Increasing penetrations of wind will displace conventional plant

Pattern of wind capacity allocation and reactive power control scheme of wind farms may influence the voltage stability of the system

Control of reactive power generation in wind farms may improve voltage stability of the system\(^1\)

Loadability margin (LM), distance of the normal operating point to voltage collapse point, is a criteria used to assess the voltage stability of the system

Objective:
- Investigate the effect of the pattern of wind capacity allocation and reactive power control scheme on steady state small disturbance long term voltage stability

METHODOLOGY

- Loadability margin added to AC optimal power flow using the enhanced two sets of variables approach
- \(10 \times 8 = 80\) scenarios (wind capacity factor) (demand level)
- Unit commitment
- Least loadability margin = 31%
- Two objective functions:
 1. \(\text{Max } P_{\text{wind,capacity}}\): Max wind capacity
 2. \(\text{Max } LM_{HV}^{\text{Min}}\): Max voltage stability at HV buses

TEST CASE

- Modified IEEE 14 bus network
- 8 candidate buses for wind capacity allocation
- Automatic Voltage Regulation (AVR), \(V_{SP} = 1\ p.u.\)
- Conventional generators
- Wind farms in HV buses (buses 3 and 4)

RESULTS

- Almost equal total wind capacity with both objective functions
- Different pattern of wind capacity allocation:
 - \(\text{Max Wind}\): Mostly in LV side of the system
 - \(\text{Max Stability}\): Mostly in HV side of the system
- Significant difference in terms of stability:
 - \(\text{Max Wind}: LM_{HV}^{\text{Min}} = 32.45\%\)
 - \(\text{Max Stability}: LM_{HV}^{\text{Min}} = 58.19\%\)

CONCLUSIONS

- Application of voltage control to wind farms in LV side:
 - No significant change in the wind capacity allocation pattern
 - Improved stability \(LM_{HV}^{\text{Min}} = 50.53\%\) in \(\text{Max Wind}\) case

ACKNOWLEDGEMENT

This work was conducted in the Electricity Research Centre, University College Dublin, Ireland, which is supported by Bord Gáis Energy, Bord na Móna Energy, the Commission for Energy Regulation, Cycon Controls, EirGrid, Electric Ireland, the Electric Power Research Institute (EPRI) (US), Energia, ESB International, ESB Networks, Gaellectric, Intel, SSE Renewables, and United Technologies Research Centre, Ireland (UTRCI).

Mostafa Bakhtvar is supported by Science Foundation Ireland under Grant Number SFI/09/SRC/1780.