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Abstract
In order to avoid well-know paradoxes associated with self-

referential definitions, higher-order dependent type theories

stratify the theory using a countably infinite hierarchy of

universes (also known as sorts), Type0 : Type1 : · · · . Such

type systems are called cumulative if for any typeAwe have

that A : Typei implies A : Typei+1. The predicative calculus
of inductive constructions (pCIC) which forms the basis of

the Coq proof assistant, is one such system.

In this paper we discuss the predicative calculus of cu-

mulative inductive constructions (pCuIC) which extends

the cumulativity relation to inductive types. We also dis-

cuss cumulative inductive types as they are supported in the

soon-to-be-released Coq 8.7.

Keywords Coq, Proof Assistants, Inductive Types, Universe

Polymorphism, Cumulativity

1 Introduction
In higher-order dependent type theories every type is a term

and hence has a type. As expected, having a type of all types

which is a term of its own type, leads to inconsistencies

such as Girard’s paradox [10] and Hurken’s paradox [13]. To

avoid this, these theories usually feature a countably infinite

hierarchy of universes also known as sorts:

Type0 : Type1 : Type2 : · · ·

Such type systems are called cumulative if for any type A
we have that A : Typei implies A : Typei+1. The predicative
calculus of inductive constructions (pCIC) at the basis of the

Coq proof assistant [7], is one such system.

Earlier work [19] on universe-polymorphism in Coq al-

lows constructions to be polymorphic in universe levels.

The quintessential universe-polymorphic construction is the

polymorphic definition of categories:

Record Categoryi,j :=

{ Obj : Type{i};

Hom : Obj → Obj→ Type{j};

· · · }.1

∗
This research was partly carried out while I was visiting Inria Paris and

Université Paris Diderot and partly while I was visiting Aarhus university.

1
Records in Coq are syntactic sugar for an inductive type with a single

constructor.
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However, pCIC does not extend the subtyping relation

(induced by cumulativity) to inductive types. As a result

there is no subtyping relation between instances of a universe

polymorphic inductive type. That is, for a category C, having

both C : Categoryi,j and C : Categoryi′,j′ is only possible if

i = i′ and j = j′.
In this work, we build upon the preliminary and in-progress

work of Timany and Jacobs [22] on extending pCIC to pCuIC

(predicative Calculus of Cumulative Inductive Constructions).

In pCuIC, subtyping of inductive types no longer imposes

the strong requirement that both instances of the inductive

type need to have the same universe levels. In addition, in

pCuIC we consider two inductive types that are in mutual

cumulativity relation to be judgementally equal. This cu-

mulativity relation is also extended to the constructors of

inductive types. In particular in pCuIC, in order for a term

C : Categoryi,j to have the type Categoryi′,j′ , i.e., for the

cumulativity relation Categoryi,j ⪯ Categoryi′,j′ it is only

required that i ≤ i′ and j ≤ j′. This is indeed what a math-

ematician would expect when universe levels of the type

Category are thought of as representing (relative) smallness

and largeness. For more details on representing (relative)

smallness and largeness in category theory using universe

levels see Timany and Jacobs [23].

1.1 Contributions
Timany and Jacobs [22] give an account of then work-in-

progress on extending pCIC with a single cumulativity rule

for cumulativity of inductive types. The authors show a

rather restricted subsystem of the system that they present

to be sound. This subsystem roughly corresponds to the

fragment where terms of cumulative inductive types do not

appear as dependent arguments in other terms. The proof

given in Timany and Jacobs [22] is done by giving a syntactic

translation from that subsystem to pCIC. In this paper, we

extend and complete the work that was initiated by Timany

and Jacobs [22].

In particular, in this work, we consider a more general

version of the cumulativity rule for inductive types. Adding

to this, we also consider related rules for judgemental equal-

ity of inductive types which are given rise to by the mu-

tual cumulativity relation and also judgemental equality of

the terms constructors of types in the cumulativity relation.

These allow us to mimic most of the functionality of template
polymorphism, a feature of Coq which allows, under certain

conditions that we will explain in the sequel, two instances

1
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of the same inductive type at different universe levels to be

unified.

Another contribution of the present work is that the sys-

tem as presented is proven to be sound. We do this by con-

structing a set-theoretic model in ZFC, together with the

axiom that there are countably many uncountable strong

limit cardinals, inspired by the model of Lee and Werner

[14]. The cumulativity of inductive types as presented in this

paper is now supported in the soon-to-be-released version

of Coq, Coq 8.7 [21].

The structure of the reset of the paper In Section 2 we

present the system pCIC. Section 3 discusses universes in

pCIC in more details discussing how pCIC treats universe

polymorphic constructions and also how template polymor-

phism treats monomorphic constructions.

Section 4 presents the system pCuIC and describes how

cumulativity relation is extended to inductive types. In Sec-

tion 5 we present our model of pCuIC in ZFC set theory and

prove soundness of pCuIC. Section 6 briefly describes the

implementation of pCuIC in Coq.

In Section 7 we give a short discussion of related and

future work. We conclude with a discussion in Section 8.

2 Predicative calculus of inductive
constructions (pCIC)

In this section we give a short account of the system pCIC.

Note that this system does not feature universe polymor-

phism.We will discuss universe polymorphism in Section 3.2.

The full system (pCuIC and pCIC being its sub-system) can

be found in Timany and Sozeau [24]. We first introduce the

basic objects of the core system. The sorts of pCIC are as

follows:

Prop, Set = Type0, Type1, Type2, . . .

We write the dependent product (function) type as Πx : A. B.
This is the type of functions that given t : A, produce a result
of type B [t/x]. We write lambda abstraction in the Church

style λx : A. t . The Church style let bindings, letx := t :

A inu, and function applications, M N , are represented as

usual. Figure 1 shows an excerpt of the typing rules for the

basic constructions above. There are three different judge-

ments in this figure. Well formedness of typing contexts

WF (Γ), the typing judgement, Γ ⊢ t : A, i.e., term t has
typeA under the typing context Γ, and judgemental equality,

Γ ⊢ t ≃ t ′ : A, i.e., terms t and t ′ are judgementally equal

terms of typeA under the typing context Γ. Most of the basic

constructions (wherever it makes sense) come with a rule for

judgemental equality. These rules indicate which parts of the

constructions are sub-terms that can replaced by some other

judgementally equal term. For example, the rule Prod-eq

states that the domain and codomain of (dependent) func-

tion type can be replaced by judgementally equal terms. The

relation Rs (s1, s2, s3) determines the sort of the product type

WF-ctx-empty

WF (·)

WF-ctx-hyp

Γ ⊢ A : s x < dom(Γ)

WF (Γ,x : A)

WF-ctx-def

Γ ⊢ t : A x < dom(Γ)

WF (Γ, (x := t : A))

Prop

WF (Γ)

Γ ⊢ Prop : Typei

Hierarchy

WF (Γ) i < j

Γ ⊢ Typei : Typej

Var

WF (Γ) x : A ∈ Γ or (x := t : A) ∈ Γ

Γ ⊢ x : A

Let

Γ, (x := t : A) ⊢ u : B

Γ ⊢ letx := t : A inu : B [t/x]

App

Γ ⊢ M : Πx : A. B Γ ⊢ N : A

Γ ⊢ M N : B [M/x]

Prod

Γ ⊢ A : s1 Γ,x : A ⊢ B : s2 Rs (s1, s2, s3)

Γ ⊢ Πx : A. B : s3

Prod-eq

Γ ⊢ A ≃ A′ : s1 Γ,x : A ⊢ B ≃ B′ : s2 Rs (s1, s2, s3)

Γ ⊢ Πx : A. B ≃ Πx : A′. B′ : s3

Lam

Γ,x : A ⊢ M : B Γ ⊢ Πx : A. B : s

Γ ⊢ λx : A.M : Πx : A. B

App-eq

Γ ⊢ M ≃ M ′ : Πx : A. B Γ ⊢ N ≃ N ′ : A

Γ ⊢ M N ≃ M ′ N ′ : B [M/x]

Figure 1. An excerpt of the typing rules for the basic con-

structions

based on the sort of the domain and codomain. The relation

is defined as follows:

Rs (Typei , Typej , Typemax{i, j } ) Rs (Prop, Typei , Typei )

Rs (s, Prop, Prop)

Note the impredicativity of the sort Prop enforced by this

relation.

2
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2.1 Inductive types and eliminators
In this paper we consider blocks of predicative (not in Prop)
mutual inductive types. We do not consider nested inductive

types or inductive types in the sort Prop. An example of a

nested inductive type is the type of finitely branching trees

Ftree where each node has a list of trees as its children

where the type of list A is the well-known inductive type

of lists defined in the usual way.

Inductive Ftree :=

| Fleaf : Ftree

| Fnode : list Ftree→ Ftree.

Notice that nested inductive types do not satisfy the strict

positivity (see below) constraints as is usually required of

inductive types. However, they can be encoded using mutual

inductive types and this is why they are considered admissi-

ble and are featured in Coq. For instance, we can encode the

nested inductive type Ftree by defining a type isomorphic to

list Ftree mutually together with Ftree and then inserting

coercions to and from this type to list Ftree as necessary.

This is indeed what the Lean proof assistant [4] does under

the hood to handle nested inductive types which are not

featured in its kernel. Also note that most inductive types

in Prop can be encoded using their Church encoding. For

instance, the type False and conjunction of two predicates

can be defined as follows:

Definition conj (P Q : Prop) :=

∀ ( R : Prop), ( P → Q→ R)→ R.

Definition False := ∀ ( P : Prop), P.

We write Indn {∆I := ∆C } for an inductive block where n
is the number of parameters, ∆I is list of of inductive types

of the block and ∆C is the list of constructors. The arguments

of an inductive type that are not parameters are known as

indices. The following are some of the examples of inductive

types written in this format.

Natural numbers:

Ind0{nat : Set := Z : nat, S : nat → nat}

Lists:

Ind1{list : ΠA : Set. Set := nil : ΠA : Set. list A,

cons : ΠA : Set.A→ list A→ list A}

Vectors:

Ind1{vec : ΠA : Set. nat → Set :=

vnil : ΠA : Set. vec A Z ,

vcons : ΠA : Set.Πn : nat.A→ vec A n → vec A (S n)}

The mutual inductive encoding of finitely branching trees

above:

Ind0{FTree : Type0, Forest : Type0 :=

leaf : FTree, node : Forset → FTree,

Fnil : Forest, Fcons : FTree → Forest → Forest}

Note that the type Forest above is isomorphic to the type

list FTree.
Figure 2 shows the typing rules for inductive types and

their eliminators. Rule Ind-WF describes when an inductive

type is well-formed. It requires that all inductive types and

constructors of the block are well-typed. Inductive types

should have the type of their declared sorts and constructors

should have the type of the sort to which the inductive type

that they construct belongs. The set Constrs(∆C ,d ) is the set
of constructors in ∆C that produce something of type d . The
proposition In (Γ,∆I ,∆C ) describes the syntactic constraints
for well-formedness of an inductive block. For precise details

see Timany and Sozeau [24]. It states, among other require-

ments, that all inductive types in the block have the same

parameters and these parameter arguments are also the first

arguments of every constructor in the block. Parameters

need also be uniform in the sense that the result of each

constructor should be an inductive type in the block whose

arguments for parameters are exactly the parameters of the

block but not in the arguments of constructors. Notice that

all inductive types above satisfy these criteria. Both construc-

tors of the type vec, for instance, start with the argument

A : Type0 and also they both construct a vector vec A n for

some natural number n. This is essentially the difference

between parameters and indices.

In addition,In (Γ,∆I ,∆C ) also requires that all occurrences
of inductive types of the block in any of the constructors

of the block are strictly positive. Strict positivity, roughly

speaking, states that each argument A of a constructor is in

one of the following two situations.

• No inductive type of the block appears in A
• The type A is of the form Π #»x :

#»
B .d where d is one

of the inductive types of the block and crucially no

inductive type of the block appears in

#»
B . Also, A is a

non-dependent argument of the constructor, i.e., the

constructor is of the form Π #»x :

#»
T .A→ #»y :

#»
U .d ′.

In other words, any inductive type of the block either does

not appear in a constructor or the type of the argument that

it appears in is a function with codomain that inductive type

where no inductive type of the block appears in the domain.

The rules Ind-type and ind-constr state that if there

is an already-declared inductive block D then its inductive

types and constructors have the types declared in the block

D.

Remark 2.1. Note that the names of inductive types and
constructors of an inductive block in a typing context are not
part of the domain of that context. Also note that we never
refer to an inductive type or constructor of a block without
mentioning the block itself. We always write D .x to refer to
an inductive type or a constructor x in the block D.
In particular, we require for well-formed contexts that no

variable appears in the domain of the context more than once.
This restriction does not apply to inductive types as we can

3
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Ind-WF

In (Γ,∆I ,∆C ) Γ ⊢ A : sd for all (d : A) ∈ ∆I Γ,∆I ⊢ T : sd for all (c : A) ∈ ∆C if c ∈ Constrs(∆C ,d )

WF (Γ, Indn {∆I := ∆C })

Ind-type

WF (Γ) D ≡ Indn {∆I := ∆C } ∈ Γ di ∈ dom(∆I )

Γ ⊢ D .di : ∆I (di )

Ind-constr

WF (Γ) D ≡ Indn {∆I := ∆C } ∈ Γ c ∈ dom(∆C )

Γ ⊢ D .c : ∆C (c )
[

#»

d /
#     »

∆I .d
]

Ind-Elim

WF (Γ) D ≡ Indn {∆I := ∆C } ∈ Γ dom(∆I ) = {d1, . . . ,dl } dom(∆C ) = {c1, . . . , cl ′ }

Γ ⊢ Qdi : Π
#»x :

#»
A . (di

#»x ) → s ′ where ∆I (di ) ≡ Π #»x :

#»
A . s for all 1 ≤ i ≤ l

Γ ⊢ t : D .dk
#»m Γ ⊢ fci : ξ

#»
Q
D
(ci ,∆C (ci )) for all 1 ≤ i ≤ l ′

Γ ⊢ Elim(t ;D .dk ;Qd1 , . . . ,Qdl )
{
fc1 , . . . , fcl ′

}
: Qdk

#»m t

Figure 2. Inductive types and eliminators

have multiple inductive types that share the same name for
inductive types and/or constructors.

Eliminators
In this work, we consider eliminators for inductive types

as opposed to Coq’s structurally recursive definitions, i.e.,

Fixpoints and match blocks in Coq. Note however that these

can be encoded using eliminators as they are presented here

[16] using the accessibility proof of the subterm relation,

definable for any (non-propositional) inductive family.

Rule Ind-Elim in Figure 2 describes the typing for elim-

inators. As inductive types in a mutually inductive block

can appear in one another the elimination also needs to be

defined for the whole block. We write

Elim(t ;D .dk ;Qd1 , . . . ,Qdl )
{
fc1 , . . . , fcl ′

}
(1)

for the elimination of t that is of type of the inductive type
D .dk (applied to values for parameters and indices). The

term Qdi is the motive of elimination for the inductive type

D .di . This is basically a function that given the
#»a andu such

that u has type D .di
#»a produces a type (a term of some sort

s ′). The idea is that eliminating the term u should produce a

term of type Qdi
#»a u. Note that the result of the elimination

above (1) is a term of type Qdk
#»

b t where t has type dk
#»

b .
In the elimination above the terms fci are case-eliminators.

The case-eliminator fci is a functions that describes the elim-

ination of terms that are constructed using the construc-

tor ci . The term fci is a function that given terms are ex-

pected to take arguments of the constructor ci together with
the result of elimination of the (mutually) recursive argu-

ments of the constructors produces a term of the appropriate

type (according to the corresponding motive). This function

type is exactly what is formally defined as ξ
#»
Q
D
(ci ,∆C (ci )).

Here we do not give a formal definition for these types of

case-eliminators and refer interested readers to Timany and

Sozeau [24]. As a simple example of how these eliminators

Beta

Γ,x : A ⊢ M : B Γ,x : A ⊢ B : s Γ ⊢ N : A

Γ ⊢ (λx : A.M ) N ≃ M [N /x] : B [N /x]

Delta

WF (Γ) x := t : A ∈ Γ

Γ ⊢ x ≃ t : A

Eta

Γ ⊢ t : Πx : A. B

Γ ⊢ t ≃ λx : A. t x : Πx : A. B

Figure 3. An excerpt of judgemental equality rules

are used consider the following definition of induction prin-

ciple of natural numbers as defined above:

nat_ind ≜ λP : nat → Prop.λpz : P Z .

λps : Πx : nat. P x → P (S x ).

λn : nat. Elim(n; nat; P )
{
pz, ps

}
The term nat_ind above has the type

ΠP : nat → Prop. (P Z ) → (Πx : nat. P x → P (S x ))

→ Πn : nat. P n

2.2 Judgemental equality
Figure 3 depicts an excerpt of the rules for judgemental

equality. The rules Beta and Eta correspond to β and η
equivalence. The rule Delta corresponds to unfolding of def-

initions. In this figure, we have elided the rules that specify

that judgemental equality is an equivalence relation. The

rules Zeta and Iota, respectively corresponding to expan-

sion of let-ins and simplification of eliminators are also elided

in Figure 3. The rule Iota basically states that when the term

being eliminated is a constructor c applied to certain values,

4
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Prop-in-Type

· ⊢ Prop ⪯ Typei

Cum-Type

i ≤ j

· ⊢ Typei ⪯ Typej

Cum-Prod

Γ ⊢ A1 ≃ B1 : s Γ,x : A1 ⊢ A2 ⪯ B2

Γ ⊢ Πx : A1.A2 ⪯ Πx : B1. B2

Cum

Γ ⊢ t : A Γ ⊢ A ⪯ B

Γ ⊢ t : B

Eq-Cum

Γ ⊢ M ≃ M ′ : s

Γ ⊢ M ⪯ M ′

Figure 4. An excerpt of conversion and cumulativity rules

of pCIC

then the result of elimination is judgementally equal to the

corresponding case-eliminator fc applied to the arguments

of the constructor where (mutually) recursive arguments are

appropriately eliminated. See Timany and Sozeau [24] for

details.

2.3 Conversion/Cumulativity
Figure 4 shows an excerpt of conversion/cumulativity rules.

The core of these rules is the rule Cum. It states that when-

ever a term t has type A and the conversion/cumulativity

relationA ⪯ B holds, then t also has type B. The rule Eq-Cum
says that two judgementally equal (convertible) typesM and

M ′ are in conversion/cumulativity relation M ⪯ M ′. The
rules Prop-in-Type and Cum-Type specify the order on the

hierarchy of sorts. The rule Cum-Prod states the conditions

for conversion/cumulativity relation between two (depen-

dent) function types. Note in this rule that functions are

not contravariant in their domain type. This is also the case

in Coq. Note that this condition is crucial for the construc-

tion of our set-theoretic interpretation of the type system as

set-theoretic functions are not contravariant.

3 Universes in Coq and pCIC
In the system that we have presented in this section, and

for most of this paper, we consider a system where sorts are

explicitly specified. However, Coq enjoys a feature known

as typical ambiguity. That is, users need not write the sorts

explicitly. These are inferred by Coq. The idea here is that

it suffices that there are universe levels that can be placed

in the appropriate place in the code for the code to make

sense and respect consistent universe constraints. From a

derivation with a consistent set of universe constraints one

can always derive a pCIC derivation using a valuation of

the floating universe variables into the U0 . . .Un universes.

This is exactly what is guaranteed using global algebraic

universes and a global set of constraints on algebraic universe

variables. In this sense the system pCIC as briefly discussed

above forms a basis for Coq.

Universe polymorphism [19] extends Coq so that construc-

tions can be made universe polymorphic, i.e., parameterized

by some universe variables, following Harper and Pollack’s

seminal work [12]. That is, each universe polymorphic defini-

tion will carry a context of universes that it is parameterized

with together with a local set of constraints. The idea here is

that any instantiation of a universe polymorphic construc-

tion with universe levels that satisfy the local constraints is

an acceptable one. The system is justified by a translation to

pCIC as well, making “virtual” copies of every instance of

universe polymorphic constants and inductive types.

In this section we discuss these two features and how they

treat inductive definitions. For the rest of this paper we will

consider the systems pCIC and its extension pCuIC without

either typical ambiguity or universe polymorphism. When

describing the system pCuIC we will consider how changes

to the base theory allows a different treatment of universe

polymorphic inductive types compared to pCIC.

3.1 Typical ambiguity, global algebraic universes
and template polymorphism

The user can only specify Prop, Set or Type. This is done
by considering a collection of global algebraic universes (as

opposed to local ones in universe polymorphic constructions

as we will see). These universes are generated from the car-

rier set {Set} ∪ {Uℓ, |ℓ ∈ L} for some countably infinite set

of labels L with the operations max and successor (+1). 2

Each use of the sort Type is replaced with some TypeUℓ for

some fresh algebraic universe Uℓ . A global consistent set of
constraints on the algebraic universes is kept at all times.

When Coq type checks a construction, if necessary, it adds

some constraints to this global set of constraints. If adding

these constraints renders the global set of constraints incon-

sistent then the definition at hand is rejected with a universe
inconsistency error.

Let us consider the example of lists in Coq
3
.

Inductive list (A : Type@{Uℓ}) : Type@{Uℓ} :=

| nil : list A

| cons : A → list A→ list A.

When Coq processes the inductive definition of lists above

no constraint about Uℓ is added to the set of constraints.

However the following set of constraints are added as the

following definitions are processed:

Definition nat_list := list nat.

( ∗ constraint added : Uℓ ≥ Set ∗)

2
In Coq, the sort Prop is treated in a special way. In particular, Prop is

never unified with a universe TypeUℓ for any algebraic universe Uℓ .
3
Here we show algebraic universe levels for the sake of clarity. These

neither need to be written by the user nor are visible unless explicitly asked

for.
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Definition Set_list := list Set.

( ∗ constraint added : Uℓ > Set ∗)

Definition Type_list := list Type.

( ∗ constraint added : Uℓ > Uℓ′ for some fresh Uℓ′

for the occurrence of Type above ∗)

Template Polymorphism Template polymorphism is a

simple form of universe polymorphism for non-universe poly-
morphic inductive types. It only applies to certain inductive

types. These are inductive types whose sorts appear only in

one of their parameters and nowhere else in that inductive

type. A prime example is the definitions lists above. The sort

of the inductive type appears only in the type of the only

parameter. In case template polymorphism applies, different

instantiations of the inductive typeswith different arguments

for parameters can have different types. For instance, the

terms above have different types:

Check (list nat).

( ∗ list nat : Set ∗)

Check (list Set).

( ∗ list Set : Type@{Set+1} ∗)

Here Type@{U} is Coq syntax for TypeU. This feature is very
important for reusability of the basic constructions such

as lists. Crucially, template polymorphism considers two in-

stances of a template polymorphic inductive type convertible

whenever they are applied to convertible arguments, regard-

less of the universe in which the arguments leave. That is,

the following Coq code type checks.

Universe i j. Constraint i < j.

Lemma list_eq :

list ( nat : Type@{i}) = list ( nat : Type@{j}).

reflexivty.

Qed.

3.2 Universe polymorphism in pCIC and inductive
types

The system pCIC has been extended with universe polymor-

phism [19]. This allows for definitions to be parameterized

by universe levels. The essential idea here is that instead of

declaring global universes for every occurrence of Type in

constructions, we use local universe levels. That is, each uni-

verse polymorphic construction carries with itself a context

of universe variables for universes that appear in the type

and body of the construction together with a set of local

universe constraints. These constraints may also mention

global universe variables. This could happen in cases where

the universe polymorphic construction mentions universe

monomorphic constructions.

This feature allows us to define universe polymorphic in-

ductive types. The prime example of this is the polymorphic

definition of categories:
4

Record Category@{i j} :=

{ Obj : Type@{i};

Hom : Obj → Obj→ Type@{j};

. . . }. (∗ local constraints: ∅ ∗)

This also allows us to define the category of (relatively small)

categories as follows:
4,5

Definition Cat@{i j k l} : Category@{i j} :=

{ Obj : Category@{k l}; . . . }.

( ∗ local constraints: {k < i, l < i, k ≤ j, l ≤ j} ∗)

See Timany and Jacobs [23] for more details on using uni-

verse levels and constraints of Coq to represent (relative)

smallness and largeness in category theory.

Note the construction above of the category of (relatively

small) categories could not be done in a similar way with

a universe monomorphic definition of category as the con-

straint k < i would there be translated to U < U for some

algebraic universe U that is taken to stand for the type of ob-

jects of categories. This would immediately make the global

set of universe inconsistent and thus the definition of cate-

gory of categories would be rejected with a universe incon-

sistency error. Also notice that the universe monomorphic

version of the type Category is not template polymorphic as

the universe levels in the sort appear in the constructor of
the type, and not only in its parameters and type.

Universe polymorphism treats inductive types at different

universe levels as different types with no relation between

them. This means that to have a subtyping/cumulativity

relation between two inductive types it requires the two

instance be at the exact same level. This means that for the

subtyping relation Category@{i j} ⪯ Category@{i' j'} to hold

it is required that i = i' and j = j' . This means, among other

things that the category of categories defined above is not

the category of all categories that are at most as large as k

and l but those categories that are exactly at the level k and

l.

This is not particularly about small and large objects like

categories. Let A : Type@{i} be a type, obviously, A : Type@{j},

for any i < j. However, for the universe polymorphic def-

inition of lists, uplist, the types uplist (A : Type@{i}) and

uplist (A : Type@{j}) are neither judgementally equal nor

does the expected subtyping relation hold. In other words,

the following Coq code will be accepted by Coq, i.e., the

reflexivity tactic will fail.
4

4
Universe levels and constraints are mentioned in the code for presen-

tation purposes, they can actually be omitted when writting definitions in

Coq.

5
There can be some other local constraints that we have omitted given

rise to by mixing of universe polymorphic and universe monomorphic

constructions, e.g., if the definition of categories or Cat uses some universe

monomorphic definitions from the standrad library of Coq.

6
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Polymorphic Inductive uplist@{k} (A : Type@{k})

: Type@{K} :=

| upnil : uplist A

| upcons : A → uplist A→ uplist A.

Universe i j. Constraint i < j.

Lemma uplist_eq :

uplist (nat : Type@{i}) = uplist (nat : Type@{j}).

Fail reflexivty.

Abort.

As we discussed and demonstrated earlier, a similar equality

with universe monomorphic definition of lists does indeed

hold.

4 Predicative calculus of cumulative
inductive constructions (pCuIC)

The system pCuIC extends the system pCIC by adding sup-

port for cumulativity between inductive types. This allows

for different instances of a polymorphic inductive definition

to be treated as subtypes of some other instances of the same

inductive type under certain conditions.

The intuitive definition The intuitive idea for subtyping

of inductive types is that an inductive type I is a subtype of
an inductive type I ′ if they have the same shape, i.e., the same

number of parameters, indices and constructors and corre-

sponding constructors take the same number of arguments.

Furthermore, it should be the case that every corresponding

index (note that these do not include parameters) and every

corresponding argument of every corresponding construc-

tor have the expected subtyping relation (the one from I is
a subtype of the one from I ′, i.e. covariance) and also that

corresponding constructors have the same end result type.

One crucial point here is that we only compare inductive

types if they are fully applied, i.e., there are values applied for

every parameter and index. This is because the cumulativity

relation is only defined for types and not general arities.

Put more succinctly, given a term of type I applied to

parameters and indices, it can be destructed and then re-

constructed using the corresponding constructor of I ′, i.e.,
terms of type I can be lifted to terms of type I ′ using identity
coercions. Note that we do not consider parameters of the

inductive types in question. This is because parameters of

inductive types are basically forming different families of

inductive types. For instance, the type list A and list B are

two different families of inductive types. Not considering

parameters allows our cumulativity relation for universe

polymorphic inductive types to mimic the behavior of tem-

plate polymorphic inductive types where the type of lists of

a certain type are considered judgementally equal regardless

of which universe level the type in question is considered to

be in. Consider the following examples:

Example: categories The type Category being a record is

an inductive type with a single constructor. In this case,

there are no parameters or indices. The single construc-

tors are constructing the same end result, i.e., Category. As

a result, in order to have the expected subtyping relation

between Category@{i j} ⪯ Category@{i' j'} , i ≤ i' and j ≤ j',

we need to have that these constraints suffice to show that

every argument of the constructor of Category@{i j} is a sub-

type of the corresponding argument of the constructor of

Category@{i' j'} . Note that it is only the first two arguments

of the constructors that differ between these two types. The

rest of the arguments, e.g., composition of morphisms, as-

sociativity of composition, etc., are identical in both types.

Hence, we only need to have the following subtyping rela-

tions which do hold:
6

Type@{i} ⪯ Type@{i'}

Obj → Obj→ Type@{j} ⪯ Obj→ Obj→ Type@{j'}

Example: lists The type of lists has a single parameter

and no index, also notice that the universe level i in list@{i}

does not appear in any of the two constructors. Hence, the

subtyping relation list@{i} A ⪯ list@{j} A holds for any type

A regardless of the relation between i and j.

Figure 5 shows the typing rules for cumulativity and judge-

mental equality of inductive types and their constructors.

The rule C-Ind describes the condition for subtyping of in-

ductive types D .d #»a and D ′.d #»a . This subtyping relation

holds, if the two types are fully applied, that is, the applica-

tions are terms of some sort s and s ′ respectively. It is also
required that the inductive blocks D and D ′ are related un-

der the ⪯† relation. The rule Ind-leq is rather lengthy but it

essentially states what we explained above intuitively. It says

that the relation D ⪯† D ′ holds if the two blocks are defin-

ing inductive types with the same names and constructors

with the same names. It also requires that for every corre-

sponding inductive type in these blocks the corresponding

indices and corresponding arguments of corresponding con-

structors are in the expected subtyping relation. Furthermore,

corresponding constructors need to construct judgementally

equal results.

Judgemental equality of inductive types The rule Ind-

Eq states that two inductive types are considered to be judge-

mentally equal if they are in mutual cumulativity relations.

This and the judgemental equality for constructors ex-

plained below allow universe polymorphism to mimic the

behavior of template polymorphism for monomorphic in-

ductive types. For instance, as we saw types list@{i} A is a

subtype of list@{j} A for any type A regardless of i and j.

Hence, using the rule Ind-Eq it follows that the two types

list@{i} A and list@{j} A are judgementally equal. However,

6
For the sake of clarity we have omitted the context under which these

cumulativity relations need to hold.
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Ind-leq

D ≡ Indn {∆I := ∆C } ∈ Γ D ′ ≡ Indn
{
∆′I := ∆′C

}
∈ Γ

dom(∆I ) = dom(∆′I ) dom(∆C ) = dom(∆′C )
[
∆I (d ) ≡

#»p :

#»
P .Π #»z :

#»
V . s ∆′I (d ) ≡

#»p :

#»

P ′.Π #»z :

#»

V ′. s ′

Γ, #»p :

#»
P ⊢

#»
V ⪯

#»

V ′
(
∆C (c ) ≡ Π #»p :

#»
P .Π #»x :

#»
U .d #»u ∆′C (c ) ≡ Π #»p :

#»

P ′.Π #»x :

# »

U ′.d
#»

u ′

Γ, #»p :

#»
P ⊢

#»
U ⪯

# »

U ′ Γ, #»p :

#»
P , #»x :

#»
U ⊢ #»u ≃

#»

u ′ :
#»

P ′,
#»

V ′ for c ∈ Constrs(∆C ,d )
)

for d ∈ dom(∆I )
]

Γ ⊢ D ⪯† D ′

C-Ind

D ≡ Indn {∆I := ∆C } D ′ ≡ Indn
{
∆′I := ∆′C

}
Γ ⊢ D ⪯† D ′ Γ ⊢ D .d #»a : s Γ ⊢ D ′.d #»a : s ′

Γ ⊢ D .d #»a ⪯ D ′.d #»a

Ind-Eq

Γ ⊢ D .d #»a ⪯ D ′.d #»a Γ ⊢ D ′.d #»a ⪯ D .d #»a Γ ⊢ D .d #»a : s Γ ⊢ D ′.d #»a : s

Γ ⊢ D .d #»a ≃ D ′.d #»a : s

Constr-Eq-L

Γ ⊢ D ′.d #»a ⪯ D .d #»a Γ ⊢ D .c #»m : D .d #»a Γ ⊢ D ′.c #»m : D ′.d #»a

Γ ⊢ D .c #»m ≃ D ′.c #»m : D .d #»a

Constr-Eq-R

Γ ⊢ D .d #»a ⪯ D ′.d #»a Γ ⊢ D .c #»m : D .d #»a Γ ⊢ D ′.c #»m : D ′.d #»a

Γ ⊢ D .c #»m ≃ D ′.c #»m : D ′.d #»a

Figure 5. Cumulativity and judgemental equality for inductive types

the conditions of judgemental equality of universe polymor-

phic inductive types is much more general compared to the

conditions for template polymorphism to apply. Template

polymorphism simply does not apply as soon as the universe

in the sort is mentioned in any of the constructors.

According to the rule Ind-Eq, in order to get that the two

types Category@{i j} and Category@{i' j'} are judgementally

equal it is required that i = i' and j = j' as expected.

Judgemental equality of constructors The rules Constr-

Eq-L and Constr-Eq-R specify judgemental equality of con-

structors of inductive types in cumulativity relation. Let

D .d #»a and D ′.d #»a be two inductive types in the cumu-

lativity relation D .d #»a ⪯ D ′.d #»a . Furthermore, let c be

a constructor of the inductive blocks D and D ′ and #»m be

terms such thatD .c #»m has typeD .d #»a andD ′.c #»m has type

D ′.d #»a . In this case, the rules Constr-Eq-L and Constr-Eq-
R, specify that D .c #»m and D ′.c #»m are judgementally equal

at the highest of the two types D .d #»a and D ′.d #»a .
This is another behavior of template polymorphism that

the rules Constr-Eq-L and Constr-Eq-R allow us to mimic.

For instance, consider the monomorphic and template poly-

morphic inductive type of lists defined above. Template poly-

morphism of list implies that, e.g., the empty list (the con-

structor nil) for the type of lists of a type A are judgemen-

tally equal regardless of the sort that A is in. That is, we

have nil ( A : Type@{i}) ≃ nil (A : Type@{j}) regardless of i

and j. Using the rules Constr-Eq-L and Constr-Eq-R we

can achieve a similar result for the universe polymorphic

and inductive type of lists uplist defined above. These rules

imply that upnil@{i} A ≃ upnil@{j} A for any type A regardless

of i and j.

5 Soundness
We establish the soundness of pCuIC by constructing a set

theoretic model for the theory inspired by the model con-

structed by Lee and Werner [14]. We use this model to show

(using relative consistency) that there are types that are not

inhabited in the system. Here, we briefly present the most

important parts of the model. See Timany and Sozeau [24]

for details on the model construction.

We construct our set theoretic model in ZFC set theory

together with the axiom that there is a strictly increasing se-

quence of uncountable strongly inaccessible cardinalsκ0,κ1, . . .
with κ0 > ω.

8
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Interpretation of typing contexts:
J·K ≜ {nil}

JΓ,x : AK ≜
{
γ ,a���γ ∈ JΓK ∧ JΓ ⊢ AKγ↓ ∧a ∈ JΓ ⊢ AKγ

}

JΓ,x := t : AK ≜
{
γ ,a���γ ∈ JΓK ∧ JΓ ⊢ AKγ↓ ∧ JΓ ⊢ tKγ↓ ∧a = JΓ ⊢ tKγ ∈ JΓ ⊢ AKγ

}

JΓ, Indn {∆I := ∆C }K ≜ JΓK if JΓ ⊢ Indn {∆I := ∆C }Kγ↓ for all γ ∈ JΓK

Above, we assume that x < dom(Γ), otherwise, both JΓ,x : AK and JΓ,x := t : AK are undefined.
Interpretation of terms:

JΓ ⊢ PropKγ ≜ {∅, {∅}}

JΓ ⊢ TypeiKγ ≜ Vκi

JΓ ⊢ xK #»a ≜ alen(Γ1 )−l if Γ = Γ1,x : A, Γ2 and x < dom(Γ1) ∪ dom(Γ2) and l = len(Inds(Γ1))

JΓ ⊢ Πx : A. BKγ ≜
{
Lam( f )���f : Πa ∈ JΓ ⊢ AKγ . JΓ,x : A ⊢ BKγ ,a

}

JΓ ⊢ λx : A. tKγ ≜ Lam
({
(a, JΓ,x : A ⊢ tKγ ,a )

���a ∈ JΓ ⊢ AKγ
})

JΓ ⊢ t uKγ ≜ App(JΓ ⊢ tKγ , JΓ ⊢ uKγ )

JΓ ⊢ letx := t : A inuKγ ≜ JΓ,x := t : A ⊢ uKγ ,JΓ⊢uKγ

Interpretation of inductive types, constructors and eliminators is defined below.

Figure 6. The model

We use von Neumann universes Vκi to model the sorts

Typei . The vonNeumann universeVα for an ordinal number

α is defined as follows:

Vα ≜
⋃
β ∈α

P
(
Vβ
)

It is well-known [8] that the von Neumann universe Vκ
is a model of ZFC for any uncountable strong inaccessible

cardinal κ. We interpret the sort Prop as the set {0, 1}.

Trace encoding In order to interpret the impredicative

sort Prop we need to interpret functions in such a way that

the interpretation of the function type Πx : A. B where B
is a type in the sort Prop is interpreted as either ∅ or as

{∅} for the interpretation of the function type to also be in

the interpretation of the sort Prop. Note that since we have
the cumulativity relation Prop ⪯ Typei we cannot treat

function types in prop differently than those in higher sorts.

This problem can be solved using a technique called the trace
encoding and due to Aczel [3]. We do not give the details of

this technique here but details can be found in Timany and

Sozeau [24]. Here we only say that there are two operations

Lam and App such that given any set theoretic function f we

have App(Lam( f ),a) = f (a). These operations also satisfy
our requirement for modeling function types (see below) in

presence of the impredicativity of Prop.

Lemma 5.1 (Aczel [3]). Let A be a set and assume the set
B (x ) ⊆ 1 for x ∈ A.

1.

{
Lam( f )��f ∈ Πx ∈ A. B (x )

}
⊆ 1

2.

{
Lam( f )��f ∈ Πx ∈ A. B (x )

}
= 1 iff ∀x ∈ A. B (x ) = 1

The model Figure 6 shows our model of pCuIC except for

inductive types and eliminators which are discussed below.

In this figure, nil is the empty sequence. We write A↓ for
well-definedness of the object A. We write Πa ∈ A. B (a) for
dependent set theoretic functions:

Πa ∈ A. B (a) ≜


f ∈ *

,

⋃
a∈A

B (a)+
-

A�������
∀a ∈ A. f (a) ∈ B (a)




This model is defined by well-founded recursion on the

size of the constructions being interpreted. That is, we first

define the function size() which assigns a positive number to

each typing context Γ, written as size(Γ) and to each pair of

typing context Γ and term t written as size(Γ ⊢ t ). This size
function has the property that for any context Γ and term

t we have, size(Γ) < size(Γ,x : t ) and size(Γ) < size(Γ ⊢ t ).
Furthermore, size(Γ ⊢ t ′) < size(Γ ⊢ t ) for any subterm t ′ of
t .

5.1 Modeling inductive types, constructors and
eliminators

Interpretation of inductive types, constructors and elimina-

tors is straightforward. However, the general presentation

of the construction is lengthy and involves arguments re-

garding the general shape of inductive types. In particular,

the strict positivity condition plays a crucial role. Here, we

present the general idea and give some examples. Further

details are available in Timany and Sozeau [24].
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Rule sets Following Lee and Werner [14], who follow Dy-

bjer [9] and Aczel [3], we use inductive definitions (in set

theory) constructed through rule sets to model inductive

types. Here, we give a very short account of rule sets for
inductive definitions. For further details refer to Aczel [2].

A pair (A,a) is a rule based on a setU where A ⊆ U is the

set of premises and a ∈ U is the conclusion. We write
A
a for

a rule (A,a). A rule set is a set Φ of rules based onU . We say

a set X ⊆ U is Φ-closed, closedΦ (X ) for a U -based rule set Φ
if we have:

closedΦ (X ) ≜ ∀
A

a
∈ Φ. A ⊆ X ⇒ a ∈ X

The operator OΦ corresponding to a rule set Φ is the opera-

tion of collecting all conclusions for a set whose premises

are available in that set. That is,

OΦ (X ) ≜
{
a
����
A

a
∈ Φ ∧A ⊆ X

}
Hence, a set X is Φ-closed if OΦ ⊆ X . Notice that OΦ is a

monotone function on P (U ) which is a complete lattice.

Therefore, for anyU based rule set Φ, the operator OΦ has a

least fixpoint, I (Φ) ⊆ U :

I (Φ) ≜
⋂
{X ⊆ U |closedΦ (X )}

Interpreting inductive types The idea here is to construct

a rule set for the whole inductive block. For each collection

of arguments that can possibly be applied to a constructor

we add a rule to the rule set. This rule basically says that

the result of applying arguments in question to the construc-

tor in question is in the inductive block if all the (mutually)

recursive arguments are already part of the interpretation.

The idea is that we take the fixpoint of the rule set corre-

sponding to the block and then use this fixpoint to define

interpretation of individual inductive types based on this

fixpoint.

Example 5.2 (Interpreting the inductive type of natural

numbers). Let D ≡ Ind0{nat : Set := Z : nat, S : nat →
nat} be the inductive block for inductive definition of natural
numbers. The rule set for this inductive block is as follows:

ΦD ≜

{
∅

⟨0; nil; nil; ⟨0; nil⟩⟩

}
∪

{
{⟨0; nil; nil;a⟩}
⟨0; nil; nil; ⟨1;a⟩⟩

�����
a ∈ Vκ0

}
This rule set includes a rule for Z with empty set as its

premise since Z takes no recursive argument. The conclu-

sion of the rule for Z , ⟨0; nil; nil; ⟨0; nil⟩⟩, states that the term
constructed belongs to the 0

th
inductive type in the block

with empty sequence as parameters and empty sequence as

indices and is constructed using the 0
th
constructor in the

block with no arguments applied to the constructor.

The rules corresponding to S say that if a is an element of

the 0
th
inductive type in the block with no parameters and

no indices then so is the 1
st
constructor applied to a.

We define interpretation of the type of natural numbers

and its constructors as follows:

J· ⊢ D .natKnil ≜ {⟨k ;
#»a ⟩|⟨0; nil; nil; ⟨k ; #»a ⟩⟩ ∈ I (ΦD )}

J· ⊢ D .ZKnil ≜ ⟨0; nil⟩

J· ⊢ D .SKnil ≜Lam
({
(a, ⟨1;a⟩)���a ∈ J· ⊢ D .natKnil

})
Interpreting eliminators We use rule sets to also define

the interpretation of eliminators. The idea here is that elim-

inating a constructor applied to a number of arguments is

basically applying the corresponding case eliminator to the

arguments of the inductive type while for the (mutually)

recursive arguments we also supply the result of their elimi-

nation. We define a rule set for the elimination of the whole

block and then use the fixpoint of this rule set to define the

interpretation of elimination of the individual elements of

the inductive type in question.

For each constructor c of the block we consider all possible

sequences
#»a ,

#»

b of sets where
#»a are sets in the interpretation

of arguments of the constructor c and
#»

b are arbitrary sets

taken to play the role of eliminated versions of the (mutually)

recursive arguments. For each such triple (c, #»a ,
#»

b ), we add
a rule ϕc ; #»a ;

#»

b to the rule set of the elimination block.

ϕc ; #»a ;

#»

b ≜
Ψc ; #»a ;

#»

b

(
#     »
App(JΓ ⊢ cKγ ,

#»a ),
#     »
App(JΓ ⊢ fcKγ ,

#»m ))

Here, Γ and γ are the context and the environment under

which we are interpreting the elimination. The sequence
#»m

is a rearrangement of the sequences
#»a and

#»

b according the

order of the arguments of the case eliminator fc for the con-
structor c in the elimination block. The premise of the rule

Ψc ; #»a ;

#»

b is a set of pairs ensuring that each set in the sequence

#»

b is the result of the elimination of the corresponding argu-

ment in
#»a .

We say that the interpretation of elimination of a term t of
an inductive type is a set a if a is the unique set such that the

pair (JtK,a) is in the fixpoint of the rule set corresponding

to the elimination block.

Example 5.3 (Interpreting elimination of natural numbers).
Let D = Ind0{nat : Set := Z : nat, S : nat → nat} be the in-
ductive block for inductive definition of natural numbers. As-

suming that we have sets r , rz and rs such that r , rz, rs ∈ JΓK
where Γ = Q : nat → Typei , qz : Q Z , qs : Πx : nat.Q x →
Q (S x ).

Let us write ELB ≡ ElimD (P )
{
pz, ps

}
for the elimination

block.

The rule set for this elimination of the block ELB is as

follows:

ΦELB ≜

{
∅

(⟨0; nil⟩ , rz)

}
∪




{(a,b)}

(⟨1;a⟩ ,
#     »
App(rs,a,b))

������

a ∈ JΓ ⊢ D .natKr,rz,rs ,
b ∈ Vκi



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We define the interpretation of elimination of the termn as
a if a is the unique set such that the pair (JΓ ⊢ nKr,rz,r s ,a) ∈
I (ΦELB).

5.2 Soundness theorem
The following theorem and corollary respectively state that

the model that we have presented is sound with respect to

the typing rules of the system and that the pCuIC is sound.

Theorem 5.4 (Soundness of the model). The model defined
in this section is sound for our typing system. That is, the
following statements hold:

1. IfWF (Γ) then JΓK↓
2. If Γ ⊢ t : A then JΓK↓ and for any γ ∈ JΓK we have

JΓ ⊢ tKγ↓, JΓ ⊢ AKγ↓ and JΓ ⊢ tKγ ∈ JΓ ⊢ AKγ
3. If Γ ⊢ t ≃ t ′ : A then JΓ ⊢ tKγ ↓, JΓ ⊢ t

′Kγ ↓, JΓ ⊢ AKγ ↓
and JΓ ⊢ tKγ = JΓ ⊢ t ′Kγ ∈ JΓ ⊢ AKγ

4. If Γ ⊢ A ⪯ B then JΓ ⊢ AKγ↓, JΓ ⊢ BKγ↓ and JΓ ⊢ AKγ ⊆
JΓ ⊢ BKγ

In the proof of Theorem 5.4, the case C-Ind requires us

to show that the interpretation of one inductive type is a

subset of the interpretation of the other one. This follows

from the fact that the arguments of constructors of the two

types have the required subset relation and interpretation of

the inductive types simply consists of tuples which in turn

are tuples of the number of the constructor and the argu-

ments of the constructor: cumulativity is indeed modeled by

the subset relation for types, inductive types and constuc-

tors. The subproofs for the rules Ind-Eq, Constr-Eq-L and

Constr-Eq-R are trivial.

Corollary 5.5 (Soundness of pCuIC). Let s be a sort, then,
there does not exist any term t such that · ⊢ t : Πx : s . x .

Proof. If there where such a term t by Theorem 5.4 we should

have J· ⊢ tKnil ∈ J· ⊢ Πx : s . xKnil. However, J· ⊢ Πx : s . xKnil =
∅. □

5.3 The use of axiom of choice
The only place in our work where we make use of axiom

of choice is in proving that the fixpoints constructed for

inductive types are indeed in the set theoretic universe corre-

sponding to their sort. This is, roughly speaking, proven [24]

by showing that there is a regular cardinal in the correspond-

ing set theoretic universe strictly greater than the cardinality

of the premises of all rules in the rule set. A theorem in Aczel

[2] states that such a regular cardinal is necessarily a closing

ordinal for the rule set.

In order to show the existence of the regular cardinal

above we make use of the following fact [8] which we could

have alternatively taken as a (possibly) weaker axiom.

In any von Neumann universeV for any cardi-

nal number α there is a regular cardinal β such

that α < β .

Note that this statement is independent of ZF and certain

axioms, e.g., choice as we have taken here, need to be postu-

lated. This is due to the well-known fact proven by Gitik [11]

that under the assumption of existence of strongly compact

cardinals, any uncountable cardinal is singular!

5.4 The model and axioms of type theory
Although our system does not explicitly feature any of the

axioms mentioned below, they are consistent with the model

that we have constructed.

Our model is a proof-irrelevant model. That is, all prov-

able propositions (terms of type Prop) are interpreted iden-

tically. Therefore, it satisfies the axiom of proof irrelevance

and also the axiom of propositional extensionality (that any

two logically equivalent propositions are equal). This model

also satisfies definitional/judgemental proof irrelevance for

proposition. This is similar to how Agda treats irrelevant

arguments [1].

We do not support inductive types in the sort Prop in our

system. However, if the Paulin-style equality is encoded us-

ing inductive types in higher sorts, then the interpretation of

these types would simply be collections of reflexivity proofs.

Hence, our model supports the axiom UIP (unicity of iden-

tity proofs) and consequently all other logically equivalent

axioms, e.g., axiom K [20].

This model, being a set theoretic model, also supports the

axiom of functional extensionality as set theoretic functions

are extensional. This is indeed why our model supports η-
equivalence.

All these axioms are also supported by the model con-

structed by Lee and Werner [14].

6 Coq implementation
We implemented this extension to the Coq system, which is

now integrated in the upcoming 8.7 version of the system

[21] and documented
7
.

From the user point of view, this adds a new optional flag

on universe polymorphic inductive types that computes the

cumulativity relation for two arbitrary fresh instances of

the inductive type that can be printed afterwards using the

Print command. Cumulativity and conversion for the fully

applied inductive type and its constructors is therefore mod-

ified to use the cumulativity constraints instead of forcing

equalities everywhere as was done before, during unification,

typechecking and conversion. As cumulativity is always po-

tentially more relaxed than conversion, users can set this

option in existing developments and maintain compatibil-

ity. Of course actually making use of the new feature is not

backward-compatible.

7https://coq.inria.fr/distrib/8.7beta1/refman/Reference-Manual032.
html#sec877
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This new feature has been experimentally used with the

UniMath library.
8

Impact on the Coq codebase The impact of this extension

to the codebase is fairly minimal, as it involves mainly an

extension of the data-structures representing the universes

associated to polymorphic inductive types in the Coq ker-

nel, and their use during the conversion test of Coq, which

was already generic in the tests used for comparing poly-

morphic inductives and constructors. Note that we have

not yet adapted the two efficient conversion tests of Coq,

vm_compute and native_compute. We actually cleaned up

the interface of the kernel related to registering universes of

inductive types in the process of this development.

Performance When no inductive type is declared cumu-

lative, the extension has no impact, as we tested on a large

set of user contributions including the Mathematical Com-

ponents and the Coq HoTT library (those are the common

stress-tests for universes). When we activate it globally, we

hit one case in the test-suite of Coq taken from the HoTT

library where the computation of the subtyping relation for

a given inductive takes a very long time, due to conversion

unfolding definitions to check for the implied constraints.

In this particular case we know that the relation would be

trivial (cumulativity collapses to equality), hence we were

motivated to make the Cumulative flag optional. With this

in place, we can selectively declare universe-polymorphic

inductive types to be cumulative.

7 Future and related work
Moving from template polymorphism to universe poly-
morphism One motivation for this extension is the ability

to explain away the so-called “template” polymorphic induc-

tive types of Coq in terms of cumulative universe polymor-

phic inductive types, to put the system on clean and solid

theoretical ground and finally switch the standard library

of Coq to full universe polymorphism. Making the universe

monomorphic code using template polymorphic inductives

in the standard library interact with universe polymorphic

code is prone to introduce universe inconsistencies, the two

systems working in quite different ways.

We are currently experimenting with this idea and our

first experiments are encouraging but not without issues. We

are able to make the basic inductive types of the standard

library cumulative universe polymorphic, and all constants

polymorphic (except in a few files devoted to the formaliza-

tion of paradoxes). However, we hit a problem appearing

with the definitions of module types that are used to for-

malize the numbers and finite maps and sets libraries for

example. Typically, a module interface will look like this:

Module Type MInterface.

8
See the discussion on GitHub: https://github.com/UniMath/UniMath/

issues/648

Parameter A : Type.

Parameter f : A → A→ Prop.

...

End M.

Currently interpreting the parameter A : Type in universe

polymorphic mode means that A should be of type ∀ℓ, Typeℓ ,
i.e. a type that can live at any level (only Prop and types in

Set can instantiate A), whereas the intention of the user was

rather that A lives in some global, floating universe Typeℓ .
The fact that module type fields can be polymorphic is at

the same time a distinctively useful property, used for exam-

ple in the formalization of modalities in HoTT [6, 17]. We

hence have to rework the design of the language to accomo-

date properly the universe polymorphic mode with module

declarations. We are hopeful that this is possible.

Strong normalization We believe that our extension to

pCIC maintains strong normalization and that the model

constructed by Barras [5] for pCIC could be easily extended

to support our added rules.

Related Work We are not aware of any other system pro-

viding cumulativity on inductive types, neither Matita nor

Lean, the closest cousins of Coq, implement cumulativity.

They prefer the algebraic presentation of universes that is

also used in Agda and where explicit lifting functions must

be defined between different instances of polymorphic in-

ductive types. In [15], McBride presents a proposal for inter-

nalizing “shifting” of universe polymorphic constructions

to higher universe levels akin to an explicit version of cu-

mulativity that was also studied by Rouhling in [18], but

parameterized inductive types are not considered in the later.

8 Conclusion
We have presented a sound extension of the predicative cal-

culus of inductive constructions with cumulative inductive

types, which allows to equip cumulative universe polymor-

phic inductive types with definitional equalities and reason-

ing principles that are closer to the “informal” mathematical

practice. Our system is implemented in the upcoming Coq

proof assistant and is justified by a model construction in

ZFC set theory. We hope to make this feature more useful

and applicable once we resolve the remaining issues with

the module system, allowing users of the standard library of

Coq to profit from it as well.
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