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ON SOME INEQUALITIES FOR THE

GAMMA AND PSI FUNCTIONS

HORST ALZER

Abstract. We present new inequalities for the gamma and psi functions,
and we provide new classes of completely monotonic, star-shaped, and super-
additive functions which are related to Γ and ψ.

1

Euler’s gamma function

Γ(x) =

∫ ∞
0

e−ttx−1 dt (x > 0)

is one of the most important functions in analysis and its applications. The history
and the development of this function are described in detail in a paper by P. J.
Davis [10].

There exists a very extensive literature on the gamma function. In particular,
numerous remarkable inequalities involving Γ and its logarithmic derivative ψ =
Γ′/Γ have been published by different authors; see, e.g., [2], [3], [6], [7], [9], [12], [13],
[18]–[27], [29]–[33], [35]–[46], [50]. Many of these inequalities follow immediately
from the monotonicity properties of functions which are closely related to Γ and
ψ. In several recent papers [2], [9], [24], [39] it is proved that these functions are
not only monotonic, but even completely monotonic. We recall that a function f is
said to be completely monotonic on an interval I if f has derivatives of all orders
on I which alternate successively in sign, that is,

(−1)nf (n)(x) ≥ 0(1.1)

for all x ∈ I and for all n ≥ 0. If inequality (1.1) is strict for all x ∈ I and all n ≥ 0,
then f is said to be strictly completely monotonic.

It is known that completely monotonic functions play an eminent role in areas
like probability theory [15], numerical analysis [49], physics [11], and the theory
of special functions. For instance, M. E. Muldoon [39] showed how the notation
of complete monotonicity can be used to characterize the gamma function. An
interesting exposition of the main results on completely monotonic functions is
given in [48].

“In view of the importance of completely monotonic functions . . . it may be of
interest to add to the available list of such functions” [24, p. 1]. It is the main
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purpose of this paper to present new classes of completely monotonic functions
which are all closely related to the gamma and psi functions. Applications of
our monotonicity theorems lead to new inequalities for Γ and ψ. Furthermore,
we extend and sharpen known inequalities due to W. Gautschi, H. Minc and L.
Sathre, and others, and we provide new classes of star-shaped and super-additive
functions. In the final section we apply one of our results to present functions which
are Laplace transforms of infinitely divisible probability measures.

2

In a recently published article G. D. Anderson et al. [3] proved that the func-
tion f(x) = x(log(x) − ψ(x)) is strictly decreasing and strictly convex on (0,∞).
Moreover, the authors presented (complicated) proofs for

lim
x→0

f(x) = 1 and lim
x→∞

f(x) = 1/2.(2.1)

We note that the limits (2.1) follow immediately from the representations

f(x) = x log(x) − xψ(x + 1) + 1

and

f(x) =
1

2
+

1

12x
− θ

120x3
(0 < θ < 1);

see [16, p. 824].
From (2.1) and the monotonicity of f we conclude

1

2x
< log(x) − ψ(x) <

1

x
(x > 0).(2.2)

This extends a result of H. Minc and L. Sathre [37], who established (2.2) for x > 1,
and used it to prove several discrete inequalities involving the geometric mean of
the first n positive integers. Refinements of (2.2) were given by L. Gordon [22].
Our first theorem provides an extension of the result given by Anderson et al.; we
prove that f is not only decreasing and convex, but even completely monotonic.

Theorem 1. Let α be a real number. The function

fα(x) = xα(log(x) − ψ(x))

is strictly completely monotonic on (0,∞) if and only if α ≤ 1.

Proof. First, we show that f1 is strictly completely monotonic on (0,∞). Using
Binet’s formula [14, p. 18] we obtain the representation

f1(x) = x

∫ ∞
0

ϕ(t)e−tx dt,(2.3)

where

ϕ(t) = 1/(1− e−t)− 1/t.

Easy computations reveal that the function ϕ is strictly increasing on (0,∞) with
limt→0 ϕ(t) = 1/2 and limt→∞ ϕ(t) = 1.
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Let n ≥ 1; from (2.3) we get

(−1)nf
(n)
1 (x) = x(−1)n

dn

dxn

∫ ∞
0

ϕ(t)e−tx dt

− n(−1)n−1 d
n−1

dxn−1

∫ ∞
0

ϕ(t)e−tx dt

= x

∫ ∞
0

ϕ(t)e−txtndt− n
∫ ∞

0

ϕ(t)e−txtn−1 dt

=

∫ n/x

0

ϕ(t)e−txtn−1(tx− n) dt+

∫ ∞
n/x

ϕ(t)e−txtn−1(tx− n) dt.

(2.4)

If 0 < t < n/x, then we obtain ϕ(t) < ϕ(n/x); and if n/x < t, then we have
ϕ(n/x) < ϕ(t). Hence, from (2.4) we get

(−1)nf
(n)
1 (x) > ϕ(n/x)

∫ n/x

0

e−txtn−1(tx− n) dt

+ ϕ(n/x)

∫ ∞
n/x

e−txtn−1(tx− n) dt

= ϕ(n/x)

∫ ∞
0

e−txtn−1(tx− n) dt.

(2.5)

Using ∫ ∞
0

e−txtm dt = (m!)/xm+1 (x > 0;m = 0, 1, 2, . . . ),

we conclude ∫ ∞
0

e−txtn−1(tx− n) dt = 0,

so that (2.5) implies

(−1)nf
(n)
1 (x) > 0 for x > 0 and n = 0, 1, 2, . . . .

From Leibniz’ rule

(−1)n(u(x)v(x))(n) =
n∑
i=0

(
n
i

)
(−1)iu(i)(x)(−1)n−iv(n−i)(x),

it follows that the product of two strictly completely monotonic functions is also
strictly completely monotonic. Since uα(x) = xα−1 (α < 1) is strictly completely
monotonic on (0,∞), we conclude that fα(x) = uα(x)f1(x) (α ≤ 1) has the same
property.

Next, we assume that fα is strictly completely monotonic on (0,∞). Then we
have for all x > 0 :

f ′α(x) = xα−1[α(log(x) − ψ(x)) + 1− xψ′(x)] < 0,

which implies

α <
x2ψ′(x)− x

x(log(x)− ψ(x))
.

If we let x tend to 0, then we get α ≤ 1. The proof of Theorem 1 is complete.
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Anderson et al. [3] used the monotonicity of f1 to prove that the function g1(x) =
x1/2(e/x)xΓ(x) is decreasing on (0,∞), and that g2(x) = x(e/x)xΓ(x) is increasing
on (0,∞). The following theorem provides a slight extension of these results.

Theorem 2. Let a ≥ 0, r and s be real numbers. The function

Fr(x) = xr(e/x)xΓ(x)

is decreasing on (a,∞) if and only if r ≤ 1/2; and the function

Gs(x) = xs(e/x)xΓ(x)

is increasing on (a,∞) if and only if

s ≥
{
a(log(a)− ψ(a)) if a > 0,

1 if a = 0.

Proof. Since F ′r(x) ≤ 0 is equivalent to

r ≤ x(log(x) − ψ(x)) = f1(x),

the first part of Theorem 2 follows from the fact that f1 is decreasing on (0,∞) and
tends to 1/2 if x tends to ∞. The second part can be proved similarly. We omit
the details.

Remark. Let g be a strictly completely monotonic function on (0,∞), and let c be
a real number. From Theorem 1 we conclude that the function

x 7→ g(x)(f1(x)− c)(2.6)

is strictly completely monotonic on (0,∞) if and only if c ≤ 1/2. This extends a
result of M. E. Muldoon [39], who proved the complete monotonicity of (2.6) for
the special case g(x) = 1/x.

3

In 1974, C. H. Kimberling [28] established the following property of completely
monotonic functions: If f is continuous on [0,∞) and completely monotonic on
(0,∞) and satisfies 0 < f(x) ≤ 1 for all x ≥ 0, then log(f) is super-additive on
[0,∞).

We recall that a function g is said to be super-additive on an interval I if

g(x) + g(y) ≤ g(x+ y) for all x, y ∈ I with x+ y ∈ I.
In the previous section we have proved that f(x) = x(log(x)− ψ(x)) is continuous
on [0,∞), completely monotonic on (0,∞), and 1/2 < f(x) ≤ 1 for all x ≥ 0, so
that Kimberling’s theorem implies

1 ≤ f(x+ y)

f(x)f(y)
(x, y ≥ 0).

This leads to the problem to determine sharp upper and lower bounds for the ratio
f(x+ y)/(f(x)f(y)).

Theorem 3. Let f(x) = x(log(x) − ψ(x)). Then we have for all real x, y ≥ 0:

1 ≤ f(x+ y)

f(x)f(y)
< 2.(3.1)

Both bounds are best possible.
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Proof. To prove the second inequality of (3.1) we define

g(x, y) = f(x+ y)/f(x).

Partial differentiation yields

∂g(x, y)

∂x
=
f(x+ y)

f(x)

[
f ′(x+ y)

f(x+ y)
− f ′(x)

f(x)

]
.(3.2)

Let

h(x, y) = f ′(x+ y)/f(x+ y);

then we have

∂h(x, y)

∂y
= [f ′′(x+ y)f(x+ y)− (f ′(x+ y))2]/(f(x+ y))2.(3.3)

Since completely monotonic functions are log-convex (see [17]), we conclude from
(3.3) and Theorem 1 that ∂h(x, y)/∂y ≥ 0. This implies

h(x, y) ≥ h(x, 0),(3.4)

so that (3.2) and (3.4) lead to

∂g(x, y)

∂x
≥ 0 and g(x, y) ≤ lim

x→∞
g(x, y) = 1.

Thus, we have

f(x+ y)

f(x)
≤ 1 < 2f(y) for x, y ≥ 0.

From

lim
y→0

f(x+ y)

f(x)f(y)
= 1

and

lim
y→∞

lim
x→∞

f(x+ y)

f(x)f(y)
= lim
y→∞

1

f(y)
= 2,

we conclude that both bounds in (3.1) are sharp.

Remark. If we set

Qα(x, y) = fα(x+ y)/(fα(x)fα(y)),

where fα(x) = xα(log(x) − ψ(x)) and α 6= 1, then we conclude from the limit
relations

lim
y→0

lim
x→∞

Qα(x, y) = lim
y→0

1

fα(y)
=

{
∞ if α > 1,

0 if α < 1,

and

lim
y→∞

lim
x→∞

Qα(x, y) = lim
y→∞

1

fα(y)
=

{
0 if α > 1,

∞ if α < 1,

that the inequalities 0 ≤ Qα(x, y) <∞ (x, y > 0;α 6= 1) cannot be refined.
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4

In 1974, W. Gautschi [20] proved that the function x 7→ xψ(x) is convex on
(0,∞), and applied this result to establish some mean value inequalities involv-
ing the gamma function. Our next theorem provides an extension of Gautschi’s
proposition.

Theorem 4. Let n ≥ 2 be an integer. Then we have for all real x > 0 :

0 < (−1)nxn−1[xψ(x)](n) < (n− 2)!.(4.1)

Both bounds are best possible.

Proof. Let f(x) = x(log(x)− ψ(x)) and let n ≥ 2. From Theorem 1 we obtain

0 < (−1)nf (n)(x) = (−1)n(x log(x))(n) − (−1)n(xψ(x))(n)

=
(n− 2)!

xn−1
− (−1)n(xψ(x))(n) ,

which leads to the second inequality of (4.1). Since

ψ(m)(x) = (−1)m+1m!
∞∑
i=0

1

(x+ i)m+1
(m = 1, 2, . . . ),

we get

(−1)n(xψ(x))(n) = (−1)n[xψ(n)(x) + nψ(n−1)(x)](4.2)

= n!
∞∑
i=1

i

(x+ i)n+1
> 0,

which implies the left-hand inequality of (4.1).
It remains to show that the bounds in (4.1) cannot be refined. Using ψ(m)(x) =

ψ(m)(x+ 1) + (−1)m+1m!/xm+1 (m = 0, 1, . . . ), we get

(−1)nxn−1(xψ(x))(n) = (−1)nxn−1[xψ(n)(x+ 1) + nψ(n−1)(x + 1)].

Hence, we have

lim
x→0

(−1)nxn−1(xψ(x))(n) = 0.

Let m ≥ 1 be an integer; from

1

mxm
=

∫ ∞
0

dt

(x+ t)m+1
≤
∞∑
i=0

1

(x+ i)m+1
≤ 1

xm+1
+

∫ ∞
0

dt

(x+ t)m+1

=
1

xm+1
+

1

mxm
,

we conclude

(m− 1)! ≤ m!xm
∞∑
i=0

1

(x+ i)m+1
= −(−1)mxmψ(m)(x)

≤ m!

x
+ (m− 1)!,

which implies

lim
x→∞

(−1)mxmψ(m)(x) = −(m− 1)! (m ≥ 1).(4.3)



ON SOME INEQUALITIES FOR THE GAMMA AND PSI FUNCTIONS 379

From (4.2) and (4.3) we obtain

lim
x→∞

(−1)nxn−1(xψ(x))(n) = (n− 2)!.

Hence, both bounds in (4.1) are best possible.

5

A function f is said to be star-shaped on (0,∞) if

f(ax) ≤ af(x)(5.1)

is valid for all x > 0 and for all a ∈ (0, 1). These functions have been investi-
gated intensively by A. M. Bruckner and E. Ostrow [8]. It is well known that star-
shaped functions are super-additive. Indeed, from (5.1) we obtain f(x) ≤
(x/(x + y))f(x + y) and f(y) ≤ (y/(x + y))f(x + y); summing leads to f(x)+
f(y) ≤ f(x+ y). In this section we answer the questions: For which real β is

x 7→ (−1)k+1xβ

ψ(k)(x) − (log(x))(k)
(0 ≤ k ∈ Z)

star-shaped; and for which β is this function super-additive?

Theorem 5. Let k ≥ 0 be an integer and let β be a real number. The function

x 7→ gβ(k;x) =
(−1)k+1xβ

ψ(k)(x) − (log(x))(k)

is star-shaped on (0,∞) if and only if β ≥ −k.

Proof. Let gβ be star-shaped on (0,∞). We assume (for a contradiction) that
β < −k. We consider two cases. If k = 0, then inequality

gβ(0; ax) ≤ agβ(0;x) (x > 0; 0 < a < 1)

and Theorem 1 imply that

0 < log(x)− ψ(x) ≤ a−β

x
(ax)[log(ax) − ψ(ax)].(5.2)

If we let a tend to 0, then we conclude from β < 0 that the product on the right-
hand side of (5.2) tends to 0. Let k ≥ 1; from

(−1)k+1ψ(k)(x) = k!
∞∑
i=0

1

(x + i)k+1
> k!

∫ ∞
0

dt

(x+ t)k+1

=
(k − 1)!

xk
= (−1)k+1(log(x))(k)

(5.3)

and

gβ(k; ax) ≤ agβ(k;x)

we obtain

0 < x−β
[
(−1)k+1ψ(k)(x) − (k − 1)!

xk

]
≤ 1

x
[(−1)k+1(ax)1−βψ(k)(ax) − (k − 1)!(ax)1−β−k]

=
1

x
[(−1)k+1(ax)1−βψ(k)(ax + 1) + k!(ax)−β−k

− (k − 1)!(ax)1−β−k].

(5.4)
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Since β < −k, we conclude that each term on the right-hand side of (5.4) tends to
0 if a tends to 0. Hence, if gβ is star-shaped on (0,∞), then β ≥ −k.

Next, we assume that β ≥ −k; to prove

gβ(k; ax) ≤ agβ(k;x)(5.5)

for x > 0 and a ∈ (0, 1), we reconsider two cases.
Case 1: k = 0. Then inequality (5.5) is equivalent to

log(x)− ψ(x) ≤ a1−β [log(ax)− ψ(ax)] = F (a), say.

It suffices to show that F is decreasing on (0, 1]. We obtain

aβF ′(a) = (1− β)[log(ax)− ψ(ax)] + 1− (ax)ψ′(ax).

If we set

G(z) = (1− β)[log(z)− ψ(z)] + 1− zψ′(z) (z > 0),

then we conclude from (5.3) (with k = 1) and the right-hand side inequality of (4.1)
(with n = 2) that

G′(z) = β(ψ′(z)− 1/z) + 1/z − (zψ(z))′′ > 0.

From (2.2) and (4.3) we get

G(z) < lim
z→∞

G(z) = 0,

which implies F ′(a) < 0 for all a ∈ (0, 1].
Case 2: k ≥ 1. Then inequality (5.5) can be written as

H(1) ≤ H(a),(5.6)

where

H(a) = a1−β [(−1)k+1ψ(k)(ax) − (k − 1)!/(ax)k].

Differentiation yields

aβH ′(a) = (1− β)[(−1)k+1ψ(k)(ax)− (k − 1)!/(ax)k]

+ (−1)k+1axψ(k+1)(ax) + k!/(ax)k.
(5.7)

We replace ax by z and denote the right-hand side of (5.7) by J(z). Then we obtain

J ′(z) = (1− β)[(−1)k+1ψ(k+1)(z) + k!/zk+1]

+ (−1)k+1ψ(k+1)(z) + (−1)k+1zψ(k+2)(z)− k!k/zk+1.
(5.8)

From the second inequality of (4.1) we obtain

k!/zk+1 > (−1)k(zψ(z))(k+2)

= (−1)k[zψ(k+2)(z) + (k + 2)ψ(k+1)(z)].
(5.9)

Using (5.3), (5.8), and (5.9) we get

J ′(z) > (β + k)[(−1)kψ(k+1)(z)− k!/zk+1] ≥ 0.

Thus, J is strictly increasing on (0,∞). From (4.3) we conclude that limz→∞ z
kJ(z)

= 0, which implies that J(z) ≤ 0 for all z > 0. Therefore, H in decreasing on (0, 1]
which leads to inequality (5.6). This completes the proof of Theorem 5.
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Theorem 6. Let k ≥ 0 be an integer and let β be a real number. The function

x 7→ gβ(k;x) =
(−1)k+1xβ

ψ(k)(x) − (log(x))(k)

is super-additive on (0,∞) if and only if β ≥ −k.

Proof. If β ≥ −k, then we conclude from Theorem 5 that gβ is star-shaped, which
implies that gβ is super-additive. Next, we suppose that

gβ(k;x) + gβ(k; y) ≤ gβ(k;x+ y)(5.10)

holds for all x, y > 0. We set in (5.10) x = y and obtain after simple manipulations

2−β ≤ x(log(x) − ψ(x))

2x(log(2x)− ψ(2x))
if k = 0,

and

2−β−k ≤ (−1)kxk+1ψ(k)(x+ 1) + (k − 1)!x− k!

(−1)k(2x)k+1ψ(k)(2x+ 1) + (k − 1)!(2x)− k!
if k ≥ 1.

If we let x tend to 0, then we obtain β ≥ −k.

Remark. In 1989, S. Y. Trimble et al. [47] introduced an interesting subclass of
the completely monotonic functions. A function g is called strongly completely
monotonic on (0,∞) if

x 7→ (−1)nxn+1g(n)(x)

is nonnegative and decreasing on (0,∞) for n = 0, 1, 2, . . . . The authors showed
that these functions have a close connection to star-shaped functions. Indeed, one
of their results states: If g is strongly completely monotonic on (0,∞) and g 6≡ 0,
then 1/g is star-shaped.

6

In the past many articles were published providing different inequalities for the
ratio Γ(x + 1)/Γ(x + s), where x > 0 and s ∈ (0, 1); see, e.g., [2], [13], [18], [25],
[26], [29]–[31], [45], [50]. In this section we present upper and lower bounds for the
difference ψ(x+ 1)−ψ(x+ s). In 1972, Y. L. Luke [33] considered the special case
s = 1/2. He pointed out that this difference can be represented in terms of Gauss’
hypergeometric series

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where (a)n = Γ(a+ n)/Γ(a), namely,

ψ(x+ 1)− ψ(x + 1/2) =
1

x+ 1/2
2F1(1, 2x+ 1; 2x+ 2;−1),

and used well-known Padé-approximation for 2F1 to obtain rational bounds for
ψ(x + 1) − ψ(x + 1/2). By using a different approach we get the following sharp
inequalities for ψ(x+ 1)− ψ(x+ s).
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Theorem 7. Let n ≥ 0 be an integer and let x > 0 and s ∈ (0, 1) be real numbers.
Then we have

An(s;x) < ψ(x + 1)− ψ(x+ s) < An(s;x) + δn(s;x),(6.1)

where

An(s;x) = (1− s)
[

1

x+ s+ n
+
n−1∑
i=0

1

(x+ i+ 1)(x+ i+ s)

]
and

δn(s;x) =
1

x+ n+ s
log

(x + n)(x+n)(1−s)(x+ n+ 1)(x+n+1)s

(x+ n+ s)x+n+s
.

Proof. From Theorem 4 we conclude that the function h(x) = xψ(x) is strictly
convex on (0,∞). If we set in Jensen’s inequality

h(su+ (1− s)v) < sh(u) + (1− s)h(v) (u, v > 0;u 6= v; 0 < s < 1),

u = x+ 1 and v = x, and make use of the identity ψ(x+ 1)−ψ(x) = 1/x, then we
get

1− s
x+ s

< ψ(x+ 1)− ψ(x+ s).(6.2)

Next, we replace in (6.2) x by x+ 1 and obtain the following sharpening of (6.2):

1− s
x+ s+ 1

+
1− s

(x+ 1)(x+ s)
< ψ(x+ 1)− ψ(x+ s).

Repeating this process n times we get

1− s
x+ s+ n

+ (1− s)
n−1∑
i=0

1

(x+ i+ 1)(x+ i+ s)
< ψ(x + 1)− ψ(x+ s),

that is, the left-hand inequality of (6.1). Using the same method of proof with

h̃(x) = x(log(x)−ψ(x)) instead of h, we obtain the second inequality of (6.1). We
omit the details.

Remark. A simple calculation shows that limn→∞ δn(s;x) = 0.

7

In 1964, H. Minc and L. Sathre [37] proved that the inequalities

0 < log Γ(x) −
(
x− 1

2

)
log(x) + x− 1

2
log(2π) <

1

x
(7.1)

are valid for x > 1. Since the function log Γ(x) is asymptotically equal to the
(divergent) series(

x− 1

2

)
log(x)− x+

1

2
log(2π) +

∞∑
i=1

B2i

2i(2i− 1)x2i−1
,

where Bi (i = 0, 1, 2, . . . ) are Bernoulli numbers, defined by

t

et − 1
=
∞∑
i=0

Bi
ti

i!
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(see [16, p. 823]), it is natural to ask whether it is possible to determine the sign of

Sk(x) = log Γ(x)−
(
x− 1

2

)
log(x) + x− 1

2
log(2π)

−
k∑
i=1

B2i

2i(2i− 1)x2i−1
(0 ≤ k ∈ Z).

As by-products of the next theorem we obtain sgn Sk(x) = (−1)k for x > 0 and
k ≥ 0, and we get that (7.1) (with the upper bound 1/(12x)) holds for all x > 0.
Further refinements of (7.1) can be found in [22].

Muldoon [39] investigated S0(x) and proved that this function is completely
monotonic on (0,∞). This result can be extended:

Theorem 8. Let n ≥ 0 be an integer. The functions

Fn(x) = log Γ(x)−
(
x− 1

2

)
log(x) + x− 1

2
log(2π)−

2n∑
i=1

B2i

2i(2i− 1)x2i−1

and

Gn(x) = − log Γ(x) +

(
x− 1

2

)
log(x)− x+

1

2
log(2π) +

2n+1∑
i=1

B2i

2i(2i− 1)x2i−1

are strictly completely monotonic on (0,∞).

Proof. We only establish that Fn is strictly completely monotonic; the proof for
Gn is similar. In [16, pp. 823–824] the following representations for Fn and F ′n are
given:

Fn(x) =
B4n+2

(4n+ 1)(4n+ 2)

θ

x4n+1
(0 < θ < 1)

and

F ′n(x) = −B4n+2

4n+ 2

θ̃

x4n+2
(0 < θ̃ < 1).

Since B4n+2 > 0 (see [4, p. 267]), we obtain Fn(x) > 0 and F ′n(x) < 0 for x > 0.
Let k ≥ 1; differentiation yields

1

k!
(−1)k+1F (k+1)

n (x) =
∞∑
i=0

1

(x+ i)k+1
− 1

kxk
− 1

2xk+1

+
(−1)k+1

k!

2n∑
i=1

B2i

2i

k−1∏
j=0

(−2i− j)

 1

x2i+k
.

(7.2)
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To find a lower bound for this sum we make use of Euler’s summation formula [1,
p. 806]:

p∑
i=0

f(a+ i) =

∫ b

a

f(t) dt+
1

2
(f(a) + f(b))

+
m∑
i=1

B2i

(2i)!
(f (2i−1)(b)− f (2i−1)(a))

+
B2m+2

(2m+ 2)!

p−1∑
i=0

f (2m+2)(a+ i+ θ)

(7.3)

where b = a+ p and θ ∈ (0, 1). We set f(x) = 1/xk+1, a = x, and m = 2n in (7.3)
and let p tend to ∞. Then we obtain

∞∑
i=0

1

(x+ i)k+1
=

1

kxk
+

1

2xk+1
−

2n∑
i=1

 B2i

(2i)!

2i−2∏
j=0

(−k − 1− j)

 1

x2i+k

+
B4n+2

(4n+ 2)!

4n+1∏
j=0

(−k − 1− j)

 ∞∑
i=0

1

(x + θ + i)4n+k+3
.

(7.4)

Using B4n+2 > 0 and
∏4n+1
j=0 (−k − 1− j) > 0 we get from (7.4):

∞∑
i=0

1

(x+ i)k+1
>

1

kxk
+

1

2xk+1
−

2n∑
i=1

 B2i

(2i)!

2i−2∏
j=0

(−k − 1− j)

 1

x2i+k
,(7.5)

so that (7.2) and (7.5) imply

1

k!
(−1)k+1F (k+1)

n (x)

>
2n∑
i=1

(−1)k+1

k!

1

2i

k−1∏
j=0

(−2i− j)− 1

(2i)!

2i−2∏
j=0

(−k − 1− j)

 B2i

x2i+k
= 0,

since the term in square brackets is equal to 0. Thus, Fn is strictly completely
monotonic on (0,∞).

Using the inequalities (−1)k+1F
(k+1)
n (x) > 0 and (−1)k+1G

(k+1)
n (x) > 0 for

k ≥ 1, we obtain the following rational bounds for (−1)k+1ψ(k)(x).

Theorem 9. Let k ≥ 1 and n ≥ 0 be integers. Then we have for all real x > 0 :

Sk(2n;x) < (−1)k+1ψ(k)(x) < Sk(2n+ 1;x),

where

Sk(p;x) =
(k − 1)!

xk
+

k!

2xk+1
+

p∑
i=1

B2i

k−1∏
j=1

(2i+ j)

 1

x2i+k
.

Remark. Related inequalities for the special case k = 1 are given in [22].
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In 1986, J. Bustoz and M.E.H. Ismail [9] proved that the function

p(x; a, b) =
Γ(x)Γ(x + a+ b)

Γ(x+ a)Γ(x+ b)
(a, b > 0)

is completely monotonic on (0,∞). This generalizes a proposition of K. B. Stolarsky
[46], who established that p is decreasing in x. The next theorem provides an
extension of these results.

Theorem 10. Let ai and bi (i = 1, . . . , n) be real numbers such that 0 ≤ a1 ≤
· · · ≤ an, 0 ≤ b1 ≤ · · · ≤ bn, and

∑k
i=1 ai ≤

∑k
i=1 bi for k = 1, . . . , n. Then,

x 7→
n∏
i=1

Γ(x+ ai)

Γ(x+ bi)

is completely monotonic on (0,∞).

In order to prove Theorem 10 we need the following two lemmas.

Lemma 1. If h′ is completely monotonic on (0,∞), then exp(−h) is also com-
pletely monotonic on (0,∞).

An extension of Lemma 1 can be found in [5] and [15].

Lemma 2. Let ai and bi (i = 1, . . . , n) be real numbers such that a1 ≤ · · · ≤ an,

b1 ≤ · · · ≤ bn, and
∑k
i=1 ai ≤

∑k
i=1 bi for k = 1, . . . , n. If the function f is

decreasing and convex on R, then
n∑
i=1

f(bi) ≤
n∑
i=1

f(ai).

A proof of Lemma 2 is given in [36, p. 10].

Proof of Theorem 10. Let

h(x) =
n∑
i=1

(log Γ(x+ bi)− log Γ(x+ ai)).

Then we have for k ≥ 0 :

(h′(x))(k) =
n∑
i=1

(ψ(k)(x + bi)− ψ(k)(x + ai)).

Using the integral representations

ψ(z) = −γ +

∫ ∞
0

e−t − e−tz
1− e−t dt (z > 0)

and

ψ(m)(z) = (−1)m+1

∫ ∞
0

e−tztm

1− e−t dt (z > 0;m = 1, 2, . . . )

(see [16, p. 802], [34, p. 16]), we obtain for k ≥ 0 :

(−1)k(h′(x))(k) =

∫ ∞
0

e−txtk

1− e−t
n∑
i=1

(e−tai − e−tbi) dt.(8.1)
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Since the function z 7→ e−tz (t ≥ 0) is decreasing and convex on R, we conclude
from Lemma 2 that

∑n
i=1(e−tai − e−tbi) ≥ 0, so that (8.1) implies

(−1)k(h′(x))(k) ≥ 0 for x > 0 and k ≥ 0.

Hence, h′ is completely monotonic on (0,∞). Applying Lemma 1 we obtain that

exp(−h(x)) =
n∏
i=1

Γ(x+ ai)

Γ(x+ bi)

is also completely monotonic on (0,∞).

Remark. Since

lim
x→∞

Γ(x+ a)

Γ(x + b)
xb−a = 1,

we conclude from Theorem 10 that the inequality

n∏
i=1

Γ(x+ ai)

Γ(x+ bi)
≥ 1 (x > 0)

holds for all real numbers ai and bi (i = 1, . . . , n) which satisfy 0 ≤ a1 ≤ · · · ≤ an,

0 ≤ b1 ≤ · · · ≤ bn,
∑k
i=1 ai ≤

∑k
i=1 bi for k = 1, . . . , n− 1, and

∑n
i=1 ai =

∑n
i=1 bi.

This generalizes an inequality given in [9].
In a recently published paper L. Maligranda et al. [35] established that the

function

x 7→ Γ(x)n−1Γ

(
x+

n∑
i=1

ai

)
/

n∏
i=1

Γ(x+ ai)

(ai > 0; i = 1, . . . , n) is decreasing on (0,∞). From Theorem 10 we conclude that
this function is not only decreasing, but even completely monotonic on (0,∞). The
following theorem presents a slight extension of this result.

Theorem 11. Let α be a real number and let ai (i = 1, . . . , n;n ≥ 2) be positive
real numbers. The function

x 7→ Γ(x)αΓ

(
x+

n∑
i=1

ai

)
/
n∏
i=1

Γ(x + ai)

is strictly completely monotonic on (0,∞) if and only if α = n− 1.

Proof. Let

pα(x) = Γ(x)αΓ(x+ b)/
n∏
i=1

Γ(x+ ai)

with b =
∑n
i=1 ai. Slight modifications of the proof of Theorem 10 show that pn−1

is strictly completely monotonic on (0,∞). We assume now that pα is strictly
completely monotonic on (0,∞). Then, pα is decreasing, so that we obtain for
x > 0 :

∂

∂x
log pα(x) = αψ(x) + ψ(x+ b)−

n∑
i=1

ψ(x + ai) ≤ 0.
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This implies for all sufficiently large x :

α ≤
n∑
i=1

ψ(x+ ai)

ψ(x)
− ψ(x+ b)

ψ(x)
.(8.2)

Since pα is completely monotonic on (0,∞), we obtain

0 ≤ (pα(x))−2

[
pα(x)

∂2pα(x)

∂x2
−
(
∂pα(x)

∂x

)2
]

= αψ′(x) + ψ′(x+ b)−
n∑
i=1

ψ′(x+ ai);

see [17]. Hence, we have for x > 0 :
n∑
i=1

ψ′(x+ ai)

ψ′(x)
− ψ′(x+ b)

ψ′(x)
≤ α.(8.3)

Since

lim
x→∞

ψ(x+A)/ψ(x) = lim
x→∞

ψ′(x+A)/ψ′(x) = 1 (A > 0),

we conclude from (8.2) and (8.3) that α = n− 1.

We conclude with an application to probability theory. A probability measure
dµ is infinitely divisible if for every natural number n there exists a probability
measure dµn such that

dµ = dµn ∗ dµn ∗ · · · ∗ dµn (n times),

where ∗ denotes convolution.
A proof for the following proposition, which provides a connection between infin-

itely divisible probability measures and completely monotonic functions, can found
in [15, p. 450].

Proposition. A probability measure dµ supported on a subset of [0,∞) is infinitely
divisible if and only if∫ ∞

0

e−xtdµ(t) = exp(−h(x)) (x > 0),

where h has a completely monotonic derivative on (0,∞) and h(0) = 0.

Using the Proposition and the results of this section, we obtain

Theorem 12. Let ε > 0 be a real number, and let ai and bi (i = 1, . . . , n) be real

numbers such that 0 ≤ a1 ≤ · · · ≤ an, 0 ≤ b1 ≤ · · · ≤ bn, and
∑k
i=1 ai ≤

∑k
i=1 bi

for k = 1, . . . , n. The function

x 7→
n∏
i=1

Γ(x + ε+ ai)Γ(ε+ bi)

Γ(x + ε+ bi)Γ(ε+ ai)

is Laplace transform of an infinitely divisible probability measure.

Related results are given in [2], [9], [24].
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