fresh 

blood vessels are shaped, hence guaranteeing the gracefully of oxygen and different supplements. 

− Activating invasion & metastasis: Cancer-cells can split away from their site of inception to attack 

encompassing tissue and spread to far off body parts. But, Healthy cells aren’t split away. 

− Genome instability & mutation: Cancer growth cells for the most part have serious chromosomal 

variations from the norm, which compound as the illness advances. 

− Tumor-promoting inflammation: Aggravation influences the microenvironment encompassing tumors, 

adding to the multiplication, endurance, and metastasis of malignant cells.  
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− Deregulating cellular energetics: Cancer cells mostly utilize strange metabolic pathways to create 

vitality, for example displaying glucose aging in any event, when enough oxygen is available to 

appropriately breathe. 

− Avoiding immune destruction: Non-Cancer cells are visible by the immune system. However, cancer 

cells aren’t. 

Furthermore, we change a little bit in the distribution of the dataset than S.baker’s work [3]. We 

divide the annotated data into training, validation, and testing subgroups, 70% for training, 10% for 

validation, and 20% for testing using a random sampling strategy. Table 2 shows the dataset distribution of 

positive and negative samples for each hallmark. 
 

 

Table 2. Dataset distribution 

Hallmark 
Train Validation Test Total 

positive Negative positive negative positive negative positive negative 

1st 328 975 43 140 91 275 462 1390 

2nd 172 1131 22 161 46 320 240 1612 
3rd 303 1000 42 141 84 282 429 1423 

4th 81 1222 11 172 23 343 115 1737 

5th 99 1204 13 170 31 335 143 1708 

6th 208 1095 29 154 54 312 291 1561 

7th 227 1076 38 145 68 298 333 1519 
8th 169 1143 24 159 47 319 240 1612 

9th 74 1229 10 173 21 345 105 1747 

10th 77 1226 10 173 21 345 108 1744 

 

 

3. RESULTS AND DISCUSSION 

First, we comparing our model using PMCVec embedding versus the CNN model (tuned version) 

by S.Baker [3]. Figure 2 represents our method outperforms the previous model for each hallmark, and  

Table 3 compares the F-score percentages for each hallmark individually and the average F-score for both 

models.  

 

 

 
 

Figure 2. F-score chart comparison for each hallmark using CNN 

 

 

Table 3. CNN algorithm - test result comparison using the F-score metric 
NO. Hallmark S.baker [3] Proposed Model 

1 Sustaining Proliferative Signaling 67.90% 71.60% 
2 Evading Growth Suppressors 71.50% 75.80% 

3 Resisting Cell Death 86.70% 88.90% 

4 Enabling Replicative Immortality 91.50% 94% 

5 Inducing Angiogenesis 79.40% 82% 

6 Activating Invasion & Metastasis 82.60% 85.70% 
7 Genome Instability & Mutation 81.70% 83% 

8 Tumor-Promoting Inflammation 84.20% 87.70% 

9 Deregulating Cellular Energetics 88.30% 90% 

10 Avoiding Immune Destruction 75.80% 80% 

Average F-score 81% 83.87% 
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While evaluating test data in the dataset, the results in Table 3 show that our model outperforms 

over the existing model for each hallmark individually and on the total average, obtaining an F-score of 

83.87% for overall performance which is higher than the previous model that equals to 81%. The proposed 

model can enhance the existing model by at least 2% to 5% for each hallmark individually and by almost 3% 

on the total average and if the dataset is larger than the current, the classification results will be better using 

the multi-word embedding technique. Also, the 4th hallmark result is the highest than the rest, because the 

examples of the dataset are more relevant to this hallmark than the other. So, the concept of multi-word 

embedding using PMCvec is effective than the uni-word embeddings techniques. It can improve the 

performance of embedding, and therefore the result of classification as well.  

Another experiment was performed on the same dataset using another DL algorithm; the RNN 

algorithm to show its performance in text classification tasks in the biomedical domain. Table 4 represents 

the results of evaluating the test data using the RNN algorithm with two different word embeddings 

techniques also; uni-gram word embeddings like Google News (default word vector) and phrase embedding 

like PMCVec.  

The result in Table 4 shows that the performance of RNN with PMCVec is 76.26% which is 

outperforming the RNN with Google News which obtains F-score 74.9%. That is because Google News is 

trained on general text however the PMCVec is trained on the biomedical text. Also, the phrase embeddings 

are better than uni-gram embedding. So, PMCvec gives better word embeddings and this is reflected in the 

classification result as well, but still, both of them are lower than the CNN algorithm result with an average 

F-score 83.87% as shown in Table 3.  

 

 

Table 4. RNN algorithm comparison of test result using F-score 
No. Hallmark RNN (Google News) RNN (PMCVec) 

1 Sustaining Proliferative Signaling 66.0% 68.1% 

2 Evading Growth Suppressors 67.4% 69.0% 

3 Resisting Cell Death 79.0% 82.1% 

4 Enabling Replicative Immortality 82.0% 86.0% 
5 Inducing Angiogenesis 74.8% 75.0% 

6 Activating Invasion and Metastasis 72.0% 72.4% 

7 Genomic Instability and Mutation 76.8% 77.2% 

8 Tumor Promoting Inflammation 80.0% 80.3% 

9 Cellular Energetics 81.0% 82.0% 
10 Avoiding Immune Destruction 70.0% 70.5% 

Average F-score 74.9% 76.26% 

 

 

Table 5 and Figure 3 compares the benchmarks algorithms using ML algorithms [19], and the DL 

algorithm [3] with the proposed model using CNN and RNN algorithms on the same dataset. The comparison 

between them on each hallmark individually and on average of all the hallmarks using the F-score metric.  

Based on the previous comparison Table 5 and Figure 3, we conduct that CNN with PMCVec 

embedding has overcome the other benchmark models in biomedical text classification. The CNN is highly 

recommended in text classification in the biomedical natural language domain. Also, PMCVec produces 

higher word embedding performance versus the Google News and Chiu-win-2 with both CNN and RNN 

algorithms in our case. 

 

 

Table 5. Comparison between benchmarks algorithms versus the proposed model 

Hallmark 
ML (SVM 

+ BoW) 

ML (SVM+Rich 

features) 

RNN (Google 

News) 

RNN 

(PMCVec) 

CNN (Google 

News) 

CNN (Chiu-

win-2) 

CNN 

(PMCVec) 

1st 70 67.4 66 68.1 66.3 67.9 71.6 
2nd 53.3 65.3 67.4 69 66.7 71.5 75.8 

3rd 75.9 82.7 79 82.1 86.9 86.7 88.9 

4th 73.1 90.9 82 86 91.2 91.5 94 

5th 73.9 85.7 74.8 75 74.8 79.4 82 

6th 72.5 72.7 72 72.4 82 82.6 85.7 
7th 71.2 69.2 76.8 77.2 72.2 81.7 83 

8th 69.9 76.6 80 80.3 81.6 84.2 87.7 

9th 78.1 85.7 81 82 76.6 88.3 90 

10th 54.3 71.8 70 70.5 67.7 75.8 80 

Average 69.22 76.8 74.9 76.26 76.6 81 83.87 
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Figure 3. Comparison between benchmarks algorithms 

 

 

4. CONCLUSION 

In this paper, we proposed a model that enhances the performance of the CNN algorithm which is 

used for text classification of biomedical articles related to cancer disease based on the ten hallmarks of 

cancer using a new recent concept in the word embedding layer. This technique refers to the use of uni-word 

and multi-word (phrase) embedding instead of using uni-word embedding only which is suitable for the 

nature of the medical text. The experimental results of show that the concept of the phrase (Multi-word) 

embedding technique like PMCVec has improved the performance of the existing model achieving an F-

score equal to 83.87%, while the previous one was achieved an F-score equal to 81% that uses the uni-word 

embeddings technique, and if the dataset is  larger the classification performance will be better than the 

current. The proposed model achieving an average F-score greater than other ML and DL models. Also, the 

results show that CNN is better than RNN in biomedical text classification. Some directions for future work 

stay open; in addition to changing the word vector, we can examine the effect of changing the optimizer 

technique, filter sizes, number of filters, or using larger text corpora may offer additional opportunities for 

enhancement. 
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