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	 The presence of dental calculus is highly correlated with the formation and advancement of 
periodontal disease.  The occurrence and relapse of periodontal disease can be prevented only 
if dental calculus is completely removed.  In this study, optical coherence tomography (OCT) 
is used to obtain two-dimensional cross-sectional images of tooth samples, in conjunction 
with a segmentation technique that enables automatic identification of dental calculus.  We 
propose the vertical intensity transform function to correct the nonuniform instrument signal 
intensity caused by OCT.  Afterwards, the detection ranges are defined by K-means or the 
Markov random field (MRF), and the candidate range is selected on the basis of mathematical 
morphology (MM).  Finally, the features (thickness gradient, texture, and tooth surface slope) 
are quantified, and dental calculus is recognized and segmented.  In the preliminary result, the 
sensitivity is 87.5%.  The mean distance between the boundaries generated by the proposed 
algorithm and the corresponding manually delineated boundaries is 2.52 ± 3.54 pixels.  Our 
proposed algorithm assists physicians to determine dental calculus more easily.  Doctors no 
longer need to rely solely on their experiences to recognize dental calculus, but can refer to 
specific data to assist in diagnosis.

1.	 Introduction

	 According to the investigation by the Taiwan Association of Medical Screening, the 
incidence rate of periodontal disease among adults over 18 years of age is as high as 99.29%, 
and that of dental calculus is 40.66%.(1)  Dental calculus is highly correlated with the formation 
and advancement of periodontal disease.(2)  Dental plaque is the primary cause of periodontal 
disease.  Degenerated dental plaque and mineral substances in the saliva are mixed and 
hardened to form dental calculus.  The rough surface provides bacteria with a suitable breeding 
environment, thus continuously harming the periodontal tissue.  The occurrence and relapse of 
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periodontal disease can be prevented only if dental calculus is completely removed.  However, 
dental calculus is not easily observed.  Therefore, a detection technique that can enable accurate 
detection and quantification of dental calculus is the key to preventing and treating periodontal 
diseases.
	 Optical coherence tomography (OCT) is a noninvasive, nonradiation, and high-
resolution optical technique that can capture cross-sectional images of biological tissues 
instantly.  The application of OCT in medical fields has been studied for years, for example, 
gastroenterology,(3,4) ophthalmology,(5–7) dermatology,(8,9) and dentistry,(10,11) where there have 
been comments on cariosity, periodontal disease, oral cancer foci,(10) and the measurement of 
the refractive index of enamel, dentin, and cementum and dental calculus.(11)  The applications 
are in judging and quantifying the characteristics of tooth tissue and foci in the OCT image.  
Hundreds of two-dimensional cross-sectional images of a tooth obtained by OCT can be 
restructured into a three-dimensional image.  However, it is still difficult and time-consuming 
for doctors to recognize the location of dental calculus by observing the tooth surface and 
brightness variation in the hundreds of two-dimensional cross-sectional images, such as Fig. 1.  
In this study, we developed an algorithm to automatically identify and quantify dental calculus 
in two-dimensional OCT images and then reconstruct a three-dimensional image to assist 
doctors in clinical diagnosis.
	 The processing of medical images consists of several standard procedures, namely, image 
preprocessing, image segmentation, and extraction and segmentation of image features.  
Image preprocessing, i.e., spatial filtering,(12,13) histogram equalization,(14,15) and intensity 
transformation,(16) changes the intensity and contrast of the entire image.  However, the intensity 
derived from OCT signals depends on the optical attenuation.  Therefore, the above-mentioned 
image preprocessing methods cannot be directly applied to the OCT images.  Aiming at the 
attenuation characteristics in OCT images, we propose a normalization method, called the 
vertical intensity transform function (VITF), to adjust the intensity of the OCT image in the 
vertical direction to the same intensity level.  This method can solve the problem of signal 
attenuation that causes vertical inhomogeneity.
	 The detection of dental calculus belongs to the process of image segmentation.  The common 
image segmentation methods include thresholding,(17) watershed,(18,19) level set,(20) region 
growing,(21) and active contour modeling.(22)  Those methods require distinct boundary and 
gray levels of the target or a significant difference between the gray level gradient and the 

Fig. 1.	 (Color online) OCT images (a) without dental calculus and (b) with dental calculus shown by red arrows.

(a) (b)
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background.  However, in the OCT image, the boundary between dental calculus and other 
tooth tissues is fuzzy, and there is speckle noise.  Therefore, general image segmentation 
methods are inapplicable to tooth OCT images.  
	 In this study, K-means, Markov random field (MRF), and mathematical morphology (MM) 
were used to first narrow the detection ranges in accordance with the characteristics of different 
dental tissues and then to perform texture analysis on the detection ranges to segment dental 
calculus.

1.1	 Dental calculus detection ranges

	 The K-means algorithm is a clustering algorithm that yields the optimum cluster by iterating 
the optimization approach.(23)  Patel and Sinha proposed the adaptive K-means algorithm to 
determine the focal area of breast cancer in a breast X-ray image.(24)  Sruthi used the K-means 
algorithm to identify the tumor region in magnetic resonance images of the brain on the basis of 
the average gray level.(25)  Since dental calculus only occurs in the tooth surface layer, where the 
tooth tissue has a high gray level, the K-means algorithm is applicable to segmenting the tooth 
surface layer.  However, the detection ranges usually have similar properties.  The MRF(26) is a 
probabilistic model that can predict the category of the regions.

1.2	 Segmentation of dental calculus

	 In order to further segment dental calculus in these dental calculus detection ranges, we 
adopt MM,(27) in which the too thin layer, i.e., not dental calculus, is removed first.  For the 
rest of the detection ranges, the segmentation method is designed in accordance with the four 
different tooth tissue features: (1) the dentin and enamel blocks have different aspect ratios 
(ARs); (2) dental calculus on the dentin block thickens the tooth; (3) enamel and dental calculus 
have different gray scale distributions after binarization; and (4) dental calculus causes the 
protrusion of the tooth surfaces.  The feature values of ARs, thickness, and tooth surface slope 
can be obtained by quantifying the four features.  In addition, we also used texture analysis,(28) 
which is often used in a quantified space structure, such as entropy,(29,30) for identifying dental 
calculus.

2.	 Materials and Methods

	 The core of the algorithm proposed in this study is the definition of dental calculus regions 
on the basis of the respective characteristics of dentin, enamel, and calculus, and to further 
identify dental calculus in these areas.  Figure 2 shows the flowchart of the segmentation 
algorithm.  First, the VITF algorithm was used to improve the problem of the gray scale 
differences on the tooth surfaces owing to optical attenuation.  Because dental calculus only 
appears in the surface area of teeth with a high gray scale, using the K-means algorithm with 
the MRF can reveal the ranges with higher gray scales, i.e., the tooth surfaces, that are required 
to be characterized for segmentation in the next step.
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	 After the range is defined, the part of the tooth surface layer that is too thin to have dental 
calculus can be removed directly.  The candidate regions of dental calculus are obtained by MM 
to remove the excessively thin surface layer and then are divided into dentin and enamel blocks 
on the basis of the image features of dental calculus accumulated on different tooth tissues.  As 
the signal attenuates rapidly when passing through the dentin, this part is long and wide and has 
a low AR.  The dentin is apparently thickened because there is dental calculus on it.  The enamel 
is thick so the thickness variation caused by dental calculus is not obvious.  The region with 
dental calculus causes the protrusion of the tooth surface layer, and the surface slope is changed.  
For the different features of dental calculus in the two regions, the segmentation methods 
should be designed accordingly.  The aforesaid features can be summarized into the following 
three points: (1) the dentin and enamel blocks can be distinguished from the AR of the blocks 
remaining after removing the excessively thin surface layer; (2) the surface layer thickness (vertical 
height) variation is used for judging dental calculus in the dentin block; and (3) dental calculus 
in the enamel block is judged on the basis of the tooth surface slope changes.  
	 The dentin block has a low AR.  In this type of block, the surface layer is thickened, probably 
owing to dental calculus or noise, so that it is not removed by MM.  However, a comparison of 
the thickness variations of the block and the peripheral surface layer enables dental calculus, 
which has large variations, to be distinguished from the general surface layer, which has small 
variations.  The enamel block has a high AR.  It is not easy to distinguish between enamel and 
dental calculus by thickness variation analysis.  Therefore, the texture feature (entropy) and 
the change in the tooth surface slope after binarization are applied to the enamel block for 
segmenting dental calculus.

2.1	 Image preprocessing

	 The signal attenuates as the distance between the tooth and instrument increases, so that 
the height difference of the tooth surface becomes representative of the gray level difference.  
Therefore, the gray level increases towards the upper side of the OCT image, as shown in 
Fig. 3(a).  In order to normalize the gray level of the tooth and retain the original contrast ratio, 
the VITF is proposed in accordance with the principle of the intensity transformation function, 
expressed as

Fig. 2.	 (Color online) Flowchart of the proposed segmentation algorithm.
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where the maximum value of each row of pixels of the original image I is adjusted to 255 and 
the other pixels of the same row are adjusted proportionally, whereby the normalized image NI 
is obtained, as shown in Fig. 3(b).  i = 1, 2, 3, ..., n columns, j = 1, 2, 3, ..., n rows, and k is the 
column number of the maximum value of pixels in row j.

Fig. 3.	 (Color online) Results of each step in the process of defining dental calculus ranges. (a) Original image I. (b) 
Normalized image NI. (c) The clusters of K-means: tooth surface layer (red), other tooth tissues (green), and weak 
signal region (blue). (d) Results of cluster analysis of K-means algorithm. (e) MRF probability distribution MRFI. (f) 
Candidate block of dental calculus OI determined by MM.

(a) (b)

(c) (d)

(e) (f)
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2.2	 Dental calculus detection ranges

	 Dental calculus only accumulates on the tooth surface, so the preliminarily selected 
candidate region of dental calculus in the OCT image is concentrated only on the tooth surface 
layer.  The instrument signal received from the tooth surface layer is the strongest, meaning the 
region has the maximum average gray level.  The K-means algorithm is a clustering algorithm 
that determines the optimum center of gravity and produces clusters on the basis of the initial 
center of gravity, expressed as

	
2

1
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a

b
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where x = (x1, x2, x3, …, xT) is the average gray level of the region of pixels with nonzero gray 
levels, ua is the center of gravity of all elements in a cluster.  The three convergent regions, 
the brightest tooth surface layer, other tooth tissues, and the weak signal region, can be found 
by iteration of Eq. (2), as shown in Fig. 3(c).  However, since dental calculus only accumulates 
on the tooth surface, only the tooth surface layer is selected as the candidate region of dental 
calculus, as shown in Fig. 3(d).
	 According to the result of the K-means algorithm [Fig. 3(d)], the region extracted by the 
K-means algorithm matches the objective, but the region is too scattered owing to speckle 
noise and thus, is not a complete region.  In order to further converge the candidate region of 
dental calculus, the MRF can be used to correct the tooth surface layer probability distribution.  
The basic concept of the MRF algorithm is to determine its own state from the probability of 
occurrence of different states in the random field, expressed as 
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where each pixel y{r,v} has a random field fr and y{r} = y{r,1}, y{r,2}, y{r,3}, ..., y{r,c} is the state of 
all random variables in the random field.  There are only two states: tooth surface layer and not 
tooth surface layer.  The state of maximum probability is the state of this pixel.  The optimum 
probability distribution can be obtained by iterating Eqs. (3) and (4), as shown in Fig. 3(e).  In 
the selected candidate region of dental calculus, most of the noise interference is removed, and 
the upper and lower boundaries of dental calculus are determined.

2.3	 Segmentation of dental calculus

	 As different feature values are required for segmenting dental calculus on different tooth 
tissues, to distinguish different tooth tissues, we use the MM where only the specified structure 
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is removed, as expressed in Eq. (5).  The excessively thin region of the tooth surface layer 
where dental calculus cannot exist is removed.  For the remaining candidate blocks of dental 
calculus, the segmentation method is selected in accordance with the AR.  The AR is calculated 
by dividing the square of distance wd between the line number leftd of the leftmost pixel and the 
line number rightd of the rightmost pixel in the dth block by the area Ad, as expressed in Eq. (6).  
The threshold of AR approximately distinguishes between dentin and enamel.  The purpose is 
to prevent noise from thickening the tooth surface layer.  The dentin not removed by MM is 
assigned to texture analysis, causing mis-segmentation.  The blocks identified by the threshold 
are shown in Fig. 3(f).

	 ( )!OI MRFI O O= ⊕ 	 (5)
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Feature extraction and screening
	 When the AR of the dentin block is smaller than the threshold, method (1) is used.  When the 
AR of the enamel block is greater than the threshold, method (2) is used.  
Method (1): Thickness Variation Analysis.  Dental calculus on the dentin block with AR smaller 
than the threshold [Fig. 4(a)] is obvious.  The difference L∇  between the average vertical height 
(Ad/wd) of the block and the average vertical height (hd) of the peripheral dentin surface layer is 
obvious.  l is the length of the range of a general tooth surface layer used as a reference when 
calculating L∇ .
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If L∇  is greater than the preset threshold, this block is identified as a dental calculus block and 
marked on the original image, as shown in Fig. 4(b).
Method (2): Texture Analysis—Entropy and Slope.  The dentin block with enamel or AR 
greater than the threshold [Fig. 4(c)] is substituted in the gray level of NI and binarized.  It is 
observed that the gray scale distribution of dental calculus is more dispersed than that of the 
enamel surface layer, as shown in Fig. 4(d).  The general tooth tissues and dental calculus can 
be distinguished after the gray scale distribution is analyzed.  The intensity threshold is fixed 
at 220.  In order to describe the feature information quantitatively, the gray-level co-occurrence 
matrix of texture analysis is used to obtain the entropy.  The gray-level co-occurrence matrix 
describes the spatial texture as the probability of different gray levels being adjacent to each 
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other, where gi and gj represent the gray levels of pixels, and the value on the matrix is the 
probability of two pixels in the image having the same gray level satisfying the preset direction 
and distance.  The entropy E is expressed as

	 ( ) ( )( )
255 255
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0 0

, log ,
gi gj

E G gi gj G gi gj
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If E obtained from the mask centered on each pixel is greater than the preset threshold, the 
region of the same row is reserved, as shown in Fig. 4(e).  Finally, if the tooth surface of the 
residual segment has a slope variation, it is identified as a dental calculus block and marked on 
the original image, as shown in Fig. 4(f).

Fig. 4.	 (Color online) Results of each step in the process of segmenting dental calculus. (a) Block AR < 5. (b)
Result of dental calculus segmentation by method (1). (c) Block AR > 5. (d) Binary image. (e) Entropy screening 
result E > 1.65. (f) Result of dental calculus segmentation by method (2).

(a) (b)

(c) (d)

(e) (f)
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3.	 Results and Discussion

	 The OCT system used in this study has a light source with a center wavelength of 1060 
nm, a scanning area of 5 × 15 mm2, a longitudinal resolution of 20 μm, a scanning frequency 
of 30 Hz, a scanning depth of 3 mm, and a spatial resolution of 968 × 492 pixels.  To evaluate 
the performance of the segmentation algorithm, the assessment was performed using the 
mean manually delineated boundary of each area of dental calculus in the OCT image.  Each 
area of dental calculus was demarcated by two graduate students and confirmed by two 
experienced radiologists.  The two graduate students had more than one year of experience in 
the segmentation of dental calculus in an OCT image.  Figure 5 shows the segmentation results 
of dental calculus in an OCT image.  Dental calculus [Figs. 5(c) and 5(d)] is marked on the OCT 
image [Figs. 5(a) and 5(b)] of a tooth sample [Fig. 6(a)].  Figures 5(e) and 5(f) show one set of 
manually delineated dental calculus boundaries.  

Fig. 5.	 (Color online) Results of dental calculus in OCT image. (a) and (b) Original image (two different cases). 
(c) and (d) Manually delineated boundaries for dental calculus. (e) and (f) Boundaries derived by the proposed 
algorithm.

(a) (b)

(c) (d)

(e) (f)
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	 The mean distance between the boundaries generated by the proposed algorithm and the 
corresponding manually delineated boundaries was computed as Z∇ , as expressed in Eq. (10).  
The column and row of the gxth pixel on the boundary determined using the proposed algorithm 
are expressed as ADigx and ADjgx.  The column and row of the gxth pixel on the manually 
delineated boundary are expressed as MDigx and MDjgx, where gy = 1, 2, 3, ..., ga and gy = 1, 2, 3, 
..., gb.

	 ( ) ( )2 2

1

1 min
gb

igx igy jgx jgygxgy
Z AD MD AD MD

gb =
∇ = × − + −∑ 	 (10)

	 In 100 OCT images, there are 120 areas of dental calculus selected manually, 105 of which 
were identified correctly by the proposed algorithm.  The sensitivity is 87.5%, and the mean 
distance between the boundaries generated by the proposed algorithm and the corresponding 
manually delineated boundaries is 2.52 ± 3.54 pixels.  Figure 6(a) shows the example of 
an actual case of dental calculus.  To observe the segmented dental calculus more directly 
and easily, all 2D tooth images are reconstructed into 3D images.  The arrows show the 
segmentation result in the reconstructed 3D images, i.e., the dental calculus region, in Fig. 6(b).

4.	 Conclusions

	 We proposed an automated dental calculus segmentation algorithm using OCT images.  
The proposed VITF solved the problem of gray scale differences on the tooth resulting from 
optical attenuation.  The features of general tooth tissues and dental calculus were used to 
define the detection range using the K-means algorithm and MRF, and the candidate block of 
dental calculus was segmented by MM.  The texture analysis showed that the features were 
successfully quantified, and the dental calculus region was recognized and segmented.  The 
overall tooth structure and dental calculus information were displayed as a 3D reconstruction of 

Fig. 6.	 (Color online) Segmentation result in the reconstructed 3D images. (a) Tooth sample. (b) Arrows show the 
segmentation result by the proposed algorithm in the reconstructed 3D images.

(a) (b)
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the segmentation result.  The evaluation sensitivity was 87.5% and the mean distance between 
the boundaries generated by the proposed algorithm and the corresponding manually delineated 
boundaries was 2.52 ± 3.54 pixels, proving the accuracy and reliability of the proposed 
segmentation algorithm.  In this study, not only was a nonradiative and noninvasive detection 
mode obtained, but the symptom features were also quantified.  Doctors no longer need to rely 
solely on their experience to recognize dental calculus, but can refer to specific data to assist in 
diagnosis.
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