Real-Time Collision Detection for Dynamic Virtual Environments

Distance Fields

Arnulph Fuhrmann

Fraunhofer Institute for Computer Graphics

Darmstadt, Germany

Outline

• Introduction
• Distance Field Generation
• Collision Detection using Distance Fields
• Conclusion

Introduction

• Physically based modeling
 – Cloth, hair, etc.
• Problem
 – Many contact points
• During Simulation
 – Detect Collision
 – Compute Collision Response
 • Proximity or penetration depth
 • Surface normal

Distance Field Definition

• Scalar function
 \[D : \mathbb{R}^3 \rightarrow \mathbb{R} \]
 \[\text{dist}(p) = \text{distance to closest point on surface} \]
 \[\text{sign}(p) = \text{negative if inside object} \]
 \[D(p) = \text{sign}(p) \cdot \text{dist}(p) \]
Outline

• Introduction
• Distance Field Generation
 • Collision Detection using Distance Fields
• Conclusion

Distance Field Data Structures

• Uniform 3D grid
 – Queries take $O(1)$ time
 – Curved surfaces can be represented quite well
 – C^0 continuous
• Adaptively sampled distance fields (ADFs)
 – Frisken et al. '00
 – C^{-1} between different levels
 – Can be resolved

Distance Field Data Structures

• BSP-tree
 – Wu and Kobbelt '03
 – Piecewise linear approximation
 – Generation computationally expensive
 – Discontinuities between cells
 – Compact!
Distance Field Data Structures

- Sparse Block Grids
 - [Bridson '03]
 - Distance values needed only for a small band

- Divide the uniform grid into blocks
 - Coarse grid contains pointers to fine sub-grids
 - Not all sub-grids exist

- Queries (in comparison to uniform grids)
 - More complex
 - Less efficient

Sparse Block Grid Example

Sparse Block Grid – Memory Savings

- Uniform Grid
 - Resolution 378x396x81
 - 48.5 MB

- Sparse Block Grid
 - Same resolution
 - 3x3x3 sub-grids
 - 6.7 MB
 - 86% memory savings

Computation of Distance Fields

- Object representation
 - Triangular mesh

- Problem
 - Computing distances for all grid points
 - Naïve computation too costly

- Collision detection
 - Only a small band needed
Computation of Distance Fields

- Propagation methods
 - Fast Marching methods [Sethian '96]
 - Distance Transforms [Jones and Satherley '01]
- Rasterizing of distance functions
 - Full distance field
 - [Sud et al. '04], [Hoff et al. '99]
 - Bounded Voronoi Regions
 - [Sigg et al. '03], [Breen et al. '01]
 - Bounding polyhedron around Voronoi regions of edges, faces, and vertices

Outline

- Introduction
- Distance Field Generation
- Collision Detection using Distance Fields
- Conclusion

Collision Detection

- [Fuhrmann et al. '03]
- Scenario
 - Deformable object A
 - Static object B
- Collision Detection
 - Sample object A
 - Test sample points for collision with B
- If both objects are deformable
 - Swap and repeat
Collision Detection

- Problem
 - Edges intersect object

- Solution
 - Preserve ε distance at vertices

Queries needed for collision detection

(On a uniform or sparse grid)

- Distance
 - Tri-linear interpolation

- Normal
 - Direction given by the gradient

What about deforming collision objects?

- Multiple distance fields
- Linked rigid objects
 - One distance field per object
- Not possible yet
 - Soft objects like a bending human arm

Other approaches for deforming objects

- [Bridson et al. '03]
 - Clothing and animated characters
 - Pre-computed ADIFs for the body parts
 - Can be used for several cloth simulations

- [Fisher and Lin '01]
 - Deforming geometries
 - Collision detection is done hierarchically
 - Partial DF updates only
 - Internal distance fields for collision response

[Fisher and Lin '01]
Demo Video

- Captured directly from screen
- Simulation runs in java 1.4.1
- Rendering with OpenGL
- Tests made on a Intel Processor at 2.8 GHz
- Buddha model consist of 100k triangles

Outline

- Introduction
- Distance Field Generation
- Collision Detection using Distance Fields
- Conclusion

Summary

- Distance Fields Generation
 - Pre-Processing step
 - Duration: Some seconds
- Collision Detection using Distance Fields
 - Most useful for deformable against rigid objects
 - Efficient computation of
 - Penetration depth / proximity
 - Gradient (Normal)
 - Easy to implement
 - Robust algorithm
Thank You!

Arnulph Fuhrmann // afuhr@igd.fhg.de

- Frisken et al. '00 Frisken, S., Perry, R., Rockwood, A., and Jones, T. R.
 Adaptively Sampled Distance Field. SIGGRAPH 2000, pages 249–254.

- Wu and Kobbelt '03 Wu, J., and Kobbelt, L.

- Bridson '03 Bridson, R.

- Sethian '96 Sethian, J.

- Jones and Satherley '01 Jones, M. W., and Satherley, R.

- Sud et al. '04 Sud, A., Otaduy, M. A., and Manocha, D.

- Hoff et al. '99 Hoff, K. E., Manocha, D., and Culver, T.

- Bridson et al. '03 Bridson, R., Paciorek, S., and Fedkiw, R.

- Breen et al. '01 Breen, D. E., Mauch, S., Whitaker, R., and Mao, J.

- Sigg et al. '03 Sigg, C., Peikert, R., and Gross, M.

- Bridson et al. '03 Bridson, R., and Fedkiw, R.

- Breen et al. '03 Breen, D. E., Mauch, S., and Whitaker, R.