. anguage Modeling

Instructor: Wei Xu

Many slides adapted from Dan Jurafsky, and some from Yejin Choi

Language Modeling

Introduction to N-grams

Probabilistic Language Models

* Today’s goal: assign a probability to a sentence
* Machine Translation:
* P(high winds tonite) > P(large winds tonite)

* Spell Correction

Why? The office is about fifteen minuets from my house
* P(about fifteen minutes from) > P(about fifteen minuets from)

* Speech Recognition
* P(I saw a van) >> P(eyes awe of an)

* + Summarization, question-answering, etc., etc.!!

Noisy Text Normalization (Error Correction)

Hostes | is going @ outta | biz

Hostess | is going | out of || business

Wei Xu, Joel Tetreault, Martin Chodorow, Ralph Grishman, Le Zhao.
“Exploiting Syntactic and Distributional Information for Spelling Correction with Web-Scale N-gram Models” In EMNLP (2011)

:ET) Wei Xu, Alan Ritter, Ralph Grishman. “Gathering and Generating Paraphrases from Twitter with Application to Normalization” In BUCC (2013)

Timothy Baldwin, Marie-Catherine de Marneffe, Bo Han, Young-Bum Kim, Alan Ritter, Wei Xu. “Shared Tasks of the 2015 Workshop
on Noisy User-generated Text: Twitter Lexical Normalization and Named Entity Recognition” In WNUT (2015)

Natural Language Generation (Monolingual MT)

E R R EEEEEEEREEEEENERNERNRNGR
ek

Palpatine:
If you will not be turned, you will be destroyed!

v

If you will not be turn’d, you will be undone!

Luke:
Father, please! Help me!

!

Father, | pray you! Help me!

"ir:,‘q’q ? I
‘

M

Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, Colin Cherry. “Paraphrasing for Style” In COLING (2012)

Quanze Chen, Chenyang Lei, Wei Xu, Ellie Pavlick, Chris Callison-Burch.
“Poetry of the Crowd: A Human Computation Algorithm to Convert Prose into Rhyming Verse” In HCOMP (2014)

Abstrart

The Hroblem

Is it possible to efficiently utilize crowdsourcing to generate]JIIBfl_‘g?

Poetry composition is a very complex task that requires a
poet to satisfy multiple constraints concurrently. We believe
that the task can be augmented by combining the creative
abilities of humans with computational algorithms that
efficiently constrain and permute available choices. We
present a hybrid method for generating poetry from prose
that combines crowdsourcing with natural language
processing (NLP) machinery. We test the ability of crowd
workers to accomplish the technically challenging and
creative task of writing sonnets.

Subsfitution:

* Figure out a set of possible substitutions to-use in target

Source Sentences

Paraphrase
Database

(PPDB)

[Tokenize

PSS

Word Phrase
Substitution Substitution

' '

Find Substitutions Task
g““’.’g

l

Rhyme Data

Rhymes
Database
(STANDSA4)

[Find Rhyme Pairs]

J

ﬁnphfg nf fhe @rnﬁlh : A Human Computation
Algorithm to Gonwert Prose inte Rhyming Herse

Quanze Chen, Chenyang Lei, Wei Xu, Ellie Pavlick and Chris Callison-Burch

Rhyme:

Challenge: It's hard t
across multiple sentence

Solution:
* Collect rhyme informati
text or expanded set th

* Find the intersection of
the potential rhyming p

Preliminary Result:
* 179 rhyming pairs from

* 911 rhyming pairs after

Meter:

Challenge: It's difficul
a large set of choice wor

Solution:
* Obtain the stress pattel
pronunciation dictionan

* Label predicted meter
trained on sonnet data.

Probabilistic Language Modeling

* Goal: compute the probability of a sentence or
sequence of words:

P(W) = P(W;,W5,W3,W,W:.. W,)

*Related task: probability of an upcoming word:

P(Ws|Wq,Wp,W3,W,)

* A model that computes either of these:
P(W) or P(w,|w,,w,..w.,) 1S called a language model or LM

How to compute P(W)

* How to compute this joint probability:

*P(its, water, is, so, transparent, that)

* Intuition: let’s rely on the Chain Rule of Probability

Reminder: The Chain Rule

* Recall the definition of conditional probabilities
P(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

* More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(DI|A,B,C)

* The Chain Rule in General
P(X{,X9,X3,e00,X) = P(X;)P (X, | X1)P (X51X1,X5) e e P(X, [Xq5eee, X)

The Chain Rule applied to compute joint
probability of words in sentence

Pww,...w,)= HP(Wi lww,...w._))

P(“its water is so transparent”) =
P(its) x P(water|its) x P(is|its water)
x P(so|its water is) x P(transparent|its water is so)

How to estimate these probabillities

» Could we just count and divide?

P(the |its water 1s so transparent that) =

Count(its water 1s so transparent that the)

Count(its water 1s so transparent that)

* No! Too many possible sentences!
* We’ll never see enough data for estimating these

Markov Assumption

* Simplifying assumption:

Andrei Markov (1856~1922)

P(the |its water is so transparent that) = P(the |that)

* Or maybe
P(the |its water 1s so transparent that) = P(the |transparent that)

Markov Assumption

Pww,...w)= HP(wi W, oW)

* In other words, we approximate each
component in the product

Pw lww,..w._)=Pw. Ilw_ ..w._)

Simplest case: Unigram model
P(ww,..w,) = [Pw))

Some automatically generated sentences from a unigram model:

fifth, an, of, futures, the, an, incorporated, a, a,
the, inflation, most, dollars, quarter, 1in, 1s, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the words are independent

Big problem with unigrams: P(the the the the) >> P(l like ice cream)

Simplest case: Unigram model
P(ww,..w,) = [Pw))

Some automatically generated sentences from a unigram model:

fifth, an, of, futures, the, an, incorporated, a, a,
the, inflation, most, dollars, quarter, 1in, 1s, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Bigram model
* Condition on the previous word:

Pw, lww,...w._)=P(w, |lw,_)
Some automatically generated sentences from a bigram model.:

texaco, rose, one, 1in, this, issue, 1s, pursuing, growth, in, a,
boiler, house, said, mr., gurria, mexico, 's, motion, control,
proposal, without, permission, from, five, hundred, fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

N-gram models

*We can extend to trigrams, 4-grams, 5-grams

*|n general this is an insufficient model of language
* because language has long-distance dependencies:

“The computer which | had just put into the machine
room on the fifth floor crashed.”

* But we can often get away with N-gram models

Language Modeling

Estimating N-gram
Probabilities

—stimating bigram probabillities

* The Maximum Likelihood Estimate (MLE)
- relative frequency based on the empirical counts on a

training set count(W W)
P(W/ ‘ VVi—l) = —
count(w_,)

P(w, | w,) = W)

c — count
aw,,)

An example

<s> | am Sam </s>
mE o(W,_, W)

P(w, |w_))= <s> Sam | am </s>
(W) <s> | do not like green eggs and ham </s>
P(I|<s>)= % = .67 P(Sam|<s>) = % =.33 Plam|I)= % = .67
(</s>|Sam):%:OS P(Sam am):%:.S P(do I):%:.}'S

A bigger example:
Berkeley Restaurant Project sentences

» can you tell me about any good cantonese restaurants
close by

* mid priced thai food is what i’m looking for
* tell me about chez panisse

e can you give me a listing of the kinds of food that are
available

* i’m looking for a good place to eat breakfast
* when is caffe venezia open during the day

Raw bigram counts

e Qut of 9222 sentences

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0O 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram probabilities py, |y, y= Wi W)
T Awy)

* Normalize by unigrams:

1 want to eat chinese food lunch spend
. Resylt: 2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food | lunch | spend

1 0.002 1033 |0 0.0036 | O 0 0 0.00079
want 0.0022 | 0 0.66 | 0.0011| 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | O 0.0017 1 0.28 0.00083 | 0 0.0025 | 0.087
eat 0 0 0.00271 0 0.021 0.002710.056 |0
chinese || 0.0063 | O 0 0 0 0.52 0.0063 | 0
food 0.014 |0 0.014 |0 0.00092 | 0.00371 0 0
lunch || 0.0059 | O 0 0 0 0.0029 1 0 0
spend | 0.0036 | O 0.0036 | O 0 0 0 0

Bigram estimates of sentence probabilities

P(<s> | want english food </s>) =
P(l|<s>)
P(want|l)
P(english|want)
P(food | english)
P(</s>|food)
= .000031

X X X X

What kinds of knowledge”

english|want) = 0011% U

(

(chinese|want) = .0065
(to|want) = .66 % grammar — infinitive verb
(eat | to) = .28
(
(

food | to) =0 = m
want | spend 0 eammar
P(]| <s>)=.25

Practical Issues

*We do everything in log space
*avoid underflow
* (also adding is faster than multiplying)

log(p; X p, X p3 % p,y) =log p, +1og p, +log p; +log p,

Language Modeling Toolkits

*SRILM
*http://www.speech.sri.com/projects/

srilm/

*KenlLM
*https://kheafield.com/code/kenlm/

http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

Google N-Gram Release, August 2006

AUG All Our N-gram are Belong to You

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

H

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

That's why we decided to shére fhis enormous dataset —with everyone. We prbcess_ed 1,024,908,267,?29 —words
of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40
times. There are 13,588,391 unigue words, after discarding words that appear less than 200 times.

Google N-Gram Release

* serve as the incoming 92

* serve as the incubator 99

* serve as the independent 794

* serve as the index 223

* serve as the indication 72

e serve as the indicator 120

* serve as the indicators 45

* serve as the indispensable 111
* serve as the indispensible 40
* serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Google Book N-grams

 https://books.google.com/ngrams

 http://storage.googleapis.com/books/ngrams/books/
datasetsv2.html

Google Books Ngram Viewer

Graph these comma-separated phrases: = Albert Einstein,Sherlock Holmes,Frankenstein case-insensitive

G+ Share | 2.
between 1800 and 2000 from the corpus English with smoothing of 3 . W Tweet
Embed Chart
0.000200% =
0.000180%
Frankenstein
0.000160% +
0.000140%
0.000120% +
0.000100% ~ Albert Einstein
0.000080% - Sherlock Holmes
0.000060% -
0.000040%
0.000020%
0.000000%

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

https://books.google.com/ngrams
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Language Modeling

Evaluation and
Perplexity

Evaluation: How good is our model?

* Does our language model prefer good sentences to bad ones?
* Assign higher probability to “real” or “frequently
observed” sentences
* Than “ungrammatical” or “rarely observed” sentences?

* We train parameters of our model on a training set.

* We test the model’s performance on data we haven’t seen.
e A test set is an unseen dataset that is different from our
training set, totally unused.
* An evaluation metric tells us how well our model does on
the test set.

Evaluation: How good is our model?

* The goal isn’t to pound out fake sentences!

* Obviously, generated sentences get “better” as we
increase the model order

* More precisely: using maximum likelihood
estimators, higher order is always better likelihood
on training set, but not test set

Training on the test set

* We can’t allow test sentences into the training set

* We will assign it an artificially high probability when
we set it in the test set

* “Training on the test set”
* Bad science!
* And violates the honor code

—xtrinsic evaluation of N-gram models

* Best evaluation for comparing models A and B
* Put each model in a task
 spelling corrector, speech recognizer, MT system
* Run the task, get an accuracy for A and for B
 How many misspelled words corrected properly?
 How many words translated correctly?
» Compare accuracy for Aand B

Difficulty of extrinsic (in-vivo) evaluation of
N-gram models

 Extrinsic evaluation
* Time-consuming; can take days or weeks

*So
* Sometimes use intrinsic evaluation: perplexity
* Bad approximation
* unless the test data looks just like the training data
* So generally only useful in pilot experiments
 But is helpful to think about.

Intuition of Perplexity

mushrooms 0.1

* The Shannon Game:
« How well can we predict the next word?
| always order pizza with cheese and anchovies 0.01

The 33 President of the US was

Claude Shannon
(1916~2001)

pepperoni 0.1

fried rice 0.0001
| saw a

« Unigrams are terrible at this game. (Why?)
* A better model of a text

* is one which assigns a higher probability to the word that actually occurs

« compute per word log likelihood
(M words, m test sentence sj)

\and 1e-100

1 rl
[= i z; log p(s;)

Perplexity

The best language model is one that best predicts an unseen test set

e Gives the highest P(sentence)

Perplexity is the inverse probability
of the test set, “normalized” by the
number of word (Why ?)

1

PP(W) = Pww,..wy) Y

geometric mean

_ J 1
Pww,..wy)
equivalently :

PP(W)=2"

where /= %log P(ww,..w,)

1 IH“
2" where | = — log p(s;
v 2_7 g p(si)

Minimizing perplexity is the same as maximizing probability

Perplexity

The best language model is one that best predicts an unseen test set

e Gives the highest P(sentence) PEW) = Plwwn.ow)-%
- 1 2... N

Perplexity is the inverse probability
of the test set, “normalized” by the \/
N

1

Pww,..wy)

number of words: -

N
p 7 1
: PP(W) = N
Chain Rule % (W) \ H P(_u«*,-ht’l coWi—1)

i=1

N
for bigram % PP(W) = \\H 1

P(wilwi_1)

i=1

Minimizing perplexity is the same as maximizing probability

Lower perplexity = better model

* Training 38 million words, test 1.5 million
words, Wall Street Journal

N-gram |Unigram Bigram Trigram
Order

Perplexity 962

Perplexity as branching factor

 Let’s suppose a sentence consisting of random digits [0,1, ..., 9]

* What is the perplexity of this sentence according to a model
that assign P=1/10 to each digit?

PP(W) = P(wiwar...wy) ¥

Perplexity as branching factor

* If one could report a model perplexity of 247 (27-°°) per word

 [n other words, the model is as confused on test data as if it
nad to choose uniformly and independently among 247
nossibilities for each word.

* But,

* a trigram language model can get perplexity of 247 on the
Brown Corpus

 simply guessing that the next word in the Brown Corpus is
/%, not 1/247 (Q: why??)

Language Modeling

Generalization and
Zeros

The Shannon Visualization Method

* Choose a random bigram <s> 1
(<s>, w) according to its probability T Want

* Now choose a random bigram
(W, x) according to its probability to eat

« And so on until we choose </s> eat Chinese
* Then string the words together

want to

Chinese food
food </s>
I want to eat Chinese food

Q: How do you write a program and do it?

Approximating Shakespeare

gram

gram

gram

gram

~To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

~Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
~What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
"tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! 1 w11| go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv'd in; e
—It cannot be but so. —— -

Shakespeare as corpus

*N=884,647 tokens, V=29,066

*Shakespeare produced 300,000 bigram types out of
V%= 844 million possible bigrams.

* S0 99.96% of the possible bigrams were never seen (have
zero entries in the table)

*Quadrigrams (4-gram) worse:

* What's coming out looks like Shakespeare because
it 1s Shakespeare

The wall street journal is not Shakespeare
(no offense)

1

gram

2

gram

3

gram

Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

The perils of overfitting

* N-grams only work well for word prediction if the test corpus
looks like the training corpus

* In real life, it often doesn’t

* We need to train robust models that generalize!

* One kind of generalization: Zeros!
* Things that don’t ever occur in the training set
* but occur in the test set

/eros

* Training set: o Test set
... denied the allegations ... denied the offer
... denied the reports __denied the loan

... denied the claims
... denied the request

P(“offer” | denied the)

0

e Qut of 9222 sentences

(Recall) Raw bigram counts

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0O 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Sparsity

* human language is very creative
* new words appear all the time

1

0.8 44
= 0
& qnOO0000000n00000000
» 06 ~moon0oati
s UDDG o Uni
S P grams
- 0
g 04 a Bigrams |
S d
—
w (02 —

o
B—]

0 200000 400000 600000 800000 1000000

Zero probability bigrams

* Bigrams with zero probability
* mean that we will assign 0 probability to the test set!

* And hence we cannot compute perplexity (can’t divide by 0)!

PP(W) =

Pww,..wy) N

1

1

for bigram % PP(W) _ 1<l

fd

P(ww,..wy)

N

1
H P(wi|w;_1)

i=1

Q: How do we deal with ngrams of zero

probabilities?

