Supplemental figures and tables

Figure legends

Figure I: Survival curves for each mutation. They compare cases from our centres versus cases from the bibliography. No significant differences were found for mutations Arg719Trp (a), Gly716Arg (b) and Ile736Thr (c). For Arg719Gln (d), differences in survival rate were not significant below the age of 50.

Figure II. Survival curves for Mutation Arg723Gly vs all mutations in the converter region. Mutation Arg723Gly showed a better prognosis than the other mutations in the region

Figure III: Survival curves for cases with one vs two mutation. No significant differences were observed.
Figure 1c

Cumulative survival

Age (years)

No. of remaining cases

Bibliography: 9 9 9 9 - -

Our cohort: 20 19 19 7 3 0

Figure 1d

Cumulative survival

Age (years)

No. of remaining cases

Bibliography: 34 21 5 0 - -

Our cohort: 20 9 6 1 0
Table A: Hazard ratios and confidence intervals of Frailty Cox-Proportional Model. Comparisons of mutations from the bibliography vs mutations of our cohort, particular mutations vs all others in the converter region, and carriers of 1 mutation vs carriers of more than one mutations (at least one of them located in converter region)

<table>
<thead>
<tr>
<th>Mutation</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases from bibliography vs cases from our cohort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg719Gln</td>
<td>0.36 (0.14, 0.89)*</td>
<td>0.02</td>
</tr>
<tr>
<td>Gly768Arg</td>
<td>0.09 (0.001, 8.85)</td>
<td>0.31</td>
</tr>
<tr>
<td>Arg719Trp</td>
<td>1.31 (0.28, 5.9)</td>
<td>0.73</td>
</tr>
<tr>
<td>Gly716Arg</td>
<td>0.59 (0.12, 2.75)</td>
<td>0.51</td>
</tr>
<tr>
<td>All Mutations</td>
<td>0.66 (0.31, 1.37)</td>
<td>0.27</td>
</tr>
<tr>
<td>Mutation Vs All others in converter region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg719Gln</td>
<td>3.92 (1.91, 8.01)*</td>
<td><0.01</td>
</tr>
<tr>
<td>Ile736Thr</td>
<td>0.26 (0.091, 0.77)*</td>
<td>0.01</td>
</tr>
<tr>
<td>Gly716Arg</td>
<td>1.75 (0.63, 4.86)</td>
<td>0.28</td>
</tr>
<tr>
<td>Arg723Gly</td>
<td>0.44 (2.23, 1.11)</td>
<td>0.08</td>
</tr>
<tr>
<td>Asp717Gly</td>
<td>2.66 (0.38, 6.7)</td>
<td>0.053</td>
</tr>
<tr>
<td>1 mutation carriers vs 2 mutation carriers</td>
<td>0.39 (2.5, 1.14)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

* Statistically significant at p-value ≤ 0.05.

K, Feingold J. The influence of the angiotensin I converting enzyme
genotype in familial hypertrophic cardiomyopathy varies with the disease

59. Watkins H, Thierfelder L, Hwang DS, McKenna W, Seidman JG, Seidman CE. Sporadic hypertrophic cardiomyopathy due to de novo myosin

60. Borchert B, Tripathi S, Francino A, Navarro-Lopez F, Kraft T. The left and
right ventricle of a patient with a R723G mutation of the beta-myosin
heavy chain and severe hypertrophic cardiomyopathy show no
differences in the expression of myosin mRNA. Cardiol J. 2010;17(5):518-22.

61. Bortot B, Athanasakis E, Brun F, Rizzotti D, Mestroni L, Sinagra G,
Severini GM. High-throughput Genotyping Robot-assisted Method for
Mutation Detection in Patients With Hypertrophic Cardiomyopathy. Diagn

62. Enjuto M, Francino A, Navarro-Lopez F, Viles D, Pare JC, Ballesta AM.
Malignant hypertrophic cardiomyopathy caused by the Arg723Gly
mutation in beta-myosin heavy chain gene. J Mol Cell Cardiol 2000;32:
2307?2313.

B, Sainz R, Martin M, Moris C. Espectro mutacional de los genes
sarcomericos MYH7, MYBPC3, TNNT2, TNNI3 y TPM1 en pacientes con

64. Wang AL, Kong DH, Chen DX, Wan J, Yu YX. Mutation of V896M in
cardiac myosin binding protein-c gene in two Chinese families with

88. Kimura A. Symposium on gene abnormalities in medical diseases. 3. Molecular genetics of hypertrophic cardiomyopathy in

