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Abstract

A new generalized Poisson-Lindley distribution is obtained by compounding Poisson
distribution with a two parameter generalised Lindley distribution. The new distribu-
tion is shown to be unimodal and over–dispersed. This distribution has a tendency to
accommodate right tail, and for particular values of parameter, the tail tends to zero at a
faster rate. Various properties like cumulative distribution function, generating function,
moments etc. are derived. Knowledge about the parameters is obtained through method
of moments, maximum likelihood method and EM algorithm. Moreover, an actuarial
application to collective risk model is shown by considering the proposed distribution as
primary distribution and exponential and Erlang as secondary distributions. The model
is applied to real data sets and found to perform better than other competing models.

Keywords: compound distribution, Poisson-Lindley distribution, over–dispersion, EM algo-
rithm, collective risk model, Bonus–Malus premium.

1. Introduction

Researchers in the recent past proposed many distributions, most popular being the gener-
alizations of exponential, gamma and Weibull distributions. Lindley (1958) suggested a one
parameter distribution to illustrate the difference between fiducial distribution and posterior
distribution. Ghitany et al. (2008) studied many statistical properties of the Lindley dis-
tribution and showed that the mathematical properties are more flexible than exponential
distribution, as such, Lindley distribution is found to be better model than exponential dis-
tribution. Many researchers viz. Zakerzadeh and Dolati (2009), Zamani and Ismail (2010),
Nadarajah (2011), Bakouch et al. (2012), Elbatal et al. (2013), Hassan (2014), Shanker
(2013) have proposed new classes of distributions by modifying the Lindley distribution and
discussed various properties of their proposed generalizations.
Sankaran (1970) while modelling count data, introduced Poisson-Lindley distribution, by as-
suming the parameter of the Poisson distribution, λ, to follow a Lindley distribution. Ghitany
et al. (2008) proposed different methods of estimation for the discrete Poisson-Lindley dis-
tribution. Ghitany et al. (2008) have used the zero truncated Poisson-Lindley distribution
to model count data when the data structurally excludes zero counts. Size-biased Poisson-
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Lindley Distribution and its application were also studied by Ghitany et al. (2008). Mahmoudi
et al.(2010) generalized the Poisson-Lindley distribution of Sankaran (1970) and showed that
their generalized distribution has more flexibility in analysing count data. Hernández et al.
(2010) in the context of insurance have used the Poisson-Lindley to study the collective risk
model when number of claims and size of a single claim are incorporated into the model.
Another form of discrete Lindley distribution was introduced by Gómez et al. (2011) by dis-
cretizing the continuous Lindley distribution. The model is over-dispersed and competitive
with the Poisson distribution to fit automobile claim frequency data sets. After revising some
of its properties a compound discrete Lindley distribution is obtained. Gómez et al. (2013)
analysed the collective risk model by assuming Erlang distribution to the loss data and gen-
eralised Lindley distribution to the claim frequency data.
In many potential branches like insurance, clinical trials, engineering, biology etc. the vari-
able of interest is a count variable. Though classical models like Poisson, geometric, negative
binomial, and their generalizations (see for example Philippou (1983), Gómez (2010, 2011),
Chandra et al. (2013), Sastry et.al. (2014)), are available for count data analysis, it is found
that these models are not supportive to capture the right tail behaviour of the data set prop-
erly. Few attempts have been made by researchers to capture this right tail behaviour (see
for example Gomez et al. (2013)), but not much work has been done. The importance of
right tail behaviour is illustrated in the following example.
In insurance industry, the actuary while fixing the premium, assumes a claim distribution
which may or may not be realised after a claim is made, therefore it becomes a challenge to
the actuary to develop new statistical distributions which take care of this subtle difference.
Besides properly fitting to the available data set, the proposed distribution has to capture
specific characteristics like shape and tail behaviour. The tail can either tapers out quickly or
slowly. When the tail approaches zero slowly, the extreme values can be properly understood.
Therefore, besides fitting properly to the data, the shape of the distribution should capture
the behaviour of extreme values also with their tendency to approach zero.
This critical observation has motivated the authors to search for a discrete distribution which
fades away to zero much more slowly/faster than the classical compound Poisson-Lindley
distribution by Sankaran (1970).
In this paper we propose a new generalized Poisson-Lindley distribution which is obtained
from Poisson distribution when its parameter λ, follows a two parameter Lindley distribution
(T PLD(θ, α)) as suggested by Shanker et al. (2013) defined as

f (x;α, θ) =
θ2

(θ + α)
(1 + αx)e−θx, x, α, θ > 0

The paper is structured as follows: In Section 2, a new distribution is proposed. Various
properties like shape, quantile function, generating function and moments are presented in
Section 3. An algorithm for simulation of random variable is shown in Section 4. Estimation
methods like method of moments, maximum likelihood estimation and EM algorithm are
discussed in Section 5. Section 6 addresses the actuarial application to auto mobile insurance
of the proposed model. In Section 7, applicability of the proposed model is shown, and com-
pared with other competing probability models. Moreover, by using Bayesian methodology,
Bonus-Malus premium for automobile insurance product is being computed and shown in
same Section 7.

2. Proposed model

Definition 1: A random variable X is said to be a new generalized Poisson-Lindley distri-
bution if it follows the stochastic representation

X|λ ∼ Po(λ)

λ|θ, α ∼ T PLD(θ, α)
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for λ > 0 and θ, α > 0. We denote unconditional distribution of by NGPL(θ, α).

Theorem 1: If X ∼ NGPL(θ, α), then probability mass function (pmf) of X is

f(x; θ, α) =
θ2

(θ + α)(1 + θ)x+1

(
1 +

α(x+ 1)

(1 + θ)

)
, x = 0, 1, 2, ...

with θ, α > 0.
Proof: If X|λ ∼ Po(λ) and λ|θ, α ∼ T PLD(θ, α), then pmf of unconditional random variable
X is given as

Pr(X = x) =

∞∫
0

Pr(X = x|λ)f(λ; θ, α)dλ

where f(λ; θ, α) is two parameter Poisson Lindley distribution.

Pr(X = x) =

∫ ∞
0

θ2e−λλx(1 + αλ)e−θλ

(θ + α)x!
dλ

=
θ2

(θ + α)x!

∫ ∞
0

e−λ(1+θ)λxdλ+
αθ2

(θ + α)x!

∫ ∞
0

e−λ(1+θ)λx+1dλ

=
θ2

(θ + α)x!

Γ(x+ 1)

(1 + θ)x+1
+

αθ2

(θ + α)x!

Γ(x+ 2)

(1 + θ)x+2

Pr(X = x) =
θ2

(θ + α)(1 + θ)x+1

(
1 +

α(x+ 1)

(1 + θ)

)
, x = 0, 1, 2, ... (1)

where θ > 0, α > 0.

Remarks

i For α→ 0, pmf (1) reduces to geometric distribution G
(

θ
1+θ

)
.

ii For α = 1, pmf (1) reduces to discrete Poisson-Lindley distribution proposed by Shan-
karan (1970).

iii For α→∞, pmf (1) tends to negative binomial NB(2, θ
1+θ ).

iv (1) can also viewed as a mixture of G( θ
1+θ ) and NB(2, θ

1+θ ) with mixing proportion θ
θ+α .

For different values of θ and α, the probability function is evaluated and presented in Figure
1. It can be observed that for fixed θ and increasing α, the distribution accommodates more
right tail, whereas, for fixed α and increasing θ, the distribution condenses and the right tail
approaches to zero at a faster rate. Our proposed model fits appropriately to those data sets
where there is large right tail or the tail approaches to zero at a faster rate. Such data sets
are quite common in insurance problems and count data example in biology.
The cumulative density function of X ∼ NGPL(θ, α) can be given as

FX(x) =
x∑

n=0

θ2

(θ + α)

(1 + θ + αn+ α)

(1 + θ)n+2

=
(α+ θ)(θ + 1)x+2 −

(
2αθ + α+ θ2 + θ + αθx

)
(θ + 1)x+2(α+ θ)

(2)

3. Properties of the new generalized Poisson-Lindley distribution

3.1. Shape of the probability function

It can be seen that

p(0) =
θ2(1 + α+ θ)

(α+ θ)(1 + θ)2
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Figure 1: Plots of the p.m.f.for different value of θ, α
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Figure 1: Pmf plots for different values of θ and α
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p(x+ 1)

p(x)
=

1 + (2 + x)α+ θ

(1 + θ)(1 + (1 + x)α+ θ)
, x = 1, 2, 3, · · · (3)

The above expression is a decreasing function in x implying unimodalilty. Further,

Pr(X = x+ 2)Pr(X = x)

(Pr(X = x+ 1))2
=

1 + α
1+θ+α(x+2)

1 + α
1+θ+α(x+1)

< 1 (4)

As such Pr(X = x) is log-concave and hence the distribution (1) has an increasing failure
rate, see Johnson et al.(2005), p. 209. It can also be verified that,

(i) For θ > 1, (1) is unimodal and has a unique mode at 0.

(ii) When 0 < θ ≤ 1 and α ≥ θ(θ+1)
1−θ , the mode of pmf (1) is unimodal and unique at [x∗]+1,

where [x∗] denotes integer part of x∗ defined as

x∗ =
α− θ − θα− θ2

αθ

(iii) For 0 < θ ≤ 1 and α ≤ θ(θ+1)
1−θ , the pmf (1) has mode at 0.

The above facts are shown in Fig. 1 for selected values of θ, α.

Further, if we define a ratio R = Pr(N1=n;θ,α)
Pr(N2=n,θ)

=
1+ 1+αx

α+θ

1+ 1+x
1+θ

, where N1 ∼ NGPL(θ, α) and

N2 ∼ PL(θ)(i.e. Poisson-Lindley), then we can observe, NGPL will have heavier (thinner)
right tail probability as compare to PL(θ) i.e R > (<)1 for α > (<)1 and x > (<)x0(= 1/θ).

3.2. Quantile function

Let X ∼ NGPL(θ, α), then the quantile function QX(γ) = F−1X (γ), 0 < γ < 1 is xγ given in
Theorem 2: The quantile function of the NGPL(θ, α) is

xγ = −

(
2αθ + α+ θ2 + θ

)
log(θ + 1) +W

(
− (1−γ)(θ+1)

−α+θ2+θ
αθ (α+θ) log(θ+1)
αθ

)
αθ log(θ + 1)

where W (.) denotes the Lambert W function.

Proof: The c.d.f of the distribution is

FX(x) =
(α+ θ)(θ + 1)x+2 −

(
2αθ + α+ θ2 + θ + αθx

)
(θ + 1)x+2(α+ θ)

the γth quantile function is obtained by solving FX(x) = γ.

γ = 1− αθx+ 2αθ + θ + θ2 + α

(1 + θ)x+2(α+ θ)

1− γ =
αθx+ 2αθ + θ + θ2 + α

(1 + θ)x+2(α+ θ)

Multiplying both sides of the above equation by − (1+θ)
−θ−θ2−α

αθ

αθ log(1 + θ) and after re-
arranging the terms, we get

− (α+ θ)(1− γ)(1 + θ)
−θ−θ2−α

αθ

αθ
log(1 + θ) = −

(
2αθ + αθx+ α+ θ + θ2

)
αθ

log(1 + θ)

∗e−
(2αθ+αθx+α+θ+θ2)

αθ
log(1+θ)
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Using definition of Lambert-W function (W (z)eW (z) = z, where z is a complex number, see
Joŕda (2010)), the right hand side of the above expression is the Lambert W function of the

real argument − (α+θ)(1−γ)(1+θ)
−θ−θ2−α

αθ

αθ log(1 + θ). Thus we have

W

−(1− γ)(θ + 1)−
α+θ2+θ
αθ (α+ θ) log(θ + 1)

αθ

 = − 1

αθ
log(1 + θ)

(
2αθ + αθx+ α+ θ + θ2

)
Solving the above equation for x, we get

xγ = F−1(γ) = −

(
2αθ + α+ θ2 + θ

)
log(θ + 1) +W

(
− (1−γ)(θ+1)

−α+θ2+θ
αθ (α+θ) log(θ+1)
αθ

)
αθ log(θ + 1)

(5)

The first three quantiles can be obtained by substituting γ = 1
4 ,

1
2 and 3

4 in equation (5).

Q1 = −2αθ + α+ θ2 + θ

αθ
−
W

(
−3(θ+1)

−α+θ2+θ
αθ (α+θ) log(θ+1)

4αθ

)
log(θ + 1)

Median = Q2 = −2αθ + α+ θ2 + θ

αθ
−
W

(
− (θ+1)

−α+θ2+θ
αθ (α+θ) log(θ+1)

2αθ

)
log(θ + 1)

Q3 = −2αθ + α+ θ2 + θ

αθ
−
W

(
− (θ+1)

−α+θ2+θ
αθ (α+θ) log(θ+1)

4αθ

)
log(θ + 1)

3.3. Generating functions

The Probability Generating Function of (1) is given by

PX(t) =
∞∑
x=0

tx
θ2

(θ + α)(1 + θ)x+1

(
1 +

α(x+ 1)

(1 + θ)

)

=

(
θ2

θ + α

)(
αθ + α+ θ2 + 2θ − θt− t+ 1

(θ + 1)(−θ + t− 1)2

)

PX(t) =
θ2(α+ θ − t+ 1)

(α+ θ)(θ − t+ 1)2
(6)

The Moment Generating Function works out to

MX(t) =
∞∑
x=0

etx
θ2

(α+ θ)(1 + θ)x+1

(
1 +

α(x+ 1)

(1 + θ)

)

= −
(
−α− θ + et − 1

(−θ + et − 1)2

)(
θ2

θ + α

)

MX(t) =
θ2
(
α+ θ − et + 1

)
(α+ θ) (θ − et + 1)2

(7)

3.4. Moments, skewness and kurtosis

The first four raw moments of X can easily be obtained by simple computations and are as
follows

µ′1 =
2α+ θ

θ(α+ θ)
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µ′2 =
2α(θ + 3) + θ(θ + 2)

θ2(α+ θ)

µ′3 =
θ
(
θ2 + 6θ + 6

)
+ 2α

(
θ2 + 9θ + 12

)
θ3(θ + α)

µ′4 =
2α
(
θ3 + 21θ2 + 72θ + 60

)
+ θ

(
θ3 + 14θ2 + 36θ + 24

)
θ4(θ + α)

(8)

and the moments of X about the mean are

µ2 =
2α2(1 + θ) + θ2(1 + θ) + αθ(4 + 3θ)

θ2(α+ θ)2

µ3 =
2α3

(
θ2 + 3θ + 2

)
+ α2θ

(
5θ2 + 18θ + 12

)
+ αθ2

(
4θ2 + 15θ + 12

)
+ θ3

(
θ2 + 3θ + 2

)
θ3(α+ θ)3

The expressions for skewness

(
µ3

µ
3/2
2

)
and kurtosis

(
µ4
µ22

)
are large and complicated; however

their values for different parametric values can be determine and are presented in Table 1.
Moreover, Figure 2 and 3, respectively, represents the surface plot of skewness and kurtosis
with α and θ as axes.

Table 1: Skewness (Kurtosis) for various value of parameter (θ, α)

θ ↓, α→ 0.5 1 1.5 2 2.5 3

0.25 1.556(6.676) 1.488(6.336) 1.464(6.225) 1.453(6.171) 1.446(6.139) 1.442(6.119)
0.50 1.708(7.460) 1.598(6.830) 1.550(6.586) 1.525(6.460) 1.509(6.383) 1.498(6.332)
1.00 1.916(8.210) 1.792(7.765) 1.723(7.188) 1.679(6.984) 1.650(6.851) 1.628(6.758)
1.50 2.063(8.240) 1.949(7.832) 1.875(7.547) 1.824(7.351) 1.787(7.212) 1.759(7.108)
2.00 2.186(7.989) 2.083(7.895) 2.010(7.734) 1.956(7.593) 1.915(7.479) 1.884(7.387)
2.50 2.297(7.675) 2.203(7.848) 2.132(7.823) 2.078(7.755) 2.035(7.682) 2.001(7.614)
3.00 2.401(7.387) 2.314(7.765) 2.246(7.865) 2.191(7.872) 2.148(7.846) 2.112(7.810)

Figure 2: Skewness Figure 3: Kurtosis

It can be seen from the above that for fixed θ, as α increases, both skewness and kurtosis
are decreasing. For fixed α, as θ increases, skewness is increasing while kurtosis is showing a
mixed behaviour.

The coefficient of variation (C.V) of the distribution comes out to be

C.V. =
σ

µ

=

(√
2α2(1 + θ) + θ2(1 + θ) + αθ(4 + 3θ)

θ2(α+ θ)2

)(
θ(α+ θ)

2α+ θ

)

C.V. =

√
2α2(1 + θ) + θ2(1 + θ) + αθ(4 + 3θ)

(2α+ θ)
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The index for dispersion is given by

r =
σ2

µ

=

(
2α2(1 + θ) + θ2(1 + θ) + αθ(4 + 3θ)

θ2(α+ θ)2

)(
θ(α+ θ)

2α+ θ

)

r =
2α2(θ + 1) + αθ(3θ + 4) + θ2(θ + 1)

θ(α+ θ)(2α+ θ)

As the new distribution comes from a mixture of a Poisson distribution and two parameter
Lindley distribution, the variance–to–mean ratio is greater than one (see Karlis (2005) and
Sundt and Vernic (2009), p. 66) the proposed distribution is over-dispersed.

4. Simulation of random variables

Note that, If Y ∼ P (λ) and λ follows a two parameter Lindley distribution, which can also
be represented as a mixture of two independent random variable V1 ∼ exp(θ) and V2 ∼
gamma(2, θ) with mixture parameter p = θ

θ+α , then following steps can be used to generate
NGPL(θ, α) random variates

Step 1: Generate Ui, i = 1, 2, ·, n from U(0, 1) distribution.

Step 2: If Ui ≤ θ
θ+α , generate λi ∼ exp(θ); otherwise, generate λi ∼ gamma(2, θ)

Step 3: Generate Yi, i = 1, 2, · · · , n, where Yi ∼ P (λi).

5. Estimation

5.1. Method of moments

Given a random sample x1, x2, · · · , xn of size n from (1), the moment estimates, α̃ and θ̃, of
α and θ can be obtained by solving the following equations

m1 = µ′1 =
2α+ θ

θ(α+ θ)
(9)

and

m2 = µ′2 =
2α(θ + 3) + θ(θ + 2)

θ2(α+ θ)
. (10)

where m1 and m2 are the first and second sample moments. Solving the above equations, we
get

α̃ =
θ̃ −m1θ̃

2

m1θ̃ − 2
and θ̃ =

2m1 +
√

4m2
1 + 2m1 − 2m2

m2 −m1
(11)

Theorem 3: For fixed α, the estimator θ̃ of θ is positively biased, i.e. E(θ̃) > θ.

Proof: Let θ̃ = g(X̄) and g(t) = 1−αt+
√
1+6αt+α2t2

2t for t > 0. Then

g′′(t) =
1

t3
+

9αt+ 3α3t3 + 15α2t2 + 1

t3 (1 + 6αt+ α2t2)3/2
> 0

therefore, g(t) is strictly convex. Thus, by Jensenś inequality, we have E
{
g(X̄)

}
> g{E(X̄)}.

Finally, since g{E(X̄)} = g
(

2α+θ
θ(α+θ)

)
= θ, we obtain E(θ̃) > θ.
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Theorem 4: For fixed values of α, the moment estimate θ̃ of θ is consistent and asymp-
totically normal and distributed as

√
n
(
θ̃ − θ

)
→d N

(
0, ν2(θ)

)
where ν2(θ) =

θ2(α+θ)2(2α2θ+2α2+3αθ2+4αθ+θ3+θ2)
(2α2+4αθ+θ2)2

.

Proof: Consistency : Since µ < ∞, X̄ →P µ. Also since g(t) = 1−αt+
√
1+6αt+α2t2

2t is a

continuous function at t = µ, g(X̄)→P g(µ) i.e. θ̃ →P θ.
Asymptotic normality: Since σ2 <∞, then by the central limit theorem, we have

√
n
(
X̄ − µ

)
→d N

(
0, σ2

)
Also, since g(µ) is differentiable and g′(µ) 6= 0, by the delta-method, we have

√
n
(
g
(
X̄
)
− g(µ)

)
→d N

(
0, ν2(θ)

)
where

ν2(θ) = [g′
(

2α+ θ

θ(α+ θ)

)
]2σ2

=
θ2(α+ θ)2

(
2α2θ + 2α2 + 3αθ2 + 4αθ + θ3 + θ2

)
(2α2 + 4αθ + θ2)2

Hence the theorem.
As a result of this, the asymptotic 100(1−γ)% confidence interval for θ is given by θ̂∓zα/2

ν(θ̂)√
n

,

where zα/2 is the (1− α/2) percentile of the standard normal distribution.

5.2. Maximum likelihood estimation

Let x1, x2, · · · , xn be random observations of size n from our proposed generalized Poisson-
Lindley distribution. The log-likelihood function for the vector of parameters Θ = (θ, α)>

can be written as

ln (α, θ |x) = 2n log θ − n log(θ + α)−
n∑
i=1

(xi + 1) log(1 + θ) +
n∑
i=1

log

(
1 +

α (xi + 1)

1 + θ

)
(12)

The associated score function is given by Un =
(
∂ln
∂θ ,

∂ln
∂α

)>
, where

∂ln
∂θ

=
2n

θ
− n

θ + α
− (

∑n
i=1 xi) + n

1 + θ
−

n∑
i=1

α (xi + 1)

(1 + θ + α (xi + 1)) (1 + θ)
(13)

∂ln
∂α

=
−n
θ + α

+
n∑
i=1

(xi + 1)

(1 + θ + α (xi + 1))
(14)

the ML estimator can be obtained by equating
(
∂ln
∂θ ,

∂ln
∂α

)>
(θ̂,α̂)

= (0, 0)>, hence we get

α̂ =
θ̂2x̄− θ̂
2− θ̂x̄

and
−n
θ̂ + α̂

+
n∑
i=1

(
xi + 1

1 + θ̂ + α̂ (xi + 1)

)
= 0

The second partial derivatives are given by
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∂2l

∂θ2
=

n∑
i=1

α (xi + 1) (α+ 2θ + αxi + 2)

(θ + 1)2 (α+ θ + αxi + 1) 2
+

n∑
i=1

xi + 1

(θ + 1)2
+

n

(α+ θ)2
− 2n

θ2

∂2l

∂θ∂α
=

n

(α+ θ)2
−

n∑
i=1

xi + 1

(α+ θ + αxi + 1) 2

∂2l

∂α2
= −

n∑
i=1

(xi + 1)2

(θ + 1)2
(
α(xi+1)
θ+1 + 1

)2 +
n

(α+ θ)2
(15)

The above equations can be solved numerically by using open source R software.

5.3. EM algorithm for a new generalize Poisson-Lindley distribution

The MLE of α and θ needs to be computed numerically. Newton-Raphson algorithm is one
of the standard methods to estimate the parameters. The algorithm requires second order
derivatives of the log-likelihood for all iterations which makes it quite complex. This problem
can be handled by another estimation method known as Expectation-Maximization (EM) (see
Dempster et al. (1977)). The EM algorithm consists of two steps: the E-step and the M-step.
E-Step computes the expectation of the unobservable part given the current values of the
parameters and M-step maximizes the complete data likelihood and updates the parameters
using the conditional expectations obtained in E-step. This procedure can be useful when
there are no closed-form expressions for estimating the parameters and the derivatives of the
likelihood are complicated.
To start with, a hypothetical complete-data distribution is defined with joint probability
function

g(X,λ; θ, α) =
θ2(1 + αλ)λxe−λ(1+θ)

(θ + α)x!
, θ > 0;α > 0

It is straightforward to verify that the E-step of an EM cycle requires the computation of

the conditional expectations of (λ|xi; θ(h), α(h)) and ( λ
1+αλ |xi;α

(h), θ(h)), say t
(h)
i and s

(h)
i

respectively, where (θ(h), α(h)) is the current estimate of (θ, α). Using,

g(λ|X) =
λx(1 + αλ)e−λ(1+θ)(1 + θ)x+2

x!(1 + θ + α(x+ 1))

t
(h)
i = E(λ|xi; θ(h), α(h)) =

(xi + 1)
(
1 + θ(h) + α(h) (xi + 2)

)
(
1 + θ(h)

) (
1 + θ(h) + α(h) (xi + 1)

)
s
(h)
i = E

(
λ

1 + αλ
|xi; θ(h), α(h)

)
=

xi + 1

1 + θ(h) + α(h)(θ(h) + 1)

The EM cycle completes with the M-step, involving complete data maximum likelihood over
(θ, α), with the missing λ’s replaced by their conditional expectations E(λ|x; θ(h);α(h)). Thus
the EM iterates

θ(h+1) =
−
(
t̄(h)α(h) − 1

)
+
√(

t̄(h)α(h) − 1
)2

+ 8t̄(h)α(h)

2t̄(h)

α(h+1) =
1

s̄(h)
− θ(h)

until defined convergence criterion is satisfied.

6. Collective risk model

In non-life insurance portfolio, say, automobile insurance, the aggregate loss (S) is a random
variable defined as sum of claims incurred in a certain period of time. Let N be number
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of claims in a certain period which is a random variable and Xi be claim severity random
variable, which is independent of N , is the size of ith claim. Thus, aggregate loss is defined

as S =
N∑
i=0

Xi. It is well known that the pdf of S is given as fs(x) =
∞∑
n=0

pnf
n∗(x), where

pn denotes the probability of n claims (primary distribution) and fn∗(x) is the nth fold
convolution of f(x), the claim amount (secondary distribution). For more detail on classic
risk model, see Freifelder (1974), Rolski et al. (1999), Nadarajah and Kotz (2006a and 2006b)
and Klugman et al. (2012) and reference therein. Here, we consider two such situations: In
one case, the primary distribution is as defined in Section 1 and claim severity distribution
as exponential distribution with parameter (λ). In the second case, the Erlang distribution
with parameters r and λ is the secondary distribution. Erlang loss distribution may arise in
insurance settings when the individual claim amount is the sum of exponentially distributed
claims.

Theorem 5: If we assume a NGPL(θ, α) as primary distribution and an exponential distri-
bution with parameter (λ) as secondary distribution, then the pdf of aggregate loss random

variable S =
N∑
i=0

Xi is given by

fS(x) =
θ2λe−

θλx
θ+1

(
2αθ + 2α+ θ2 + 2θ + αλx+ 1

)
(1 + θ)4(θ + α)

, for x > 0 (16)

whereas,

fS(0) =
θ2 (1 + α+ θ)

(θ + α)(1 + θ)2

Proof: By assuming that the claim severity follows an exponential distribution with parameter
λ > 0, since the nth fold convolution of exponential distribution is gamma distribution with
parameter n and λ, the nth fold convolution is given by

f∗n(x) =
λn

(n− 1)!
xn−1e−λx, n = 1, 2, ...,

Then the pdf of the random variable S is given by

fS(x) =
∞∑
n=1

θ2

(θ + α)(1 + θ)n+1

(
1 +

α(n+ 1)

1 + θ

)
λn

(n− 1)!
xn−1e−λx

=
θ2e−λx

(θ + α)

∞∑
n=1

λn

(1 + θ)n+1(n− 1)!
xn−1

(
1 +

α(n+ 1)

1 + θ

)

=
θ2e−λx

(θ + α)

e
xλ
1+θλ

(
1 + 2α+ xαλ+ 2θ + 2αθ + θ2

)
(1 + θ)4

fS(x) =
θ2λe−

θλx
1+θ

(
2αθ + 2α+ θ2 + 2θ + αλx+ 1

)
(θ + α)(1 + θ)4

The pdf of the aggregate loss has a jump of size Pr(S = 0) at the origin. The no claim
probability comes out to be

fS(0) =
θ2(1 + α+ θ)

(θ + α)(1 + θ)2

It is well known in the actuarial literature that the mean of the aggregate loss random variable
S can be obtained as E(S) = E(X)E(N) (see eqn. 9.9 of Klugman(2012)). Hence, when
X ∼ exp(λ) then

E(S) =
2α+ θ

λθ(α+ θ)
(17)

Theorem 6: In collective risk model, if the primary distribution follows NGPL(θ, α) and
the secondary distribution follows an Erlang(2,λ) distribution, then the pdf of aggregate loss
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random variable S =
N∑
i=0

Xi is given by

fS(x) =
θ2e−λxλ

(
(θ + 1)(3α+ 2θ + 2) sinh

(
λx√
θ+1

)
+ α
√
θ + 1λx cosh

(
λx√
θ+1

))
2(θ + α)(θ + 1)7/2

for x > 0

(18)
whereas

fS(0) =
θ2 (1 + α+ θ)

(θ + α)(1 + θ)2

Proof: By assuming that the claim severity follows an Erlang(2,λ) distribution, the nth fold
convolution of exponential distribution is gamma distribution with parameter 2n and λ. The
nth fold convolution is given by

f∗n(x) =
λ2n

(2n− 1)!
x2n−1e−λx, n = 1, 2, · · · ,

Then, the pdf of the aggregate loss random variable S is given by

fS(x) =
∞∑
n=1

θ2

(θ + α)(1 + θ)n+1

(
1 +

α(n+ 1)

1 + θ

)
λ2n

(2n− 1)!
x2n−1e−λx

=
θ2e−λx

(θ + α)

∞∑
n=1

λ2n

(1 + θ)n+1(2n− 1)!
x2n−1

(
1 +

α(n+ 1)

1 + θ

)

=
θ2e−λx

(θ + α)

λ
(
(θ + 1)(3α+ 2θ + 2) sinh

(
λx√
θ+1

)
+ α
√
θ + 1λx cosh

(
λx√
θ+1

))
2(θ + 1)7/2

fS(x) =
θ2e−λxλ

(
(θ + 1)(3α+ 2θ + 2) sinh

(
λx√
θ+1

)
+ α
√
θ + 1λx cosh

(
λx√
θ+1

))
2(θ + α)(θ + 1)7/2

The pdf of the aggregate loss random variable has a jump of size Pr(S = 0) at the origin.
The probability of zero claim comes out to be

fS(0) =
θ2(1 + α+ θ)

(θ + α)(1 + θ)2

7. Application to real data set

In this section, we fit our proposed distribution to 3 data sets so as to illustrate our claim
that our proposed model fits well when compared to other competing models. The first data
set has a long right tail and approaches to zero slowly and in the other data sets the right
tail approaches zero at a faster rate. In one of the illustrations, we propose a method for
calculation of automobile insurance premium under Bonus–Malus system.

Illustration 1: A dataset representing epileptic seizure counts (see Chakraborty (2010)) are
used. Comparability of the proposed model with other distributions like Poisson distribution
(P), negative binomial (NB), Generalized Poisson-Lindley (GPL) and Weighted Generalized
Poisson (WGP) Distribution (Chakraborty (2010)) have been shown in Table 2. In each of
these distributions, the parameters are estimated by using the maximum likelihood method.
Further, based on the values of log likelihood and chi-square, we observe that New General-
ized Poisson-Lindley (NGPL) distribution provides a satisfactorily better fit for the data set
compared to other distributions.

It can be seen that the log-likelihood and Chi-square statistic for the NGPL are lower that
those of competing models showing that our model satisfactorily fits better to the data set.



Austrian Journal of Statistics 47

Table 2: Distribution of epileptic seizure counts

Observed Expected frequency

Count frequency P NB WGP GPL NGPL
0 126 74.94 91.00 118.11 121.51 122.00
1 80 115.71 86.60 95.81 92.00 91.00
2 59 89.34 63.37 59.89 59.00 58.74
3 42 46.00 42.57 34.49 35.10 35.22
4 24 17.75 27.60 19.24 20.10 20.52
5 8 5.48 17.60 10.59 11.18 11.22
6 5 1.41 10.50 5.81 6.10 6.39
7 4 0.31 6.52 3.18 3.30 3.25
8 3 0.06 5.00 3.88 2.71 2.50

Total 351 351 351 351 351 351

parameter λ̂=1.544 r̂=1.757, â=1.089, θ̂=1.139, θ̂ =1.116,

p̂=.463 ŝ=-1,b̂=.295 α̂=1.292 α̂ = 2.9061

Log likelihood -636.05 -595.22 -595.83 -594.61 -594.48

Chi square 256.54 22.53 7.12 5.94 5.75

Illustration 2: Klugman et al. (2012, pp. 664) presented the distribution of automobile
insurance policyholders according to number of claims. We reproduce the data set in Table
3. It is found that this data set is highly right skewed and over–dispersed (variance is greater
than mean). We mentioned in the text that our proposed model can be applied to such over-
dispersed data sets. We chose chi-square statistic χ2 =

∑
n

(
(On − En)2/En

)
for comparison

purposes and calculated this statistic for other competing models Poisson, Negative Binomial,
Poisson-Lindley, Generalized Poisson-Lindley Distribution.

Table 3: Number of claims in automobile insurance

Observed Expected frequency

Claim count frequency P NB PL GPL NGPL
0 1563 1544.153 1566.40 1569.525 1566.407 1564.504
1 271 299.772 261.500 256.341 261.384 264.251
2 32 29.1 40.146 41.340 40.202 39.686
3 7 1.883 5.990 6.600 5.985 5.589
4 2 0.0914 0.880 1.044 0.874 0.870

Total 1875 1875 1875 1875 1875 1875

parameter λ̂=0.19413 τ̂= 6.135, θ̂=5.898, θ̂=6.6715, θ̂ =7.8747
â=1.191 α̂=1.1648 α̂=8.835

χ2-value 57.04 3.610 3.874 3.655 3.489

From the above calculations, it appears that our proposed model fits better to the data set.

Illustration 3: It is known that Poisson distribution is not a suitable choice for automoble
insurance claims because of the restriction that mean equals variance for Poisson distribu-
tion. As such, Negative Binomial distribution is preferred in this case. In many countries
Bonus–Malus system (BMS) is operative wherein policyholders with no claims are given bonus
whereas policyholders with claims are punished. Therefore, next year premium depends on
the history of the policyholder till this year irrespective of size of the claim. Gómez and
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Vázquez (2003) calculated the premium under BMS by

Pt+1 = 100
Ef(λ|n )(δ(λ))

Ef(λ)(δ(λ))

where δ(λ) =
∞∑
n=0

nP (N = n|λ), f(λ) is the prior distribution and f(λ|n) is the poste-

rior distribution. Thus for sequence of independent and identical distributed claims n =
(n1, n2, · · · , nt), we can see that the posterior distribution is easy to obtain by dividing the
mixing distribution by the marginal distribution as follows.

f(λ|n) =
P (n|λ)f(λ)∫∞

0 P (n|λ)f(λ)dλ

Thus,

Pt+1 = 100

n+1
t+θ

(
1 + α

t+θ+α(n+1)

)
1
θ

(
1 + α

θ+α

) (19)

Using the data presented in Table 3, we have computed the BMPs which are shown in Table 5.
Finally, while calculating the premium under BMS, Lemaire (1979) remarked on the problem
of overcharges. It can be seen that NGPL model produces a lower penalization as compared
to traditional Poisson-Gamma models (as shown in Table 4 and 5)

Table 4: BMP using Poisson-Gamma model

t ↓ n→ 0 1 2 3 4

0 100
1 85.9845 158.1799 230.3752 302.5704 374.7657
2 75.4148 138.7355 202.0561 265.3768 328.6974
3 67.1592 123.5483 179.9372 236.3262 292.7152
4 60.5328 111.3580 162.1832 213.0084 263.8336

Table 5: BMP using new generalized Poisson-Lindley distribution

t ↓ n→ 0 1 2 3 4

0 100
1 86.9991 154.7229 217.6116 278.5636 338.5467
2 76.7979 137.7936 194.5001 249.4317 303.4587
3 68.6009 124.0580 175.6913 225.6937 274.8505
4 61.8849 112.7019 160.0944 205.9848 251.0835

8. Final comments

This paper provides a new generalized discrete distribution with an infinite and non-negative
integer support. It has been shown that the proposed distribution can be considered as an al-
ternative to well known distribution like Poisson, Poisson-Lindley, negative binomial, weighted
generalized Poisson Distribution for the dataset possessing a right tail which approach to zero
at a slower/faster rate. Further, in the context to actuarial science, close expression of pdf of
aggregate loss random variable is obtained by considering our proposed distribution as primary
distribution and exponential and Erlang distributions as secondary distributions. Moreover,
our proposed model can also be useful in the determination of Bonus–Malus premium for
non-life insurance products.
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