# A Characterization of Concept Lattices. Dual Concept Lattices

Christoph Schwarzweller University of Tuebingen

**Summary.** In this article we continue the formalization of concept lattices following [6]. We give necessary and sufficient conditions for a complete lattice to be isomorphic to a given formal context. As a by-product we get that a lattice is complete if and only if it is isomorphic to a concept lattice. In addition we introduce dual formal concepts and dual concept lattices and prove that the dual of a concept lattice over a formal context is isomorphic to the concept lattice over the dual formal context.

MML Identifier: CONLAT\_2.

WWW: http://mizar.org/JFM/Vol11/conlat\_2.html

The articles [13], [5], [17], [8], [14], [2], [12], [18], [9], [16], [15], [1], [11], [4], [3], [19], [7], and [10] provide the notation and terminology for this paper.

## 1. Preliminaries

Let C be a FormalContext and let  $C_1$  be a strict FormalConcept of C. The functor  ${}^{@}C_1$  yielding an element of ConceptLattice C is defined by:

(Def. 1) 
$${}^{\tiny{\textcircled{@}}}C_1 = C_1$$
.

Let *C* be a FormalContext. Observe that ConceptLattice *C* is bounded. We now state four propositions:

- (1) For every FormalContext C holds  $\bot_{\text{ConceptLattice }C} = \text{Concept} \text{with} \text{all} \text{Attributes }C$  and  $\top_{\text{ConceptLattice }C} = \text{Concept} \text{with} \text{all} \text{Objects }C$ .
- (2) Let C be a FormalContext and D be a non empty subset of  $2^{\text{the objects of }C}$ . Then  $(\text{ObjectDerivation }C)(\bigcup D) = \bigcap \{(\text{ObjectDerivation }C)(O); O \text{ ranges over subsets of the objects of }C: O \in D\}.$
- (3) Let C be a FormalContext and D be a non empty subset of  $2^{\text{the attributes of }C}$ . Then  $(\text{AttributeDerivation }C)(\bigcup D) = \bigcap \{(\text{AttributeDerivation }C)(A); A \text{ ranges over subsets of the attributes of }C: A \in D\}.$
- (4) Let C be a FormalContext and D be a subset of ConceptLattice C. Then  $\bigcap_{\text{ConceptLattice }C}D$  is a FormalConcept of C and  $\bigcup_{\text{ConceptLattice }C}D$  is a FormalConcept of C.

Let *C* be a FormalContext and let *D* be a subset of ConceptLattice *C*. The functor  $\bigcap_C D$  yielding a FormalConcept of *C* is defined as follows:

(Def. 2) 
$$\bigcap_C D = \bigcap_{\text{ConceptLattice } C} D$$
.

1

The functor  $\bigsqcup_C D$  yielding a FormalConcept of C is defined as follows:

(Def. 3)  $\bigsqcup_C D = \bigsqcup_{\text{ConceptLattice } C} D$ .

One can prove the following propositions:

- (5) For every FormalContext C holds  $\bigsqcup_C (\emptyset_{\text{ConceptLattice }C}) = \text{Concept} \text{with} \text{all} \text{Attributes }C$  and  $\bigcap_C (\emptyset_{\text{ConceptLattice }C}) = \text{Concept} \text{with} \text{all} \text{Objects }C$ .
- (6) For every Formal Context C holds  $\bigsqcup_{C}(\Omega_{\text{the carrier of ConceptLattice }C}) = \text{Concept} \text{with} \text{all} \text{Objects }C$  and  $\bigcap_{C}(\Omega_{\text{the carrier of ConceptLattice }C}) = \text{Concept} \text{with} \text{all} \text{Attributes }C$ .
- (7) Let C be a FormalContext and D be a non empty subset of ConceptLattice C. Then
- (i) the extent of  $\bigsqcup_C D = (\text{AttributeDerivation } C)((\text{ObjectDerivation } C)(\bigcup \{\text{the extent of } \langle E, I \rangle; E \text{ ranges over subsets of the objects of } C, I \text{ ranges over subsets of the attributes of } C: \langle E, I \rangle \in D\})),$  and
- (ii) the intent of  $\bigsqcup_C D = \bigcap \{ \text{the intent of } \langle E, I \rangle; E \text{ ranges over subsets of the objects of } C, I \text{ ranges over subsets of the attributes of } C: \langle E, I \rangle \in D \}.$
- (8) Let *C* be a FormalContext and *D* be a non empty subset of ConceptLattice *C*. Then
- (i) the extent of  $\bigcap_C D = \bigcap \{ \text{the extent of } \langle E, I \rangle; E \text{ ranges over subsets of the objects of } C, I \text{ ranges over subsets of the attributes of } C: \langle E, I \rangle \in D \}, \text{ and}$
- (ii) the intent of  $\bigcap_C D = (\text{ObjectDerivation } C)((\text{AttributeDerivation } C)(\bigcup \{\text{the intent of } \langle E, I \rangle; E \text{ ranges over subsets of the objects of } C, I \text{ ranges over subsets of the attributes of } C: \langle E, I \rangle \in D\})).$
- (9) Let C be a FormalContext and  $C_1$  be a strict FormalConcept of C. Then  $\bigsqcup_{\text{ConceptLattice }C}\{\langle O,A\rangle;O \text{ ranges over subsets of the objects of }C, A \text{ ranges over subsets of the attributes of }C:\bigvee_{o:\text{object of }C} (o\in \text{the extent of }C_1 \land O=(\text{AttributeDerivation }C)((\text{ObjectDerivation }C)(\{o\})) \land A=(\text{ObjectDerivation }C)(\{o\}))\}=C_1.$
- (10) Let C be a FormalContext and  $C_1$  be a strict FormalConcept of C. Then  $\bigcap_{\text{ConceptLattice} C} \{\langle O, A \rangle; O \text{ ranges over subsets of the objects of } C, A \text{ ranges over subsets of the attributes of } C: \bigvee_{a: \text{Attribute of } C} (a \in \text{the intent of } C_1 \land O = (\text{AttributeDerivation } C)(\{a\}) \land A = (\text{ObjectDerivation} C)((\text{AttributeDerivation} C)(\{a\}))) \} = C_1.$

Let C be a FormalContext. The functor  $\gamma(C)$  yielding a function from the objects of C into the carrier of ConceptLattice C is defined by the condition (Def. 4).

(Def. 4) Let o be an element of the objects of C. Then there exists a subset O of the objects of C and there exists a subset A of the attributes of C such that  $(\gamma(C))(o) = \langle O, A \rangle$  and  $O = (AttributeDerivation <math>C)((ObjectDerivation C)(\{o\}))$  and  $A = (ObjectDerivation C)(\{o\})$ .

Let C be a FormalContext. The functor  $\delta_C$  yields a function from the attributes of C into the carrier of ConceptLattice C and is defined by the condition (Def. 5).

(Def. 5) Let a be an element of the attributes of C. Then there exists a subset O of the objects of C and there exists a subset A of the attributes of C such that  $\delta_C(a) = \langle O, A \rangle$  and  $O = (AttributeDerivation <math>C)(\{a\})$  and  $A = (ObjectDerivation <math>C)((AttributeDerivation C)(\{a\}))$ .

The following propositions are true:

- (11) Let C be a FormalContext, o be an object of C, and a be an Attribute of C. Then  $(\gamma(C))(o)$  is a FormalConcept of C and  $\delta_C(a)$  is a FormalConcept of C.
- (12) For every FormalContext C holds  $\operatorname{rng} \gamma(C)$  is supremum-dense and  $\operatorname{rng}(\delta_C)$  is infimum-dense.
- (13) Let C be a FormalContext, o be an object of C, and a be an Attribute of C. Then o is connected with a if and only if  $(\gamma(C))(o) \sqsubseteq \delta_C(a)$ .

### 2. THE CHARACTERIZATION

Next we state the proposition

(14) Let L be a complete lattice and C be a FormalContext. Then ConceptLattice C and L are isomorphic if and only if there exists a function g from the objects of C into the carrier of L and there exists a function d from the attributes of C into the carrier of L such that rng g is supremum-dense and rng d is infimum-dense and for every object o of C and for every Attribute a of C holds o is connected with a iff  $g(o) \sqsubseteq d(a)$ .

Let L be a lattice. The functor Context L yielding a strict non quasi-empty Context Str is defined by:

(Def. 6) Context  $L = \langle \text{the carrier of } L, \text{ the carrier of } L, \text{ LattRel}(L) \rangle$ .

The following two propositions are true:

- (15) For every complete lattice L holds ConceptLattice Context L and L are isomorphic.
- (16) For every lattice L holds L is complete iff there exists a FormalContext C such that ConceptLattice C and L are isomorphic.

### 3. DUAL CONCEPT LATTICES

Let L be a complete lattice. Observe that  $L^{\circ}$  is complete.

Let C be a FormalContext. The functor  $C^{\circ}$  yields a strict non quasi-empty ContextStr and is defined as follows:

(Def. 7)  $C^{\circ} = \langle \text{the attributes of } C, \text{ the objects of } C, \text{ (the information of } C)^{\smile} \rangle$ .

The following propositions are true:

- (17) For every strict FormalContext C holds  $(C^{\circ})^{\circ} = C$ .
- (18) For every FormalContext C and for every subset O of the objects of C holds  $(\text{ObjectDerivation } C)(O) = (\text{AttributeDerivation } C^{\circ})(O)$ .
- (19) For every FormalContext C and for every subset A of the attributes of C holds (AttributeDerivationC) $(A) = (ObjectDerivation <math>C^{\circ})(A)$ .

Let C be a FormalContext and let  $C_1$  be a ConceptStr over C. The functor  $C_1^{\circ}$  yields a strict ConceptStr over  $C^{\circ}$  and is defined by:

(Def. 8) The extent of  $C_1^{\circ}$  = the intent of  $C_1$  and the intent of  $C_1^{\circ}$  = the extent of  $C_1$ .

Let C be a FormalContext and let  $C_1$  be a FormalConcept of C. Then  $C_1^{\circ}$  is a strict FormalConcept of  $C^{\circ}$ .

We now state the proposition

(20) For every FormalContext C and for every strict FormalConcept  $C_1$  of C holds  $(C_1^{\circ})^{\circ} = C_1$ .

Let C be a FormalContext. The functor DualHomomorphism C yielding a homomorphism from (ConceptLattice C) $^{\circ}$  to ConceptLattice C $^{\circ}$  is defined by:

(Def. 9) For every strict FormalConcept  $C_1$  of C holds (DualHomomorphism C)( $C_1$ ) =  $C_1^{\circ}$ .

We now state two propositions:

- (21) For every FormalContext *C* holds DualHomomorphism *C* is isomorphism.
- (22) For every FormalContext C holds ConceptLattice  $C^{\circ}$  and (ConceptLattice C) $^{\circ}$  are isomorphic.

#### REFERENCES

- [1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_2.html.
- [4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc\_1.html.
- [6] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Springer Verlag, Berlin, Heidelberg, New York, 1996. (written in German).
- [7] Jolanta Kamieńska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vol5/lattice4.html.
- [8] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam\_1.html.
- [9] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre\_topc.html.
- [10] Christoph Schwarzweller. Introduction to concept lattices. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/ Vol10/conlat 1.html.
- [11] Christoph Schwarzweller. Noetherian lattices. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/lattice6.html.
- [12] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain 1.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/mcart\_1.html.
- [15] Andrzej Trybulec. Finite join and finite meet, and dual lattices. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/lattice2.html.
- [16] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders\_ 1.html.
- [17] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset\_1.html.
- [18] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset\_1.html.
- [19] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/lattices.html.

Received August 17, 1999

Published January 2, 2004