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Introduction to N-grams

 
Language Modeling



Probabilistic Language Models

•Today’s goal: assign a probability to a sentence 
•Machine Translation: 

• P(high winds tonite) > P(large winds tonite) 
• Spell Correction 

• The office is about fifteen minuets from my house 

• P(about fifteen minutes from) > P(about fifteen minuets from) 
• Speech Recognition 

• P(I saw a van) >> P(eyes awe of an) 

• + Summarization, question-answering, etc., etc.!!

Why?
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Wei Xu, Joel Tetreault, Martin Chodorow, Ralph Grishman, Le Zhao.  
“Exploiting Syntactic and Distributional Information for Spelling Correction with Web-Scale N-gram Models” In EMNLP (2011)  

Wei Xu, Alan Ritter, Ralph Grishman. “Gathering and Generating Paraphrases from Twitter with Application to Normalization” In BUCC (2013)  
Timothy Baldwin, Marie-Catherine de Marneffe, Bo Han, Young-Bum Kim, Alan Ritter, Wei Xu. “Shared Tasks of the 2015 Workshop 

on Noisy User-generated Text: Twitter Lexical Normalization and Named Entity Recognition” In WNUT (2015)  

Noisy Text Normalization (Error Correction)



Natural Language Generation (Monolingual MT)

Palpatine:  
If you will not be turned, you will be destroyed!

If you will not be turn’d, you will be undone!

Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, Colin Cherry. “Paraphrasing for Style” In COLING (2012)  

Luke:  
Father, please! Help me!

Father, I pray you! Help me!

Quanze Chen, Chenyang Lei, Wei Xu, Ellie Pavlick, Chris Callison-Burch.  
“Poetry of the Crowd: A Human Computation Algorithm to Convert Prose into Rhyming Verse” In HCOMP (2014)  



  

Poetry of the Crowd : A Human Computation
Algorithm to Convert Prose into Rhyming Verse

Rhyme:

Abstract
Poetry composition is a very complex task that requires a
poet to satisfy multiple constraints concurrently. We believe
that the task can be augmented by combining the creative
abilities of humans with computational algorithms that
efficiently constrain and permute available choices. We
present a hybrid method for generating poetry from prose
that combines crowdsourcing with natural language
processing (NLP) machinery. We test the ability of crowd
workers to accomplish the technically challenging and

creative task of writing sonnets.

Is it possible to efficiently utilize crowdsourcing to generate poetry?
The Problem

Quanze Chen, Chenyang Lei, Wei Xu, Ellie Pavlick and Chris Callison-Burch
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Substitution:

Generated Poem: For a fair Galton left his home in town,
A number of years gave him wide renown.
The science of his work had won him that,
West to the British live stock and fair fat.

● Figure out a set of possible substitutions to use in target
poetry.

● Use the Paraphrase Database (PPDB) for word/phrase-level
paraphrasing.
➔ 120 million meaning-equivalent rewrite rules.

● Filter for contextually valid results using crowdsourced task.

● Majority vote from 5 individual workers. QC using pos/negative
controls.

Meter:
Challenge: It’s difficult for untrained workers to perform scansion on
a large set of choice words.

Solution: 
● Obtain the stress pattern for each word through the CMU

pronunciation dictionary.

● Label predicted meter probability from a machine learning algorithm
trained on sonnet data.

● If neither give confident results, programmatically compute the
syllables.

Assemble Task:
● We ask crowd workers to write lines of poetry based on the input

prose and expanded alternative word choices. 

● An algorithm dynamically compares the composed sentence and the
alternative words set to an iambic pentameter template. 

● The ending word or phrase is drawn from a rhyming pair across two
sentences and adjust the template to constrain meter accordingly.

Challenge: It's hard to figure out the potential rhyming pairs
across multiple sentences.

Solution: 
● Collect rhyme information of each word encountered in the original

text or expanded set through the STANDS4 API. 

● Find the intersection of the rhyming sets across different words as
the potential rhyming pairs of words.

Preliminary Results: 
● 179 rhyming pairs from original text alone (82 unique words)

● 911 rhyming pairs after expansion (295 unique words)



Probabilistic Language Modeling
•Goal: compute the probability of a sentence or 
sequence of words: 
     P(W) = P(w1,w2,w3,w4,w5…wn) 

•Related task: probability of an upcoming word: 
      P(w5|w1,w2,w3,w4) 

•A model that computes either of these: 
      P(W)  or P(wn|w1,w2…wn-1)   is called a language model or LM



How to compute P(W)
• How to compute this joint probability: 

•P(its, water, is, so, transparent, that) 

• Intuition: let’s rely on the Chain Rule of Probability



Reminder: The Chain Rule

•Recall the definition of conditional probabilities 
P(B|A) = P(A,B)/P(A)    Rewriting:   P(A,B) = P(A)P(B|A) 

•More variables: 
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C) 

•The Chain Rule in General 
  P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)



The Chain Rule applied to compute joint 
probability of words in sentence

P(“its water is so transparent”) = 
 P(its) × P(water|its) ×  P(is|its water)  
  ×  P(so|its water is) ×  P(transparent|its water is so)



How to estimate these probabilities
• Could we just count and divide? 

•No!  Too many possible sentences! 
•We’ll never see enough data for estimating these

€ 

P(the | its water is so transparent that) =
Count(its water is so transparent that the)
Count(its water is so transparent that)



Markov Assumption

•Simplifying assumption: 
 
 
 
 

•Or maybe

€ 

P(the | its water is so transparent that) ≈ P(the | that)

€ 

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei Markov (1856~1922)



Markov Assumption

• In other words, we approximate each 
component in the product



Simplest case: Unigram model

fifth, an, of, futures, the, an, incorporated, a, a, 
the, inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model:

words are independent 

Big problem with unigrams:  P(the the the the) >> P(I like ice cream)



Simplest case: Unigram model

fifth, an, of, futures, the, an, incorporated, a, a, 
the, inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model:



Bigram model

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, 
boiler, house, said, mr., gurria, mexico, 's, motion, control, 
proposal, without, permission, from, five, hundred, fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

• Condition on the previous word:

Some automatically generated sentences from a bigram model:



N-gram models

•We can extend to trigrams, 4-grams, 5-grams 
• In general this is an insufficient model of language 
• because language has long-distance dependencies: 

“The computer which I had just put into the machine 
room on the fifth floor crashed.” 

•But we can often get away with N-gram models



Estimating N-gram 
Probabilities

 
Language Modeling



• The Maximum Likelihood Estimate (MLE) 
- relative frequency based on the empirical counts on a 

training set

Estimating bigram probabilities

€ 

P(wi |wi−1) =
count(wi−1,wi )
count(wi−1)

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

c — count



An example

<s> I am Sam </s> 
<s> Sam I am </s> 
<s> I do not like green eggs and ham </s>

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

MLE



A bigger example:  
Berkeley Restaurant Project sentences

• can you tell me about any good cantonese restaurants 
close by 
•mid priced thai food is what i’m looking for 
• tell me about chez panisse 
• can you give me a listing of the kinds of food that are 
available 
• i’m looking for a good place to eat breakfast 
•when is caffe venezia open during the day



Raw bigram counts

• Out of 9222 sentences



Raw bigram probabilities
• Normalize by unigrams: 

• Result:

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

MLE



Bigram estimates of sentence probabilities

P(<s> I want english food </s>) = 
 P(I|<s>)    
  ×  P(want|I)   
 ×  P(english|want)    
 ×  P(food|english)    
 ×  P(</s>|food) 
       =  .000031



What kinds of knowledge?

•P(english|want)  = .0011 
•P(chinese|want) =  .0065 
•P(to|want) = .66 
•P(eat | to) = .28 
•P(food | to) = 0 
•P(want | spend) = 0 
•P (i | <s>) = .25

grammar — infinitive verb

grammar

???

about the world



Practical Issues

•We do everything in log space 
•avoid underflow 

•(also adding is faster than multiplying)



Language Modeling Toolkits

•SRILM 
•http://www.speech.sri.com/projects/
srilm/ 

•KenLM 
•https://kheafield.com/code/kenlm/

http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/


Google N-Gram Release, August 2006

…



Google N-Gram Release
• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensable 111
• serve as the indispensible 40
• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html


Google Book N-grams
• https://books.google.com/ngrams 
• http://storage.googleapis.com/books/ngrams/books/
datasetsv2.html

https://books.google.com/ngrams
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html


Evaluation and 
Perplexity

 
Language Modeling



Evaluation: How good is our model?
• Does our language model prefer good sentences to bad ones? 
• Assign higher probability to “real” or “frequently 
observed” sentences  
• Than “ungrammatical” or “rarely observed” sentences? 

•We train parameters of our model on a training set. 
•We test the model’s performance on data we haven’t seen. 
• A test set is an unseen dataset that is different from our 
training set, totally unused. 
• An evaluation metric tells us how well our model does on 
the test set.



Evaluation: How good is our model?

• The goal isn’t to pound out fake sentences! 
• Obviously, generated sentences get “better” as we 
increase the model order 
•More precisely: using maximum likelihood 
estimators, higher order is always better likelihood 
on training set, but not test set



Training on the test set

•We can’t allow test sentences into the training set 
•We will assign it an artificially high probability when 
we set it in the test set 
• “Training on the test set” 
• Bad science! 
• And violates the honor code

34



Extrinsic evaluation of N-gram models

•Best evaluation for comparing models A and B 
• Put each model in a task 

•  spelling corrector, speech recognizer, MT system 

• Run the task, get an accuracy for A and for B 

• How many misspelled words corrected properly? 

• How many words translated correctly? 

• Compare accuracy for A and B



Difficulty of extrinsic (in-vivo) evaluation of  
N-gram models
•Extrinsic evaluation 
• Time-consuming; can take days or weeks 

•So 
• Sometimes use intrinsic evaluation: perplexity 
• Bad approximation  
• unless the test data looks just like the training data 

• So generally only useful in pilot experiments 
• But is helpful to think about.



Intuition of Perplexity

• The Shannon Game: 
• How well can we predict the next word? 

• Unigrams are terrible at this game.  (Why?) 

• A better model of a text 
•  is one which assigns a higher probability to the word that actually occurs 
•  compute per word log likelihood  

(M words, m test sentence si)

I always order pizza with cheese and ____ 

The 33rd President of the US was ____ 

I saw a ____

mushrooms 0.1 

pepperoni 0.1 

anchovies 0.01 

…. 
fried rice 0.0001 

…. 
and 1e-100

Claude Shannon  
(1916~2001)



Perplexity

Perplexity is the inverse probability 
of the test set, “normalized” by the 
number of word (Why ?)

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set 
• Gives the highest P(sentence)

geometric mean



Perplexity

Perplexity is the inverse probability 
of the test set, “normalized” by the 
number of words:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set 
• Gives the highest P(sentence)

Chain Rule

for bigram



Lower perplexity = better model

•Training 38 million words, test 1.5 million 
words, Wall Street Journal

N-gram 
Order

Unigram Bigram Trigram

Perplexity 962 170 109



Perplexity as branching factor
• Let’s suppose a sentence consisting of random digits [0,1, …, 9] 
• What is the perplexity of this sentence according to a model 

that assign P=1/10 to each digit?



Perplexity as branching factor
• If one could report a model perplexity of 247 (27.95) per word 
• In other words, the model is as confused on test data as if it 

had to choose uniformly and independently among 247 
possibilities for each word. 
• But, 
• a trigram language model can get perplexity of 247 on the 

Brown Corpus  
• simply guessing that the next word in the Brown Corpus is 

7%, not 1/247 (Q: why??)



Generalization and 
zeros

 
Language Modeling



The Shannon Visualization Method
• Choose a random bigram  
     (<s>, w) according to its probability 
• Now choose a random bigram        

(w, x) according to its probability 
• And so on until we choose </s> 
• Then string the words together

<s> I
    I want
      want to
           to eat
              eat Chinese
                  Chinese food
                          food  </s>
I want to eat Chinese food

Q: How do you write a program and do it?



Approximating Shakespeare



Shakespeare as corpus

•N=884,647 tokens, V=29,066 
•Shakespeare produced 300,000 bigram types out of  
V2= 844 million possible bigrams. 
•  So 99.96% of the possible bigrams were never seen (have 
zero entries in the table) 

•Quadrigrams (4-gram) worse:    
• What's coming out looks like Shakespeare because 
it is Shakespeare



The wall street journal is not Shakespeare 
(no offense)



The perils of overfitting
• N-grams only work well for word prediction if the test corpus 

looks like the training corpus 
• In real life, it often doesn’t 
• We need to train robust models that generalize! 
• One kind of generalization:  Zeros! 
• Things that don’t ever occur in the training set 
• but occur in the test set



•Training set: 
… denied the allegations 
… denied the reports 
… denied the claims 
… denied the request 

P(“offer” | denied the) = 0

• Test set 

… denied the offer 
… denied the loan

Zeros



(Recall) Raw bigram counts

• Out of 9222 sentences



Sparsity
• human language is very creative 
• new words appear all the time



Zero probability bigrams
• Bigrams with zero probability 
• mean that we will assign 0 probability to the test set! 

• And hence we cannot compute perplexity (can’t divide by 0)!

Q: How do we deal with ngrams of zero 
probabilities?

for bigram


