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In this appendix, we present supplementary materials regarding the methods of our manuscript Epigenetic
regulation of cell fate reprogramming in aging and disease: A predictive computational model. The materi-
als presented below further contains a summary of the Approximate Bayesian Computation method, as well
as further simulation results, statistical analysis, and materials (such as parameter values). We also include
Supplementary Figures which complement the results discussed in the main text.

I. FURTHER SIMULATION RESULTS REGARDING THE
BIFURCATION ANALYSIS

We present simulation results verifying the bifurcation
analysis of the equations discussed in Section Variation in
the abundance of HDM and HDAC drives epigenetic switch,
of the main text. In particular, we explicitly show the ex-
istence of the hysteresis cycles predicted by our bifurca-
tion analysis. For concreteness, since the behaviour of both
differentiation- and pluripotency-promoting genes is quali-
tatively similar, we specifically focus on simulations of the
differentiation-promoting gene. Differences with the pluripo-
tency case only concern the quantitave value of the critical
(bifurcation) points, not the behaviour of the system.

Fig. A shows simulation results where we have set the num-
ber of HDAC enzymes, v0, to v0 = E (see Table A). Note that
according to the description in the main text, this is equiva-
lent to fixing the HDAC concentration to eHDAC = 1, since
eHDAC = v0

E . We then vary z0 which, according to the main
text, where we define eHDM = z0

E , is the same as varying
HDM concentration. Fig. A shows results regarding the em-
pirical distribution of x3, P (x3), where x3 ≡ X3(tinf )/S
with tinf the duration of the simulation which is taken long
enough so that the system settles onto its quasi-steady state
starting from prescribed initial conditions Xi(t = 0). In or-
der to ascertain whether the system exhibits the hysteresis cy-
cle predicted by our bifurcation analysis as z0 changes (see
Fig. 3(c), main text), we first set an initial condition with
X1(t = 0) = 0, X2(t = 0) = 0.9S, X3(t = 0) = 0.1S.
This allows us to explore the behaviour of the system along
the lower stable branch (corresponding to closed chromatin)
of the diagram Fig. 3(c) of the main text. Similarly, by setting
initials conditions to X1(t = 0) = 0, X2(t = 0) = 0.01S,
X3(t = 0) = 0.99S, in Fig. A(b) we trace the behaviour
of the system along the upper stable branch (associated with
open chromatin).

Fig. A(a) shows that, for the prescribed initial condition,

the system exhibits a unimodal distribution around the closed
chromatin state for small values of z0. As z0 increases and
approaches the critical value where the closed chromatin state
ceases to exist, fluctuations increase (as shown by the bimodal
behaviour of P (x3)) thus heralding the onset of a phase tran-
sition. Beyond this point, P (x3) exhibits unimodal behaviour
around the open chromatin state. These results, including the
value of the critical point (which in the simulations is formally
characterised by a divergence of the variance of x3), are in
agreement with those obtained from the bifurcation analysis
(see Fig. 3(c), main text).

In Fig. A(b) we trace the other half of the hysteresis cy-
cle. By setting initial conditions to X1(t = 0) = 0, X2(t =
0) = 0.01S, X3(t = 0) = 0.99S, P (x3) exhibits unimodal
behaviour around the open chromatin state for larger values
of z0. As z0 is reduced and approaches the critical value for
which the open chromatin state ceases to exist, fluctuations
are again observed to increase, i.e. P (x3) becomes bimodal
around the critical point. Beyond this point, P (x3) recovers
unimodal behaviour but peaked around the closed chromatin
state. Results, including the value of the critical point, are
again in excellent agreement with the bifurcation analysis (see
Fig. 3(c), main text).

Fig. B shows the same results regarding the verification of
the bifurcation analysis shown in Fig. 3(e), main text. Here,
we have set the number of HDM enzymes, z0, to z0 = 0.2E
(see Table A). We then simulate the behaviour of the system as
the number of HDAC molecules, v0, is changed. We observe
the same excellent agreement between simulations and bifur-
cation analysis as we do between the numerical and analytical
results shown in Figs. A and 3(c) (main text), respectively.
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FIG. A: Simulation results corresponding to Fig. 3(c), main text.
Each histogram shown in this figure is the result of 1000 realisations
of the stochastic process prescribed by the rates shown in Table 1,
main text. Parameter values are obtained from Tables A and 2, main
text. See main text for more details.

II. REFERENCE PARAMETER VALUES: REFRACTORY
& PLASTIC SCENARIOS

Here we give the sets of parameter values used to produce
the phase diagrams Fig. 3 of the main text, associated both
with the reprogramming-resilient phenotype (Fig. 3(d) of the
main text) and the phenotype with elevated plastic potential
(Fig. 3(f) of the main text). These sets of parameter val-
ues have been chosen with the same viability criteria as those
given in Section Parameter values & ensemble generation of
the main text, namely, that the mean-field limit has a single
stable steady state corresponding to the open (closed) epi-
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FIG. B: Simulation results associated with Fig. 3(e), main text. Each
histogram shown in this figure is the result of 1000 realisations of
the stochastic process prescribed by the rates shown in Table 1, main
text. Parameter values are obtained from Tables A and 2, main text.
See main text for more details.

genetic state for the differentiation (pluripotency) gene. Be-
sides this, we further require that, for the reprogramming-
resilient phenotype there is no overlap of the bistability re-
gions, whereas for the plastic phenotype we require the area
between the solid red line and the dashed blue line (see Fig.
3(f) of the main text) to be positive. The reference parameter
values are given in Tables A, B, C and D.
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FIG. C: Differentiation gene. ε1 = 0.6 and ε2 = 1. z0 = v0 = E = 5 and S = 250.

III. SENSITIVITY ANALYSIS AND ROBUSTNESS OF THE
PLASTIC SCENARIO

As a first step towards the analysis of the robustness of the
plastic scenario associated with the situation depicted in the
bifurcation diagram shown in Fig. 3(f) of the main text, we
have carried out an exhaustive parameter sensitivity analysis.
In particular, we are interested in which of the reaction rates
kj are critical to obtain the epigenetic regulation associated
with the differentiation gene (i.e. the steady state behaviour
corresponding to open chromatin) and which ones are criti-
cal for the epigenetic regulation corresponding to the pluripo-
tency gene (i.e. the steady state behaviour corresponding to
closed chromatin). We have used an Approximate Bayesian
Computation (ABC) method [1] to perform our exploration of
parameter space.

ABC methods have been devised to tackle those inference

problems for which the estimation of the likelihood function
is computationally too demanding. Let θ = (k1, . . . , k16) be
the vector whose components are the parameters to be esti-
mated and x be the data. The general aim is to approximate
the so-called posterior distribution, π(θ|x), i.e. the condi-
tional probability of θ given the data, from a prior distribution
of the parameters, π(θ). In general, the posterior is given by
π(θ|x) ∼ f(x|θ)π(θ), where f(x|θ) is the likelihood func-
tion. All ABC methods follow the same generic procedure:

• Sample a candidate sequence of parameters, θ, from the
proposed prior distribution, π(θ).

• Sample or simulate a data set x from the model repre-
sented by the conditional probability density f(x|θ).

• Compare the simulated data set, x, to the experimental
data, x0, according to some distance function, d(x, x0).
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Rescaled parameter Scaling parameter Units Reference
κ1 = 200 dimensionless –
κ2 = 100 dimensionless –
κ3 = 50 dimensionless –
κ5 = 1 dimensionless –
κ6 = 200 dimensionless –
κ7 = 10 dimensionless –
κ8 = 100 dimensionless –
κ9 = 200 dimensionless –
κ10 = 100 dimensionless –
κ11 = 0.1 dimensionless –
κ12 = 1 dimensionless –
κ13 = 1 dimensionless –
κ14 = 200 dimensionless –
κ15 = 100 dimensionless –
κ16 = 100 dimensionless –

E = 100 –
S = 5000 –

TABLE A: Reference parameter values used for the epigenetic reg-
ulation of a differentiation-promoting gene, reprogramming-resilient
phenotype (Fig. 3(d) of the main text).

Rescaled parameter Scaling parameter Units Reference
κ1 = 200 dimensionless –
κ2 = 100 dimensionless –
κ3 = 10 dimensionless –
κ5 = 1 dimensionless –
κ6 = 10 dimensionless –
κ7 = 100 dimensionless –
κ8 = 100 dimensionless –
κ9 = 200 dimensionless –
κ10 = 100 dimensionless –
κ11 = 10 dimensionless –
κ12 = 1 dimensionless –
κ13 = 1 dimensionless –
κ14 = 100 dimensionless –
κ15 = 100 dimensionless –
κ16 = 100 dimensionless –

E = 100 –
S = 5000 –

TABLE B: Reference parameter values used for the epigenetic reg-
ulation of a pluripotency-promoting gene, reprogramming-resilient
phenotype (Fig. 3(d) of the main text).

If d(x, x0) ≤ ε, where ε is an a priori prescribed toler-
ance, then θ is accepted.

The result of this algorithm is a sample of parameters from
a distribution π(θ|d(x, x0) ≤ ε).

In our case, we have used the following version of the ABC
rejection sampler method [1]:

1. Sample θ∗ from π(θ) =
∏

j πj(kj) where πj(kj) =

U(0, 6.5 · 106) for kj , j = 2, 3, 7, 10 and 15,
and πj(kj) = U(0, 5 · 104), otherwise, for the
differentiation-promoting gene, and πj(kj) = U(0, 6.5·
106) for kj , i = 2, 3, 7, 10, 11 and 15, and πj(kj) =
U(0, 5 ·104), otherwise, for the pluripotency-promoting

Rescaled parameter Scaling parameter Units Reference
κ1 = 200 dimensionless –
κ2 = 100 dimensionless –
κ3 = 30 dimensionless –
κ5 = 1 dimensionless –
κ6 = 100 dimensionless –
κ7 = 50 dimensionless –
κ8 = 100 dimensionless –
κ9 = 200 dimensionless –
κ10 = 100 dimensionless –
κ11 = 0.1 dimensionless –
κ12 = 1 dimensionless –
κ13 = 1 dimensionless –
κ14 = 200 dimensionless –
κ15 = 80 dimensionless –
κ16 = 70 dimensionless –

E = 100 –
S = 5000 –

TABLE C: Reference parameter values used for the epigenetic reg-
ulation of a differentiation-promoting gene, plastic phenotype (Fig.
3(f) of the main text).

Rescaled parameter Scaling parameter Units Reference
κ1 = 200 dimensionless –
κ2 = 100 dimensionless –
κ3 = 10 dimensionless –
κ5 = 1 dimensionless –
κ6 = 50 dimensionless –
κ7 = 100 dimensionless –
κ8 = 100 dimensionless –
κ9 = 200 dimensionless –
κ10 = 100 dimensionless –
κ11 = 8 dimensionless –
κ12 = 1 dimensionless –
κ13 = 1 dimensionless –
κ14 = 100 dimensionless –
κ15 = 100 dimensionless –
κ16 = 100 dimensionless –

E = 100 –
S = 5000 –

TABLE D: Reference parameter values used for the epigenetic regu-
lation of a pluripotency-promoting gene, plastic phenotype (Fig. 3(f)
of the main text).

gene.

2. Simulate data set, x∗, from the Master Equation with
transition rates as per Table 1, main text, using Gille-
spie’s stochastic simulation algorithm. We generate 10
realisations and collect data at times ti, i = 1, . . . , 25,
corresponding to the raw data time points.

3. For each time point, ti, we compute two summary
statistics: the mean over the 10 realisations, x∗(ti), and
the associated standard deviation, σ∗(ti).

4. If
∑25

i=1 (x
∗(ti)− x0(ti))

2 ≤ ε1 and∑25
i=1 (σ

∗(ti)− σ0(ti))2 ≤ ε2 hold, θ∗ is accepted,
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where x0 denotes the experimental data.

5. Go back to Step 1.

We run this algorithm until the number of accepted parameter
sets reaches 10000. This method has been used to generate an
ensemble of differentiation epigenetic regulation systems (see
Fig. C) and an ensemble of pluripotency epigenetic regulation
systems (shown in Fig. D).

IV. KOLMOGOROV-SMIRNOV ANALYSIS

In order to analyse the statistical significance of our results
of Section Heterogeneity and robustness of the refractory and
plastic scenarios (main text) regarding the shapes of the distri-
butions of the kinetic parameters, kj , associated with the dif-
ferent scenarios we consider (refractory vs plastic), we resort
to a well-known method, namely, the Kolmogorov-Smirnov
(KS) test [2, 3]. The KS test is a non-parametric test which al-
lows to evaluate the equality of continuous probability distri-
butions. This test can be used both to compare an empirically
obtained sample with a reference probability distribution, or
to compare two empiricial samples. In other words, the KS
test allows us to tell whether two distributions are the same
within the level of confidence we desire. Since this is a well-
known technique, we will not go into its details and we will
report our results. Interested readers are referred to the spe-
cialised literature for details [2, 3]. Throughout this section,
we impose a level of confidence of 95 %.

A. Comparing the viable subset with the uniform distribution

The first test we are interested in carrying out consists on
checking which kinetic constants, kj , exhibit a non-uniform
distribution within the viable subset. These parameters are
the ones deemed to play a substantial role in the associated
behaviour (i.e. viable (base-line) conditions of the differ-
entiation/pluripotency ER system) [4]. The null hypothesis
for the test is therefore whether the empirical cumulative fre-
quency distribution (CFD) of each kj is equal to the uniform.
Since we are using a confidence interval of 95%, whenever
the p-value is larger than 0.05 the null hypothesis cannot be
rejected, i.e. the parameter is deemed to be uniformly dis-
tributed. As we mention in Section Heterogeneity and robust-
ness of the refractory and plastic scenarios (main text), the
null hypothesis is rejected only for k1, k3, k6, k7, k12, k14,
and k16 (differentiation-promoting gene) and for k3, k8, k12,
k14, k15 and k16 (pluripotency-promoting gene). The reported
p-values are given in Table E and Table F, respectively.

B. Comparing the plastic sets with the viable subset

We continue our analysis by testing the CFDs of the kinetic
constants when we consider those parameter sets that exhibit
plastic behaviour. We analyse which parameters have differ-
ent distributions when compared to their distributions within

Parameter p-value
k1 1.273016 · 10−13

k3 0.015373
k6 0.002362
k7 0.005169
k12 1.969483 · 10−8

k14 2.467713 · 10−51

k16 4.555466 · 10−11

TABLE E: Reported p-values for the parameters for which the
hypothesis that they are distributed uniformly was rejected (diff.-
promoting gene). Confidence interval of 95%. The p-values for the
rest of the kinetic constants are all larger than 0.05.

Parameter p-value
k3 0.048676
k8 1.025119 · 10−5

k12 1.489366 · 10−12

k14 8.060631 · 10−4

k15 0.026272
k16 3.781311 · 10−4

TABLE F: Reported p-values for the parameters for which the hy-
pothesis that they are distributed uniformly was rejected (plurip.-
promoting gene). Confidence interval of 95%. The p-values for the
rest of the kinetic constants are all larger than 0.05.

the viable set. These parameters are the ones deemed essen-
tial for the associated behaviour (i.e. plastic behaviour). The
null hypothesis for the test is therefore whether the empirical
CFD of each kj for the plastic sets is equal to their empirical
distributions within the whole viable set. Since we are using
a confidence interval of 95%, whenever the p-value is larger
than 0.05 the null hypothesis cannot be rejected, i.e. the pa-
rameter is deemed to be uniformly distributed. As reported
in Section Heterogeneity and robustness of the refractory and
plastic scenarios (main text), the null hypothesis is rejected
only for k1, k9 and k14 (differentiation-promoting gene) and
for k2 and k6 (pluripotency-promoting gene). The reported
p-values are given in Table G and Table H, respectively.

Parameter p-value
k1 0.023493
k9 0.037880
k14 1.492134 · 10−4

TABLE G: Reported p-values for the parameters for which the hy-
pothesis that they have the same distribution as that within the viable
subset was rejected, diff.-promoting gene. Confidence interval of
95%. The p-values for the rest of the kinetic constants are all larger
than 0.05.

V. SUPPLEMENTARY FIGURES
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FIG. D: Pluripotency gene. ε1 = 0.4 and ε2 = 1. z0 = v0 = E = 5 and S = 250.

Parameter p-value
k2 0.0310
k6 0.0425

TABLE H: Reported p-values for the parameters for which the hy-
pothesis that they have the same distribution as that within the viable
subset was rejected, plurip.-promoting gene. Confidence interval of
95 %. The p-values for the rest of the kinetic constants are all larger
than 0.05.
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FIG. E: Plots showing hierarchical clustering analysis for the parameter sets that satisfy the base-line scenario (plot (a)) and the plastic scenario
(plot (b)) of the differentiation-regulating ER system, respectively.


