
Storlet Engine for Executing Biomedical
Processes within the Storage System

Simona Rabinovici-Cohen, Ealan Henis, John Marberg, Kenneth Nagin

{simona, ealan, marberg, nagin}@il.ibm.com

IBM Research – Haifa

7th International Workshop on Process-oriented Information Systems in Healthcare (ProHealth’14)



© 2014 IBM Corporation2

• “Data is the new Oil”
– In its raw form, oil has little value 

– Once processed and refined, it helps power the world

• Data deluge of biomedical data 
– Medical images, genomic sequencers, videos, etc.

– Multiple large objects created by various devices

• Object storage for content depots generally:
– Utilizes large bandwidth to serve big data over the WAN

– Uses commoditized of-the-shelf hardware with under utilized CPUs

• Process and refine the data where it is stored

– Create a computational object storage with storlets

“Data is the 

new oil.”

Clive Humby

Emerging Trends Motivate Storlets



© 2014 IBM Corporation

• The concept of storlets was first introduced in our MSST 2007 paper to offload 
data-intensive computations to the long term archival storage

What is a storlet?

• Dynamically uploadable computational module running within the storage 
close to the data

• Executed in a sandbox when not trusted

• Analog to stored procedures in databases

The Storlet Engine mechanism:

• Adds flexibility to the storage

• Makes the storage extensible - makes the storage a platform

• Transforms the storage from “keeping data” to “producing value from the data”

3

Storlets



© 2014 IBM Corporation

• A tissue block is given to the Pathologist

• Very thin slices can be cut off the tissue block and mounted on glass slides
• The thin slices are stained with different stain, e.g. HER2, PR, ER, etc.
• Pathology images are created for the stained slices
• Large images can be 200K x 200K which can consume 5-10 GB

* image courtesy of Philips

4

Pathology Department Use Case



© 2014 IBM Corporation

Rotation and translation

Aligning images via 
rotation and translation

Extracting subset of the images and 
transforming to a standard format

* images courtesy of Philips

5

ROI Extraction Business Process



© 2014 IBM Corporation6

Cell Detection Business Process

• Cell detection requires pattern search/feature extraction and analysis of 
pathology images

• This is very important for Pathologists because it provides a quick overview of 

the disease cells, based on which diagnosis can be made

• The oncologist machine may be too weak to execute this module

• With storlets technology, the Cell Detection Storlet will run in the cluster of 
machines within the storage



© 2014 IBM Corporation

• A researcher would like to get a cohort of records and images with similar features 
from as multiple patients as possible

• This is more secure than the traditional method as it spares the need to move clear 
data to the staging system

• Helps comply with HIPAA

OpenStack

ResearcherPhysician

Deidentification Storlet

ImageSimilarity Storlet

7

Cohort Identification Business Process



© 2014 IBM Corporation

• Reduce bandwidth – reduce the number of bytes transferred over the WAN
e.g. Analytics storlet

• Enhance security – reduce exposure of sensitive data

e.g. De-identification storlet

• Save costs – consolidate generic functions that can be used by many 
applications while saving infrastructure at the client side

e.g. Curation storlet

• Support compliance – monitor and document the changes to the objects and 
improve provenance tracking

e.g. Transformation storlet

8

Client Value for Using Storlets



© 2014 IBM Corporation9

Storlet Engine Architecture

* The Native Execution Service can execute docker-based storlets



© 2014 IBM Corporation10

Distributed Storlet and Cell Detection

• The compound distributed storlet input includes: 
• list of data objects to work on 
• split storlet e.g. CellsDetectonStorlet
• merge storlet e.g. ImageMergerStorlet

• The distributed storlet initiates multiple split 
storlets on each data object at its residence. 
Afterwards, it calls the merge storlet to summarize 
the results. 

• The distributed storlet is a service in the Storlet
Engine suitable for analytics processes.

OpenStack

Distributed
Storlet

Cell Detection Storlet

Image Merger Storlet

Cell Detection StorletCell Detection StorletCell Detection Storlet
1

2

� Distributed Storlet and Image 
Merger Storlet run in Proxy node

� The multiple Cell Detection 
Storlets run in Object nodes



© 2014 IBM Corporation

• Enables automatic conditional invocation of storlets
• Explicit storlet activation overrides implicit activation
• Rules kept as per tenant editable object, with specified access control
• Configured by tenant, user, role, container, object, content_type
• Wildcards (“*”) allowed in a rule (high flexibility)
• The first rule that matches the input is activated – prioritized list of 

rules

• Examples:
• De-Identification (per Role)
• Transformation (per Content Type)
• Fixity (per Container)

Rules Mechanism

11



© 2014 IBM Corporation

Requirements
• Restrict and control the execution capabilities of storlets (per sandbox type)

• Isolate and protect storlets of different tenants from each other (multi-tenancy)

• Authorize and verify access from storlets to object storage 

Solution Features
• Use a separate web server for each combination of [tenant, sandbox] 

• Dispatch each storlet request to the server of the given tenant and sandbox 

• Leverage Linux capabilities for protection and isolation of individual web servers 
– Each server is associated with dedicated unique Linux uid/gid and port number

– Server and all its storlets run in a single process, deployed under the unique uid/gid

– Server listens on its unique port number

– Sensitive files have the server’s unique uid/gid permissions 

– Communication to target ports/hosts is filtered by iptables using uid and gid rules

• Storlets use tokens to access the object storage (supplied as request parameters)

12

Security Model



© 2014 IBM Corporation13

Sandbox Types

� A storlet may be associated with different trust levels: 

– Storlet can be written by a system administrator; written by a user; or bought 
as part of a third-party package or downloaded from some site. 

– Storlet execution can be initiated at different privilege levels: by an
administrator; by a privileged user; or by a regular user. 

– Based on the source of the storlet, the initiator, and the storlet functionality, a 
certain level of trust should be associated with the storlet. 

� Storlets can run in various types of sandboxes to associate different levels of trust 
with different storlets:

– Admin Sandbox – the storlet can do all operations.

– User Sandbox - the storlet is restricted and cannot perform operations such 

as write to the filesystem, open a socket or access another host directly, 
spawn threads, etc.



© 2014 IBM Corporation14

Storlet Engine Deployment in OpenStack Swift

L2 Rack 

Switch
1GB Ethernet

account node - SSD

L2 Rack 

Switch
1GB Ethernet

L3 Switch
10GB Ethernet

Virtual IP

L3 Switch
10GB Ethernet

container node -SSD

object node - HDD

object node - HDD

proxy nodeproxy node

Swift Proxy Node

Storlet Engine
proxy 

service

Swift Object Node

object 

service
Storlet Engine



© 2014 IBM Corporation

Answer these questions:

• What performance benefits can be derived by wrapping a function as a Storlet?

• How Storlets affect system performance?

• Performance for Storlets on local storage nodes versus Storlets on interface node?

• What host resources are most affected by Storlet?

• Do the performance issues change for private cloud (LAN) or public cloud (WAN)?

15

Performance Study: Goals



© 2014 IBM Corporation16



© 2014 IBM Corporation17

Fixity Test Results



© 2014 IBM Corporation

Intercept Slope R.squared std-error correlation

fixityAppWithOutStorletInfrastructure 13 0.29 0.479 0.017733 0.692

fixityStorletAtInterfaceNode 13 0.54 0.557 0.02784 0.746

fixityStorletAtLocalNode 2.9 0.5 0.609 0.023062 0.781

fixityAppWithStorletInfrastructure 12 0.41 0.443 0.026465 0.666

18

Fixity Test Results



© 2014 IBM Corporation19

Conclusions

• Introduced storlets for biomedical processes e.g. 

• ROI Extraction
• Cell Detection

• Cohort Identification

• Presented the Storlet Engine, an environment supporting computations

within storage system 

• Architecture and key features of the system
• Rules mechanism for automatic conditional invocation of storlets

• Security model that supports storlets multi-tenancy and various types of 
sandboxes 

• Performance study of the Storlet Engine prototype

• Implemented a Storlet Engine prototype for OpenStack Object Storage (code-
named Swift) in the context of the ENSURE and ForgetIT EU projects



© 2014 IBM Corporation20

Acknowledgement

The research leading to these results has received funding

from the European Community's Seventh Framework 
Programme (FP7/2007-2013) under grant agreement 270000 
and under grant agreement 600826.

http://www.forgetit-project.eu/http://www.ensure-fp7.eu/



© 2014 IBM Corporation21

DEMO



© 2014 IBM Corporation22

ROI Extraction: Trigger Storlet Selection



© 2014 IBM Corporation23

ROI Extraction: Trigger Storlet Window



© 2014 IBM Corporation24

ROI Extraction: Trigger Storlet Result



© 2014 IBM Corporation25

ROI Extraction: Storlet Result on Mobile



© 2014 IBM Corporation26

Cell Detection: Distributed Storlet Execution



© 2014 IBM Corporation27

Integrity Check: Trigger Fixity Storlet



© 2014 IBM Corporation28

Integrity Check: Fixity Storlet Result


