(with applications to embedded systems)

Catherine Meadows
Naval Research Laboratory
Code 5543
Washington, DC 20375
meadows@itd.nrl.navy.mil
Introduction

• A few years ago, took part in a panel on “the good, the bad, and the ugly”

• Each speaker asked to find three types of solutions in their domain of research
 – Good: sound and useful
 – Bad: sound but not useful
 – Ugly: messy but useful

• Instructive exercise
 – Here, I’m going to try to apply it to security in embedded systems
WHAT IS AN EMBEDDED SYSTEM?

• A computer system that is a component of a larger machine or system
• How is it different from a traditional computer system?
 – And how does it affect security?
• We’ll see
OUTLINE OF TALK

• State of security in today’s networked system described as a point of comparison
• Two examples of security problems in embedded systems
 – Cell phones
 – Multilevel security in embedded systems
• Conclusions and open research problems
CURRENT PARADIGM OF COMPUTER SECURITY

- Network of computers
- Each computer has
 - Internal protections (e.g. access control)
 - External protections (authentication, firewalls)
- Network itself has security policy and internal and external protections
- Usually a human in the loop
 - System manager responsible for setting and enforcing security policy
- Doesn’t work perfectly, but works well enough to use it
- Some problems, e.g. viruses, DoS, always with us
- Some problems (e.g. spam) seem intractable
- Don’t know how it will work if things get really bad

The “ugly” solution
HOW DID WE GET HERE?

• Started out with standalone computers
 – Some had internal access controls
 – Some had minimal external controls, e.g. passwords
 – Some had no controls at all, e.g. early personal computers
• Started hooking them up in networks
 – Naturally, problems began to appear
• Security solutions introduced (after the fact)
 – Cryptographic authentication
 – Firewalls
 – Intrusion detection
AN EXAMPLE EMBEDDED SYSTEM - CELL PHONES

• Little or no internal protection
 – Assumed to be single user

• Some external protection
 – Phone must be securely identified so that calls can be correctly charged to it
 – Can shut down cell phone if stolen

• Most protection provided in cellular infrastructure
 – Phone authenticates itself to infrastructure
 – Infrastructure manages accounting

• Some added constraints
 – Power
 – Mobility
 – Cost
AND WHAT’S HAPPENING ANYWAY?

- Exponentially growing complexity and connectivity
- You can now use phones to
 - Surf the web
 - Send and receive text messages
 - Exchange data directly via Bluetooth
 - Allows one device to talk directly to another
 - Bypasses infrastructure
- Now seeing beginnings of
 - Attacks on infrastructure
 - Cell phone spam
 - Direct attacks on phones
 - Cell phone worms
 - Cabir worm - laboratory proof-of-concept worm that got loose
 - Requires Bluetooth in discoverable mode
NIGHTMARE SCENARIO
(Schneier)

- Car owner links her Bluetooth-enabled phone to her dashboard computer
 - Allows her to control phone via buttons on steering wheel
- As she drives down the road, phone connects to another in a passing car
- Suddenly, her navigational system fails
SAME STORY AS NETWORK SECURITY

- You start with something simple, start adding complexity and new kinds of connectivity

 BUT

- Where do you put the firewalls? Where do you put the intrusion detection?

- Where does the sysadmin sit?
 - Will every cell phone user have to be a sysadmin?
POSSIBLE (PARTIAL) SOLUTIONS

• Offload security to larger, more stable part of the system
 – For cell phones, this is the cellular infrastructure
 • Already done to a large extent already
 – Drawbacks
 • Not useful when devices talk to each other directly
 – E.g. Bluetooth-enabled cellphones

• Improve security of protocols
• Involve users more in security decisions and risk assessment
• Make phone themselves more robust
 – And more expensive
• Problem may never go away entirely
 – New kinds of threats not prepared for by architecture
NEXT EXAMPLE: MULTILEVEL SECURITY

• Data processed and stored at different security levels
 – Unclass, Secret, Top Secret, etc.

• Separation very strict
 – Processes running at lower levels should, as much as possible, be completely ignorant about what goes on at higher levels

• May need some exceptions, however:
 – Data may need downgrading
 – Low data sent to high may need acks
MULTILEVEL SECURITY IN EMBEDDED SYSTEMS

• The US DoD is going “net-centric”
• Networked data to be delivered directly to the warfighter
• This will require MLS embedded systems
MLS “ORANGE BOOK” ARCHITECTURE (1980’s)

- Security kernel critical part of operating system
 - Kernel evaluates all access requests and grants or denies them according to security policy
- Two types of access control
 - Mandatory access control
 - Fixed rules governing different security levels
 - Discretionary access control
 - Rules covering everything else
- Security kernels tended to be large and difficult to evaluate
- This was the bad solution
MSL (Multiple Single Level) ARCHITECTURE (1990’s)

- Rely on physical separation to enforce separation between security levels
- Each machine has a single security level
- Data from machines at lower levels replicated at higher levels
- Critical trusted components are replicators and downgraders
- This was the good solution

Advantages
- Relatively easy to evaluate and modify
- Works well in networked systems

Disadvantages
- Obviously no good for embedded systems!
MILS ARCHITECTURE

- Provide virtual instead of physical separation
 - Use separation kernel to provide independent virtual machines at different security levels
- Provide other security functionality at higher layers
- Separation kernel compact, good for resource-constrained systems
- Can add complexity without having to modify it
CONCLUSIONS WE CAN DRAW

• Necessary to anticipate complexity -- it will come whether you’re expecting it or not
• Cell phone example shows that it is helpful to be able to anticipate the kind of complexity you’ll get
• Figure out what your critical assets are and concentrate on protecting them first
 – MLS systems
 • protecting separation between security levels
 – Cell phones
 • Ability to make calls
 – Defense against DoS
 • Authentication of calls
• Realize that your critical assets may change, too
RESEARCH PROBLEMS

• Develop architectures for protecting critical assets that are
 – Compact
 – Hold up well under change and added complexity

• Develop avenues for change that respect the architectures we develop
 – Techniques for adding functionality while maximizing protection offered by architecture