Mining Reviews for
Product Comparison and Recommendation

Dr. Minlie Huang

Dept. Computer Science, Tsinghua University
aihuang@tsinghua.edu.cn
Outline

• Background and Motivation
• System Architecture
• Product Comparison
 – Subjective perspective
 – Objective perspective
 – Overall perspective
• Product Recommendation
 – Evolution Tree
• Experiments
• System Demo
Background

• Web 2.0 times
 – Blogs, RSS, VSN, Forums, ...

• Ecommerce
 – Amazon, Alibaba, ...

• Express opinions, share opinions
 – Epinions: www.epinions.com
 – IMDB: movie reviews
 – Many forums associate with specific products
Motivation

• Product Reviews
 – Users may concern very specific features of a product, such as
 • The picture of a digital camera
 • The weight of a mobile phone
 – There is no comparison or recommendation system (based on reviews) for products.

• Users have to read through all the product reviews to:
 – catch contents with mentions of user experience
 – seek product comparison or recommendation suggestions
Our System

• Present comparison and recommendation at the feature level
 – For example:
 • “Whose screen is better, Sony T200 or Canon G9?”
 • ”What products can be recommended whose screen is as good as Sony T200’s?”
System Architecture

Figure: System Architecture
Feature Extraction

• N-Gram Feature (N<=3)
 – 1-Gram: “picture”, “screen”, “software”
 – 2-Gram: “memory card”, “picture quality”
 – 3-Gram: “red eye reduction”

• Feature Selection [2]
 – Frequently occurred N-Grams are selected as candidate feature words.
 • Noun phrase
 • The same NP-Chunker
 • Not containing stop-words
 – Various filtering methods are used on the candidates
 • Higher frequency
 • Higher Chi-square score between different product types
Product Feature for “Digital Camera”

<table>
<thead>
<tr>
<th>[product]</th>
<th>[quality]</th>
<th>[display]</th>
<th>[shot]</th>
<th>[special]</th>
<th>[parts]</th>
<th>[service]</th>
</tr>
</thead>
<tbody>
<tr>
<td>camera</td>
<td>digit camera</td>
<td>canon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>pocket</td>
<td>canon camera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>color</td>
<td></td>
<td>canon powershot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>price</td>
<td>price rang</td>
<td>monei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[quality]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>picture</td>
<td>pictur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>video</td>
<td>video</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>display</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[shot]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zoom</td>
<td>optic zoom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shutter</td>
<td>shutter speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flash</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>focus</td>
<td></td>
<td>auto focu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[special]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.....</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[parts]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>battery</td>
<td>batteri life</td>
<td>recharg batteaa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>batteri</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[service]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>customer service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mining Feature-Opinion Pairs

• Dependency Grammar Graph [3]
 – “Feature” keywords are used to retrieve sentences.
 – “Opinion” words have pos tags of “ADJ” “ADV” or “ADV ADJ”.
 – Finding dependency path from “Feature” to “Opinion” in the sentence.
Feature-level Product Assessment

• Using Sentiwordnet [4] to evaluate the sentimental strength of an “opinion” word.
 – Generated by WordNet [5].
 – Each word has a sentiment score (positive score, negative score)

• Evaluating the sentiment score of a “feature”
 – Integrating all the sentiment scores of “opinion” words related to “feature” by Feature-Opinion-Pairs (FOP).
 – Weighted voting method

\[
feature_sentiment = \sum_{\text{opinion_weight}_k \geq 2} \text{opinion_weight}_k \times \text{opinion_sentiment}_k
\]

(opinion _weight represents the frequency this FOP occurs)
Product Comparison

• Subjective Perspective
 – Mining from reviews
 – Focusing on user experiences

• Objective Perspective
 – Incorporating technical details (physical parameters)
 – Reliable but not always comparable

• Overall Perspective
 – Rating products comprehensively according to review contents
Subjective Perspective

Compare various products based on “feature” sentiment.

- **rating**: Sony T200 < Canon G9 < Canon SD750, based on Amazon [6] ratings.
- **size**: T200 and SD750 are with slim vertical design, while SD750 is not.
- **price**: SD750 ($184.49) is so cheap compared to its relatively high performance. G9($614) is a new product, with 12.1MP and 6x image-stabilized optical zoom, whose price is worth its performance. T200 ($599.44) is too expensive even if people don’t care about the size.
- **picture, zoom, focus**: almost the same
- **display**: T200 and SD750 have bigger LCD screen, with clear display.
Objective Perspective

• Limitations of subjective perspective
 – Too subjective: sometimes make no sense.
 – Lack of user comments on some features.

• Incorporating technical details

<table>
<thead>
<tr>
<th></th>
<th>Sony T200</th>
<th>Canon G9</th>
<th>Canon SD500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture Revolution</td>
<td>8.1MP</td>
<td>12.1MP</td>
<td>7.1MP</td>
</tr>
<tr>
<td>Zoom</td>
<td>5</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>
Overall perspective

• Sentiment polarities in reviews
 – traditional definition
 • positive vs. negative
 • 5 star scheme
 – our definition
 • rating distribution
Analyze Content of Reviews

• Sentiment-orientation based approach
 – predefined “sentiment words”
 – disadvantages
 × Can not capture all expressions of subjectivity

• Our approach
 – all the content words
 – advantages
 ✓ weight sentiment ratings according to all contents
 ✓ capture general usage patterns
Word-Sentiment Model

- Generative Topic Model [7]

- Dirichlet distribution
- Z: topic variable
- W: word
- S: rating (1-5 star)
Generative Process

- Sample θ from Dirichlet distribution: $\theta \sim \text{Dir}(\alpha)$.
- For each word w_n, $n \in \{1, \cdots, N\}$
 - Sample topic factor z_n from multinomial distribution:
 $z_n \sim \text{Mul}(\theta)$
 - Sample w_n from multinomial distribution conditioned on z_n: $w_n \sim p(w_n \mid \beta, z_n)$
- For each sentiment rating s_m, $m \in \{1, \cdots, M\}$:
 - Sample indexing variable y_m from a uniform distribution:
 $y_m \sim \text{Unif}(1, \cdots, N)$
 - Sample s_m from multinomial distribution conditioned on z_{y_m}: $s_m \sim p(s_m \mid z_{y_m}, \beta)$.
Evolution Tree

• When we propose recommendation, we need to suggest the products with the same generation.
 – Generation can be defined by various standards.
 • Time?
 – But must be significant in the product development.
 • Mobile phone: GSM → 3G
 • Memory card: SDRAM → DDR → DDR2 → DDR3

• Evolution tree can provide a graphical representation
 – Informative
 – Intuitive
 – ...
Product Recommendation

• We construct a simple evolution tree by
 – Product selling period extracted from reviews
 – Product full name (rule based)
 – Important technical details:
 • Digital Camera: picture resolution, zoom

• Recommendation procedure
 – Select all the products who have the same generation with the current product.
 – Keep the winners in comparison to the current product.
 – Rank the recommended products.
Evolution Tree: an Example

Figure: Evolution tree of digital camera
Experiment Results

• Posterior Inference

\[p(s \mid w, \alpha, \beta, \eta) \approx \sum_{z_n} q(z_n \mid \phi_n) p(s \mid \varepsilon, z_n) \]
Experiment Results

- **Rating Classification**
 - Accuracy

- **Ranking**
 - Normalized Discounted Cumulative Gain

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Accuracy Comparison on 4-Stars Rating Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>0.35</td>
</tr>
<tr>
<td>KNN</td>
<td>0.4</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>0.45</td>
</tr>
<tr>
<td>WSModel</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Truncation Level</th>
<th>Ranking Comparison on mp3 Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 5</td>
<td>SVM, kNN, Naive Bayes, WSModel</td>
</tr>
<tr>
<td>Top 10</td>
<td>SVM, kNN, Naive Bayes, WSModel</td>
</tr>
<tr>
<td>Top 15</td>
<td>SVM, kNN, Naive Bayes, WSModel</td>
</tr>
<tr>
<td>Top 20</td>
<td>SVM, kNN, Naive Bayes, WSModel</td>
</tr>
</tbody>
</table>

Graphs

- **NDCG Chart**
 - **Top 5, Top 10, Top 15, Top 20**
 - **Dataset Comparison**
 - **Algorithm Comparison** (SVM, kNN, Naive Bayes, WSModel)
Experiment Results

• Review Summary

 – By WSMModel

 – \(p(w | \alpha, \beta, \eta) \approx \sum_{z_n} q(z_n | \phi_n) p(w | \beta, z_n) \)

<table>
<thead>
<tr>
<th>Product</th>
<th>Description Words (TOP 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minox ecx sub-miniature 8x 11mm camera</td>
<td>small, size, pocket, light, carry, design, hand, easily, choice, reasonable, image,</td>
</tr>
<tr>
<td>Olympus stylus epic 35mm camera</td>
<td>lens, great, shoot, zoom, flash, small, film, buy, good, stylus, best</td>
</tr>
<tr>
<td>Polaroid silver blue joycam instant camera</td>
<td>polaroid, fun, film, instant, buy, easy, product, photo, expensive, color, price</td>
</tr>
</tbody>
</table>
Summary

• Comparing product from subjective (opinion) and objective perspectives
• Simulating the rating system from the overall perspective (the topic generative system)
• Recommending products by evolution tree
Demo System

PCR System is a review mining system aiming at implementing product comparison and recommendation on the feature level.

The system has the following functions:

- Querying a product's review summary on each feature. The reviews are from [Amazon](http://www.amazon.com) and partly from other websites. *Please tell me some user's comments on Canon G9's feature.*

- Comparing two products on the feature level, and telling customers such as: *Whose screen is better, Sony T200 or Canon G9.*

- Recommending similar products to the current one when given the feature standard. *What products can be recommended whose screen is as good as Sony T200?*

- Generating products' evolution tree.

PCR System has employed many innovative methods and algorithms, including natural language processing, Feature-Opinion-Pairs Extraction, feature sentiment summarization. For detailed descriptions of these algorithms, please [contact us](http://166.111.138.87:2008).

Website: http://166.111.138.87:2008
References

Thank you!

Any questions?