Cross-hybridizing Snake Satellite, *Drosophila*, and Mouse DNA Sequences May Have Arisen Independently

Gene Levinson,* † J. Lawrence Marsh,* Jörg T. Epplen,‡ and George A. Gutman†

*Department of Developmental and Cell Biology and Developmental Biology Center and †Department of Microbiology and Molecular Genetics, University of California, Irvine; ‡Max-Planck-Institut für Immunbiologie, Freiburg, West Germany

Previous reports have interpreted hybridization between snake satellite DNA and DNA clones from a variety of distant taxonomic groups as evidence for evolutionary conservation, which implies common ancestry (homology) and/or convergence (analogy) to produce the cross-hybridizing sequences. We have isolated 11 clones from a genomic library of *Drosophila melanogaster*, using a cloned 2.5-kb snake satellite probe of known nucleotide sequence. We have also analyzed published sequence data from snakes, mice, and *Drosophila*. These data show that (1) all of the cross-hybridization between the snake, fly, and mouse clones can be accounted for by the presence of either of two tandem repeats, [GATA], and [GACA], and (2) these tandem repeats are organized differently among the different species. We find no evidence that these sequences are homologous apart from the existence of the simple repeat itself, although their divergence from a common ancestral sequence cannot be ruled out. The sequences contain a variety of homogeneous clusters of tandem repeats of CATA, GA, TA, and CA, as well as GATA and GACA. We suggest that these motifs may have arisen by a self-accelerating process involving slipped-strand mispairing of DNA. Homogeneity of the clusters might simply be the result of a rate of accumulation of tandem repeats that exceeds that of other mutations.

Introduction

Hybridization between snake satellite DNA sequences and DNA clones from a variety of distant taxonomic groups, including flies (*Drosophila melanogaster*) and mice (*Mus musculus*), has been interpreted as evidence for evolutionary conservation, which implies common ancestry (homology) and/or convergence (analogy) to produce the cross-hybridizing sequences (Epplen et al. 1981, 1982a, 1982b, 1983; Jones and Singh 1981a, 1981b; Singh et al. 1981, 1984). The snake sequences include a heterogeneous DNA fraction from the banded krait (designated Bkm; *Bungarus fasciatus*, family Elapidae) and a cloned satellite sequence from *Elaphe radiata* (family Colubridae) (designated pErs-5; described in table 1). Large numbers of cross-hybridizing snake and mouse sequences have been found on the W and Y chromosomes of snakes and mice, respectively, which has led to the suggestion that they may be involved in primary sex determination (cf. references cited above).

1. Key words: slipped-strand mispairing, simple repetitive sequences, tandem repeats, DNA sequence evolution, satellite DNA, evolutionary conservation. Abbreviations: GATA and GACA = both strands of duplex DNA (i.e., GATA/CTAT and GACA/CTGT, respectively), as do CATA, GA, CA, and TA. GAYA = GATA/CTAT or GACA/CTGT.

Address for correspondence and reprints: Gene Levinson, Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92717.
Cross-hybridizing DNA Sequences Are Not Conserved

Table 1
Description of Probes Used in Snake/Fly Cross-Hybridization Experiments

<table>
<thead>
<tr>
<th>Probe</th>
<th>Source</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pErs-5</td>
<td>pErs-5 W-chromosomal snake satellite DNA</td>
<td>2.5 kb</td>
<td>Contains tandem repeat clusters [GATA]_5[GACA]_2 and [GATA]_6[GACA]_6 flanked by 2.3 kb of snake DNA*</td>
</tr>
<tr>
<td></td>
<td>clone from Elaphe radiata (Epplen et al. 1982a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probe 1</td>
<td>pErs-5 MnlI/DdeI restriction fragment containing the GATA and GACA repeats and only 31 bp of flanking sequence</td>
<td>0.2 kb</td>
<td></td>
</tr>
<tr>
<td>Probe 2</td>
<td>pErs-5 Contains all of snake DNA flanking probe 1 and no GATA or GACA repeats</td>
<td>2.3 kb</td>
<td></td>
</tr>
<tr>
<td>Probe 3</td>
<td>Sau3A/HinI subclone from Drosophila λ clone 1</td>
<td>0.3 kb</td>
<td>Contains 44-46 tandem repeats of GATA and no tandem repeats of GACA</td>
</tr>
<tr>
<td>Probe 4</td>
<td>Probe 1 (labeled) + probe 3 (unlabeled)</td>
<td>0.2 kb</td>
<td>Contains tandem repeats of GACA (GATA repeats are blocked by 1,000-fold excess of unlabeled GATA)</td>
</tr>
</tbody>
</table>

* For complete nucleotide sequence see Epplen et al. 1982a.

The complete nucleotide sequence of the 2.5-kb snake satellite clone pErs-5 was determined by Epplen et al. (1982a). It exhibits a pattern of hybridization to mouse DNA resembling that described for the heterogeneous Bkm satellite DNA fraction. A 422-bp subfragment from pErs-5, containing simple tandem repeats of [GATA]_5 and [GACA]_2 (as well as other sequences), was shown to account for this hybridization to mouse DNA, as well as to human DNA (Epplen et al. 1981, 1982a). Since that time, nucleotide sequences have been published for other cross-hybridizing clones from mice and *Drosophila*, revealing that these sequences all contain tandem repeats of GATA and/or GACA (Epplen et al. 1983; Singh et al. 1984).

Two central questions exist with regard to determining the evolutionary relationship of the cross-hybridizing sequences. (1) Are the sequences flanking these [GAYA]_n repeats also related? (2) Is the organization of the tandem repeats similar or different among these taxa? The rapid accumulation of DNA sequence data in recent years reveals that tandem reiterations of short repeat units are a widespread and common feature of the eukaryotic genome (for examples, see Slightom et al. 1980; Spritz et al. 1980; Jeang and Hayward 1983; Moore 1983; Rodakis et al. 1984; Tautz and Renz, 1984a, 1984b; [and references therein]; G. Levinson and G. A. Gutman, unpublished observations). It is possible that reiterations of particular simple motifs might arise independently in several taxa and therefore be analogous, not homologous. In such a case, the hybridization would not represent evolutionary conservation.

In the present article we demonstrate that all hybridization between the snake pErs-5 clone and *Drosophila* sequences can be accounted for by the presence of simple tandem repeats and that there is no evidence for hybridization of flanking nonrepetitive sequences. We also compared published nucleotide sequences of cross-hybridizing
snake, fly, and mouse clones. Both hybridization data and sequence comparisons suggest that the snake, fly, and mouse repetitive sequences are not conserved.

Material and Methods
Selection of Drosophila Clones

We screened a library prepared by Maniatis et al. (1978) containing randomly sheared embryonic DNA from Drosophila melanogaster inserted into a lambda bacteriophage vector. Our hybridization probe was nick-translated pErs-5, described in table 1. Ninety thousand plaques, representing nine haploid genome equivalents of Drosophila DNA, were screened by the procedure of Benton and Davis (1977). Hybridizations and washes were performed under low-stringency conditions, in order to recover imperfectly as well as perfectly matched clones. Hybridizations and washes were carried out at 50 C in 4 × SSC (0.6 M sodium chloride, 0.06 M sodium citrate); this is ~40 C below average melting temperature for Drosophila DNA (see Burr and Schimke 1982; Beltz et al. 1983). Filters were prehybridized for 6 h without probe, then hybridized for 24 h, both times in 4 × SSC containing 100 μg/ml sheared, sonicated Escherichia coli carrier DNA. Filters were washed three times with 4 × SSC (1.5 h per wash), dried, and autoradiographed with one intensifying screen for 16 h at −70 C.

Subcloning, Nick Translations, and Nucleotide Sequencing

Restriction fragments to be subcloned were isolated from agarose or acrylamide gels and ligated into the pUC8 vector or, for nucleotide sequencing, into the single-stranded bacteriophage vector M13 mp8/mp9 (Messing 1981).

Nick translations were performed according to the directions in a kit from Bethesda Research Labs, except that we increased our DNase concentration tenfold, to 40 ng/ml, and decreased the DNA concentration tenfold, to 2 mg/ml.

The structure of probe 3 (see below) was determined by sequencing one DNA strand by the M13 dideoxy method, as described by Sanger et al. (1980).

Analysis of Snake/Fly Cross-Hybridization

Nitrocellulose filter blots (shown in fig. 1) were prepared as follows: 30 ng of DNA from each of the eleven Drosophila lambda clones was digested with EcoR1, and another 30 ng with BamH1. Each digest was electrophoresed in short 1% agarose gels. Four duplicate gels prepared in this fashion were blotted onto nitrocellulose filters by the transfer method of Southern (1975).

Each filter was hybridized to probe 1, 2, 3, or 4 (see table 1). Probe concentrations were <1 ng/ml at specific activities of 5 × 10⁸ cpm/μg, and probe concentrations were adjusted so that each probe sequence was equally represented in the hybridization mixtures with respect to counts per minute. Prehybridization, hybridization, washing, and exposure conditions were identical among the four filters in all other respects. Prehybridizations, hybridizations, and washes were performed at 60 C in 4 × SSC. Addition of several nucleic acid carriers was effective in preventing nonspecific hybridization, which we have otherwise observed under low-stringency conditions. Prehybridization and hybridization solutions contained the following carriers: yeast tRNA, polyriboadenylic acid, and sheared sonicated E. coli DNA, each at concentrations of 100 μg/ml; plus DNase-nicked, denatured DNA from wild-type lambda, pUC8, and pBR322, each at concentrations of 1 μg/ml. (Probe 4 also included 1 μg/ml of unlabeled,
DNase-nicked, denatured probe 3 DNA [1000-fold excess], to block hybridization of tandem repeats of GATA, as discussed in Results).

DNase-nicking was performed in 20 μl at 15 C for 30 min, followed by boiling; DNase and DNA in the nicking mixture were present at concentrations of 1 μg/ml and 50 μg/ml, respectively.

Dot-Matrix Analysis

For dot-matrix analysis (as described by Hieter et al. 1980), the five sequences were compared in a pairwise fashion, using a program developed for the IBM PC by G. A. Gutman and B. Ward (unpublished data). The program parameters were set to score a match if 14 of 21 consecutive base pairs are identical between the two sequences. These parameters were chosen because they readily demonstrate patches of sequence similarity between genes of very distantly related organisms, while minimizing short, spurious sequence matches. In control experiments, these parameters revealed extensive alignments of matching base pairs (represented by linear arrays of dots) between (1) immunoglobulin-lambda-chain genes of chicken (Reynaud et al. 1983) and mouse (Bothwell et al. 1982) and (2) an α-tubulin gene of rat (Ginzburg et al. 1981) and a β-tubulin gene of yeast (Neff et al. 1983) while eliminating all spurious matches between randomly generated pseudo-DNA sequences, each 150 bp in length.
Results
Analysis of Snake/Fly Cross-Hybridization

Using the 2.5-kb snake satellite clone pErs-5 (described in table 1) as a probe, we screened a lambda library of embryonic DNA from Drosophila melanogaster (Maniatis et al. 1978) to recover both perfectly and imperfectly matched sequences under low-stringency conditions (Material and Methods).

To determine whether the sequence similarities are homologous, we set out to answer two major questions. (1) Can any of the detected hybridization between snake and fly clones be attributed to nonrepetitive sequences flanking the regions of simple repeats? (2) Are the simple repetitive sequences similarly organized in the snake and fly clones? If the cross-hybridization is the result of evolutionary sequence conservation, as has been suggested, the answer to one or both of these questions should be positive.

We isolated 55 clones exhibiting the detectable cross-hybridization and prepared DNA from 36 of them (representing a range from strong to weak cross-hybridization). These 36 preparations were rescreened on dot blots against pErs-5, and 34 of these were positive. We then selected 11 nonoverlapping clones by comparing sizes of EcoR1 and BamH1 restriction fragments that cross-hybridize to pErs-5 (in one case where the sizes of cross-hybridizing restriction fragments were identical between two clones, i.e., lambda 1 and 2 in fig. 1, more extensive restriction analysis with a variety of enzymes showed that they were nonidentical).

We first considered whether GAYA repeats or flanking regions of pErs-5 are responsible for the observed cross-hybridization to each Drosophila clone. We prepared multiple nitrocellulose filter blots of restriction digests from each of the 11 clones and probed two blots under low-stringency conditions with either the simple repeats (probe 1) or the flanking regions (probe 2) of pErs-5; these probes are described in table 1. Results of these experiments are shown in figure 1.

Probe 1 contains the GATA and GACA tandem repeats from pErs-5 and only 31 bp of nonrepeated flanking sequence. As shown in figure 1A, one or two restriction fragments from each fly clone cross-hybridized to probe 1 in each lane. These results demonstrate that each of the 11 Drosophila clones contains tandem repeats of \([\text{GATA}]_n, [\text{GACA}]_n,\) or both. Each of the restriction fragments that cross-hybridized to the whole 2.5-kb snake clone pErs-5 (not shown) also cross-hybridized to probe 1.

Probe 2 contains all of the remaining 2.3 kb of snake DNA from pErs-5 that flanks probe 1 but contains no tandem repeats of GATA or GACA. The EcoR1 and BamH1 restriction digests of each of the 11 Drosophila clones were probed under conditions identical to those used for probe 1 (see Material and Methods). We detected no hybridization to any fragment of any of the Drosophila clones, even after extended exposure of the autoradiograms (data not shown). These data indicate that hybridization between the snake and fly clones arises solely from the tandem repeats \([\text{GATA}]_n, [\text{GACA}]_n,\) or both.

To determine whether \([\text{GATA}]_n, [\text{GACA}]_n,\) or both were responsible for the observed cross-hybridization, we prepared a GATA-specific probe (probe 3) and a GACA-specific probe (probe 4); these probes are described in table 1. When the restriction digests of the 11 Drosophila clones were probed for tandem repeats of GATA (probe 3), nine of them (including the parent lambda 1) cross-hybridized, as shown in figure 1B. For each of the nine clones, the hybridizing fragment(s) was the same as that which hybridized to probe 1. These results show that each of these nine lambda clones contains tracts of \([\text{GATA}]_n\) of sufficient length for hybridization. Since the
remaining lambda clones (nos. 7 and 10) failed to hybridize to probe 3 (fig. 1B) but
did hybridize to probe 1 (fig. 1A), their hybridization should arise solely from tandem
repeats of GACA, as is confirmed below.

The above experiment does not rule out the possibility that tandem repeats of
GACA might also hybridize to some of the nine GATA-containing Drosophila clones.
To test whether any of these clones also contain tandem repeats of GACA and to
confirm that clones 7 and 10 contain them, we used our GACA-specific probe 4. As
shown in figure 1C, competition by unlabeled GATA tandem repeats completely
blocked detectable hybridization to the nine Drosophila lambda clones that hybridized
to probes 1 and 3. This shows that the blockage of GATA hybridization by unlabeled
DNA was effective. Since blockage of GATA repeats did not interfere with hybridization
to tandem repeats of GACA (see below), the results also show that tandem repeats of
GATA are solely responsible for detectable hybridization to these nine clones. If tandem
repeats of GACA are present in any of these clones, they are either too short (less than
four or five repeats) or too highly mismatched to hybridize under low-stringency con-
ditions.

The remaining two Drosophila clones (lambda 7 and 10) did hybridize to probe
4. The hybridizing fragments are the same as those that hybridized to probe 1. This
confirmed that these clones contain tandem repeats of GACA, as expected from the
results above. Since these clones failed to hybridize to GATA repeats of probe 3 (fig.
1B), their hybridization to the snake clone can be entirely attributed to tandem repeats
of GACA. If any tandem repeats of GATA are present in either of these clones, they
are either too short or too highly mismatched to hybridize under low-stringency con-
ditions.

In summary, the results of experiments with probes 1–4 show that all observed
hybridization between the snake and fly clones arises from tandem repeats of either
[GATA]n (9 of 11 clones) or [GACA]n (2 of 11 clones). The sequences flanking the
tandem repeats of the snake clone show no evidence of hybridization to any of the
11 Drosophila clones. The results also show that the organization of tandem repeats
in snake and mouse clones is different: unlike the situation in the snake satellite se-
quence, tracts of tandem repeats of GATA and GACA are not contiguous in any of
these Drosophila clones.

Analysis of Published Sequence Data

We analysed pErs-5 (described in table 1) plus four other published nucleotide
sequences of clones that cross-hybridize to snake satellite DNA: two from the mouse

Figure 2 displays the GATA- and GACA-containing portions of these sequences.
There is no evidence for conservation of the GATA or GACA repeat units between
any of these clones: the number of repeat units in each cluster varies widely among
the sequences; the tandem repeats are disrupted in a haphazard fashion by a variety
of other motifs, including degenerate GATA and GACA motifs; there is no similarity
between the clones with respect to either contiguous clusters of GATA and GACA or
to sequences flanking the GATA and GACA repeats.

We next compared the regions flanking the GATA and GACA repeats by dot-
matrix analysis. Since the sequences contain a variety of simple repetitive sequences,
we limited our search to similarity over segments 21 nucleotides long. We compared
the entire published sequence of each of the five clones in a pairwise fashion and
FIG. 2.—Portions of published sequences containing GATA and GACA repeats. Sequence spacing emphasizes a variety of short tandem repeat units, both perfect and imperfect, that occur in these regions. Some longer tandem duplications in B and D are enclosed in parentheses. Contiguous clusters of tandem repeats differing by a single base are underlined; clusters differing by a single base that are separated by only a few base pairs are designated by broken underlines (see Discussion). A, from 2.5-kb snake clone pERS-5 (Epplen et al. 1982a); B, inverse complement from 2.5-kb mouse clone pMC14 (Epplen et al. 1983); C, from mouse subclone M 3.1 (Singh et al. 1984); D, from *Drosophila* subclone CS314 2(8) (Singh et al. 1984); E, from *Drosophila* subclone CS319 (Singh et al. 1984).
found only a few scattered matches between the clones, matches similar in length and number to those we found when comparing different parts of each clone with itself. We did not find any visible alignments characteristic of conservation.

Discussion

We have isolated 11 groups of nonoverlapping *Drosophila* clones that cross-hybridize to the snake satellite clone pErs-5. By hybridization of representatives of each of these groups to defined probes, we have shown that all of the detectable cross-hybridization can be attributed to tandem repeats of either GATA or GACA and found no evidence for hybridization between the nonrepetitive sequences flanking these simple repeats. Since the flanking sequences did not appear to be conserved, we determined whether the organization of the simple repeats themselves is indicative of evolutionary conservation between snake and fly and found it to differ between these species: the snake clone contains long contiguous tandem repeats containing both GATA and GACA, while each of the *Drosophila* clones contains long tandem repeats of either GATA or GACA alone. These data suggest that these structures are not evolutionarily conserved between these taxa but cross-hybridize simply because they happen to contain tandem repeats of the same 4-bp motifs.

We have also compared published sequences from DNA clones from snakes, mice, and *Drosophila* that exhibit hybridization to snake satellite DNA and found that in each species the organization of the simple repeats differs from those of the others with respect to the number of clusters of tandem repeats, number of repeat units per cluster, occurrence of imperfect repeats, nature of the sequences that flank each of the clusters, and contiguity (or presence) of tandem repeats of GATA and GACA. Dot-matrix comparisons of the sequences flanking the simple repeats revealed no visible alignments suggesting conservation. These comparisons of sequence data corroborate our snake/fly cross-hybridization data, making the argument for evolutionary conservation of snake and fly and mouse sequences exceedingly weak. Of course, we have not ruled out the possibility that some of the sequences are derived from common ancestral seeds of tandem repeats; this is not implausible for the large clusters of GAYA repeats localized on the W and Y chromosomes of snakes and mice, respectively (suggestions that these sequences may be involved in primary sex determination have been referenced in the introduction). Nevertheless, the only feature shared among the clones is the presence of long, homogeneous clusters of tandem repeats, some of which share simple motifs. These observations raise questions concerning both the mechanisms by which long iterations of similar simple motifs have evolved among these divergent taxa and the possible functions (if any) that they might serve.

As shown in figure 2, the snake, fly, and mouse clones each contain a different assortment of closely related motifs, including GATA, GACA, CATA, GA, TA, and CA. Of special interest are regions in which clusters of tandem repeats of two motifs that differ by a single base pair are contiguous (fig. 2, underlined sequences) or are separated by only a few base pairs (fig. 2, broken-underlined sequences). Examples include [GATA]_n and [GACA]_n, [CATA]_n and [CA]_n, [GATA]_n and [GA]_n, and [GATA]_n and [TA]_n. Each of these examples could be explained as being a result of base substitutions that have been propagated by multiple rounds of short tandem duplications. We therefore suggest that these tandem repeats in particular and simple repetitive sequences in general may be generated by mechanisms involving slipped-strand mispairing of DNA. Slipped-strand mispairing has been previously invoked to
explain a variety of changes in chromosomal DNA, including tandem reiterations (Kornberg et al. 1964; Jones and Kafatos 1982; Moore 1983; Rodakis et al. 1984; Tautz and Renz 1984a; 1984b), frameshift mutations (Streisinger et al. 1966; Farabaugh et al. 1978), duplications and deletions (Efstradiatis et al. 1980; Slightom et al. 1980; Flanagan et al. 1984), and illegitimate recombination and chromosomal integration (Hasson et al., 1984). Tandem duplications of the short repeat units could occur either by mispairing of the growing strand with the new strand during replication (Kornberg et al. 1964; Streisinger et al. 1966; Kornberg 1980) or repair of mispaired sequences in supercoiled DNA. A detailed discussion of the mechanisms by which slipped-strand mispairing could generate a variety of simple repetitive motifs, including extension of base-substituted motifs, will be presented elsewhere (G. Levinson and G. A. Gutman, unpublished observations).

A number of larger tandem duplications found in mouse and Drosophila sequences, each of which is made up of several smaller repeat units, are enclosed in parentheses in figure 2. These may have arisen from noncontiguous mispairing between the short simple repeat units. Another possibility is that they are the result of unequal crossing-over, as has been suggested for duplications and rearrangements of tandem repeats in silk fibroin genes (Rodakis et al. 1984).

Although the clusters of tandem repeats from snakes, mice, and Drosophila are organized differently, each sequence contains long tracts of perfect or near-perfect tandem repeats. Two possible reasons for this length and homogeneity are that (1) the rate of accumulation of the simple repeats may exceed that of other mutations in these regions or (2) these qualities may be favored by natural selection if the sequences have specialized functions, such as modification of the expression of nearby genes, as has been shown for genetically engineered constructs containing simple repeats (Hamada et al. 1984a, 1984b). These two possibilities are not mutually exclusive; they will be discussed in more detail elsewhere (G. Levinson and G. A. Gutman, unpublished observations).

We draw the following conclusions from this study. First, we find no evidence for evolutionary conservation of the snake, fly, and mouse clones. Second, we suggest that these (and other) simple tandem repeats may have arisen by a process involving slipped-strand mispairing of the two strands of DNA. Third, since production of new repeat units by this mechanism should be a self-accelerating process, it is possible that the occurrence of long stretches of various perfect or near-perfect tandem repeats (including CATA, TA, CA, and GA, as well as GATA and GACA) is simply the result of a rate of accumulation that exceeds that of other mutations in those regions. Our data fail to support the existence of evolutionary conservation between these simple repetitive sequences (although we have not ruled it out). Therefore, these simple repeats may have arisen independently, and the homogeneity and/or length of particular tandem-repeat clusters could be the result of parallel or convergent evolution as a consequence of natural selection for presently unknown functions.

Acknowledgments

The authors thank A. Cellini for assistance with nucleotide sequencing. We also thank M. B. Frank for helpful discussions and criticisms concerning an early draft of the manuscript and G. L. G. Miklos and P. Simpson for stimulating discussions and correspondence during its preparation. This research was supported by U.S. Public
Cross-hybridizing DNA Sequences Are Not Conserved

Health Service grants HD16519 (J.L.M.) and HAI14774 (G.A.G.). G. Levinson was supported by NIH Research Service award HD07029 and departmental stipend funds.

LITERATURE CITED

JEANG, K.-T., and G. S. HAYWARD. 1983. A cytomegalovirus DNA sequence containing tracts

WALTER M. FITCH, reviewing editor

Received January 31, 1985; revision received June 10, 1985.