Some results on odd factor of graphs

Cui Yuting\(^1\) and Mikio Kano\(^2\)
\(^1\)Shandong college of ocendology, Qingdao,China
\(^2\)Akashi technological college, Akashi, Japan

Abstract
A \(\{1, 3, \cdots, 2n-1\}\)-factor of a graph \(G\) is defined to be a spanning subgraph of \(G\), each degree of whose vertices is one of \(\{1, 3, \cdots, 2n-1\}\), where \(n\) is a positive integer. In this paper, we give a sufficient condition for a graph to have a \(\{1, 3, \cdots, 2n-1\}\)-factor.

1 Main theorem

We consider finite graphs that have neither loops nor multiple edges. Let \(G\) be a graph with vertex set \(V(G)\). For a vertex \(v\) of \(G\), we write \(\text{deg}_G(v)\) for the degree of \(v\) in \(G\). For a subset \(S\) of \(V(G)\), the neighborhood \(\Gamma_G(S)\) of \(S\) is defined to be the set of vertices if \(G\) that are adjacent to at least one vertex of \(S\). Let \(I\) be a set of nonnegative integers. A graph \(G\) is called an \(I\)-graph if \(\text{deg}_G(x) \in I\) for all \(x \in V(G)\). We call a spanning \(I\)-subgraph of \(G\) an \(I\)-factor of \(G\). In particular, a \(\{1, 3, \cdots, 2n-1\}\)-factor of a graph \(G\) is an spanning subgraph \(F\) of \(G\) such that the degree of every vertex of \(F\) is contained in \(\{1, 3, \cdots, 2n-1\}\), where \(n\) is a positive integer. A \(\{k\}\)-factor will be called a \(k\)-factor.

The following proposition gives a sufficient condition for the existence of a 1-factor in a graph by using neighborhoods.

Proposition 1 (Anderson\(^2\),[4p.115]) \(\) Let \(G\) be a graph with an even number of vertices. If

\[
\Gamma_G(X) = V(G) \quad \text{or} \quad |\Gamma_G(X)| \geq \frac{4}{3}|X| - \frac{2}{3}
\]

for all \(X \subset V(G)\), then \(G\) has a 1-factor.
Our next main theorem is an extension of this proposition, and its proof is analogous to that of Proposition 1.

Theorem 1 Let G be a graph with an even number of vertices, and let n be a positive integer. If

$$\Gamma_G(X) = V(G) \quad \text{or} \quad |\Gamma_G(X)| > (1 + \frac{1}{3(2n-1)})|X| - \frac{1}{2n-1}$$

for all $X \subset V(G)$, then G has a $\{1, 3, \cdots, 2n-1\}$-factor.

This theorem is best possible in the sense that the condition in Theorem 1 cannot be replaced by the condition that

$$\Gamma_G(X) = V(G) \quad \text{or} \quad |\Gamma_G(X)| \geq (1 + \frac{1}{3(2n-1)})|X| - \frac{1}{2n-1}$$

for all $X \subset V(G)$. This fact will be shown in Theorem 2.

We give some definitions before proving Theorem 1. For a subset S of $V(G)$, we denote by $G - S$ the subgraph of G obtained from G by deleting the vertices in S together with their incident edges. We write $o(G)$ for the number of odd components (components with odd order) of G. Our proof of Theorem 1 depends on the following theorem, which is a generalization of Tutte’s 1-factor Theorem and will be extended in Theorem 3.

Proposition 2 (Amahashi[1]) Let n be a positive integer. Then a graph G has a $\{1, 3, \cdots, 2n-1\}$-factor if and only if

$$\text{odd}(G - X) \leq (2n - 1)|X| \quad \text{for all} \quad X \subset V(G).$$

Proof of Theorem 1. Suppose that G satisfies the condition in the theorem but has no $\{1, 3, \cdots, 2n-1\}$-factor. Then there exist a subset $S \subset V(G)$ with $o(G - S) > (2n - 1)|S|$ by Proposition 2. Let $|V(G)| = p$. Since p is even, by parity, we may assume $o(G - S) \geq (2n - 1)|S| + 2$. Let m denote the number of isolated vertices of $G - S$, and put $t = 1 + (1/3(2n-1))$ and $r = 1/(2n-1)$. We consider two cases.

Case 1. $m > o$. Since $|\Gamma_G(V(G) - S)| \neq V(G)$, we have

$$|\Gamma_G(V(G) - S)| > t|V(G) - S| - r = tp - t|S| - r.$$

It is clear that $|\Gamma_G(V(G) - S)| \geq p - m$. From these inequalities, we obtain

$$p < \frac{t|S| + r - m}{t - 1}. \quad (1)$$

2
On the other hand, counting the vertices of the odd components of $G - S$, we have $m + 3((2n - 1)|S| + 2 - m) \leq p - |s|$, and thus

$$(3(2n - 1) + 1)|S| + 6 - 2m \leq p. \quad (2)$$

Combining inequalities (1) and (2), we obtain

$$(3(2n - 1) + 1)|S| + 6 - 2m < \frac{t|S| + r - m}{t - 1}. \quad (3)$$

Substituting the values of t and r into (3), we can get $3 + (6n - 5)m < 0$, a contradiction.

Case 2. $m = 0$. In this case, every odd component has at least three vertices. Let X be the set of vertices of any $(2n - 1)|S| + 1$ odd components of $G - S$. Since $\Gamma_G(X) \neq V(G)$, we have $|\Gamma_G(X)| > t|S| - r$ and hence

$$|X| < \frac{|S| + r}{t - 1}. \quad (4)$$

On the other hand, $|X| \geq 3((2n - 1)|S| + 1)$ as well. So combining it with inequality (4), we obtain

$$3((2n - 1)|S| + 1) < \frac{|S| + r}{t - 1}.$$

Substituting the values of t and r into the above inequality, we get $0 < 0$, a contradiction.

Consequently, the proof is complete. \[\blacksquare\]

If a graph G consists of $n(n \geq 2)$ disjoint copies of a graph H, then we write $G = nH$. The join $G = A + B$ has $V(G) = V(A) \cup V(B)$ and $E(G) = E(A) \cup E(B) \cup \{xy|x \in V(A)\text{ and } y \in V(B)\}$.

Theorem 2 For every position integer n, there exists infinitely many graphs G that have no $\{1, 3, \cdots, 2n - 1\}$-factor and satisfy

$$\Gamma_G(X) = V(G) \quad \text{or} \quad |\Gamma_G(X)| \geq (1 + \frac{1}{3(2n - 1)})|X| - \frac{1}{2n - 1}$$

for all $X \subset V(G)$.

Proof Let m be a positive integer. We define a graph G by $G = K_m + ((2n - 1)m + 2)K_3$, where K_m and K_3 denote the complete graphs of order m and 3, respectively. It is trivial that G is of even order. Put $S = V(K_m)$. Then $o(G - S)$ has $(2n - 1)m + 2$ odd components, and so G has no
In this case, we have S for all x. We denote such a function by f defined on V. This was mentioned before by Knao. Let G be any subset of $V(G)$.

In this section, we give an extension of Amahashi’s Theorem (proposition 2), which was mentioned before by Knao. Let G be a graph and f be a function defined on $V(G)$ such that $f(x)$ is a position odd integer for every $x \in V(G)$. We denote such a function by $f : V(G) \to \{1, 3, 5, \cdots \}$. Then a spanning subgraph F of G is called an $(1, f)$-odd-factor if $deg_F(x) \in \{1, 3, 5, \cdots \}$ for all $x \in V(G)$. It is obvious that if $f(x) = 2n - 1$ for all $x \in V(G)$, then a $(1, f)$-odd-factor and a $\{1, 3, \cdots , 2n - 1\}$-factor are the same. We prove the following theorem.

Theorem 3 Let G be a graph and $f : V(G) \to \{1, 3, 5, \cdots \}$. Then G has a $(1, f)$-odd-factor if and only if

$$o(G - S) \leq \sum_{x \in S} f(x) \quad (5)$$

for all $S \subset V(G)$.

In order to prove Theorem 3, we need the following two lemmas.
Lemma 4 Let G be a tree of even order and $f : V(G) \to \{1, 3, 5, \ldots\}$. Then G has a $(1, f)$-odd-factor if and only if
\[o(G-x) \leq f(x) \text{ for all } x \in V(G). \]

Proof The proof is similar to that of Theorem 1 of [1].

Lemma 5 Let G be a bipartite graph with partite sets X and Y, and let g be an integer valued function defined on X. Then G has a spanning subgraph H such that
\[\deg_H(x) = g(x) \text{ for all } x \in X \text{ and } \deg_H(y) = 1 \text{ for all } y \in Y \]
if and only if
\[|Y| = \sum_{x \in X} g(x) \text{ and } |\Gamma_G(S)| \geq \sum_{x \in S} g(x) \text{ for all } S \subset X. \]

Proof The lemma is an immediate consequence of Hall’s Marriage Theorem[3].

Proof of Theorem 3. This theorem can be proved similar as proposition 2. Assume that G has a $(1, f)$-factor F. Then we have
\[o(G-S) \leq \sum_{x \in S} \deg_F(x) \leq \sum_{x \in S} f(x) \]
since there exists at least one edge of F between every odd component of $G-S$ and S.

We next prove the sufficiency by induction on $|V(G)| + |E(G)|$. Without loss of generality, we may assume that G is connected. Moreover, we have that $|V(G)|$ is even by setting $S = \emptyset$ in (5). It is immediate that
\[o(G-S) \equiv |S| \equiv \sum_{x \in S} f(x)(mod 2). \quad (6) \]

By Lemma 1, if G is a tree, then G has a $(1, f)$-odd-factor. Hence we may assume that G is not a tree. We consider two cases.

Case 1. $o(G-S) < \sum_{x \in S} f(x)$ whenever $\emptyset \neq S \subset V(G)$.

There exists an edge e such that $G-e$ is connected, where $G - e$ denotes the subgraph of G obtained from G by deleting only the edge e. For every $S \subset V(G)$, it follows from (6) that
\[o((G-e)-S) \leq o(G-S) + 2 \leq \sum_{x \in S} f(x). \]
Thus $G - e$ has a $(1, f)$-odd-factor by the induction hypothesis, and hence G has a $(1, f)$-odd-factor.

case 2. $o(G - S) = \sum_{x \in S} f(x)$ for some nonempty $S \subset V(G)$.

Choose such a subset S_0 so that $|S_0|$ is maximum. Then every even component D of $G - S_0$ has a $(1, f)$-odd-factor $F(D)$ since D satisfies condition (5). Let X be the set of all odd components of $G - S_0$ and let B be a bipartite graph with partite sets X and S_0, in which $C \in X$ and $s \in S_0$ are joined by an edge if and only if G contains an edge joining s to a vertex of C. Then we can show that B has a spanning subgraph H such that

$$d_H(C) = 1 \text{ for all } C \in X \text{ and } d_H(s) = f(s) \text{ for all } s \in S_0$$

by Lemma 2 and by the choice of S_0. For every edge $e' = Cs$ of H, there exists an edge e of G such that e joins a vertex of C to s. We can show that the subgraph $C + e$ of G, which is obtained from C by adding an edge e together with its end vertex s, has a $(1, f')$-odd-factor $F'(C + e)$ by the induction hypothesis, where $f'(x) = f(x)$ if $x \neq s$ and $f'(s) = 1$. Consequently, we obtain a desired $(1, f)$-odd-factor F of G given by

$$F = \{F(D) | D \text{ are even components of } G - S_0\}$$

$$\cup \{F'(C + e) | C \text{ are odd components of } G - S_0 \text{ and } e' \in E(H)\}. \ ■$$

Note that it seems to be difficult to give a sufficient condition for a graph to have a $(1, f)$-odd-factor by using neighborhoods. The following natural question is open: Is it possible to characterize graphs G that satisfy

$$\text{odd}(G - X) \leq 2n|X| \text{ for all } X \subset V(G)$$

in terms of factors?

Acknowledgement

The authors wish to thank referees for their suggestions and corrections.

References

