

Storlet Engine for Executing Biomedical Processes within the Storage System

Simona Rabinovici-Cohen, Ealan Henis, John Marberg, Kenneth Nagin {simona, ealan, marberg, nagin}@il.ibm.com

7th International Workshop on Process-oriented Information Systems in Healthcare (ProHealth'14)

Emerging Trends Motivate Storlets

- "Data is the new Oil"
 - In its raw form, oil has little value
 - Once processed and refined, it helps power the world

- Data deluge of biomedical data
 - Medical images, genomic sequencers, videos, etc.
 - Multiple large objects created by various devices
- 1,800
 1,800
 1,800
 1,800
 Tenfold
 Growth in
 Five Years!

 1,000
 Televery ears!

 Digital cameras, VolP,
 MP3 players,
 Digital cameras,
 Digital vive septiments,
 Digital vive s

- Object storage for content depots generally:
 - Utilizes large bandwidth to serve big data over the WAN
 - Uses commoditized of-the-shelf hardware with under utilized CPUs

Process and refine the data where it is stored

Create a computational object storage with **storlets**

Storlets

 The concept of storlets was first introduced in our MSST 2007 paper to offload data-intensive computations to the long term archival storage

What is a storlet?

- Dynamically uploadable computational module running within the storage close to the data
- Executed in a sandbox when not trusted
- Analog to stored procedures in databases

The Storlet Engine mechanism:

- Adds flexibility to the storage
- Makes the storage extensible makes the storage a platform
- Transforms the storage from "keeping data" to "producing value from the data"

Pathology Department Use Case

* image courtesy of Philips

- A tissue block is given to the Pathologist
- Very thin **slices** can be cut off the tissue block and mounted on glass slides
- The thin slices are stained with different stain, e.g. HER2, PR, ER, etc.
- Pathology images are created for the stained slices
- Large images can be 200K x 200K which can consume 5-10 GB

ROI Extraction Business Process

5

^{*} images courtesy of Philips

Cell Detection Business Process

- Cell detection requires pattern search/feature extraction and analysis of pathology images
- This is very important for Pathologists because it provides a quick overview of the disease cells, based on which diagnosis can be made
- The oncologist machine may be too weak to execute this module
- With storlets technology, the Cell Detection Storlet will run in the cluster of machines within the storage

Cohort Identification Business Process

- A researcher would like to get a cohort of records and images with similar features from as multiple patients as possible
- This is more secure than the traditional method as it spares the need to move clear data to the staging system
- Helps comply with HIPAA

7

Client Value for Using Storlets

- Reduce bandwidth reduce the number of bytes transferred over the WAN e.g. Analytics storlet
- Enhance security reduce exposure of sensitive data e.g. De-identification storlet
- Save costs consolidate generic functions that can be used by many applications while saving infrastructure at the client side e.g. Curation storlet
- Support compliance monitor and document the changes to the objects and improve provenance tracking e.g. Transformation storlet

Storlet Engine Architecture

^{*} The Native Execution Service can execute docker-based storlets

Distributed Storlet and Cell Detection

- The compound distributed storlet input includes:
 - list of data objects to work on
 - split storlet e.g. CellsDetectonStorlet
 - merge storlet e.g. ImageMergerStorlet
- The distributed storlet initiates multiple split storlets on each data object at its residence. Afterwards, it calls the merge storlet to summarize the results.
- The distributed storlet is a service in the Storlet Engine suitable for analytics processes.

- Distributed Storlet and Image
 Merger Storlet run in Proxy node
- The multiple Cell Detection
 Storlets run in Object nodes

Rules Mechanism

- Enables automatic conditional invocation of storlets
 - Explicit storlet activation overrides implicit activation
 - Rules kept as per tenant editable object, with specified access control
 - Configured by tenant, user, role, container, object, content_type
 - Wildcards ("*") allowed in a rule (high flexibility)
 - The first rule that matches the input is activated prioritized list of rules
- Examples:
 - De-Identification (per Role)
 - Transformation (per Content Type)
 - Fixity (per Container)

Security Model

Requirements

- Restrict and control the execution capabilities of storlets (per sandbox type)
- Isolate and protect storlets of different tenants from each other (multi-tenancy)
- Authorize and verify access from storlets to object storage

Solution Features

- Use a separate web server for each combination of [tenant, sandbox]
- Dispatch each storlet request to the server of the given tenant and sandbox
- Leverage Linux capabilities for protection and isolation of individual web servers
 - Each server is associated with dedicated unique Linux uid/gid and port number
 - Server and all its storlets run in a single process, deployed under the unique uid/gid
 - Server listens on its unique port number
 - Sensitive files have the server's unique uid/gid permissions
 - Communication to target ports/hosts is filtered by iptables using uid and gid rules
- Storlets use tokens to access the object storage (supplied as request parameters)

Sandbox Types

- A storlet may be associated with different trust levels:
 - -Storlet can be written by a system administrator; written by a user; or bought as part of a third-party package or downloaded from some site.
 - Storlet execution can be initiated at different privilege levels: by an administrator; by a privileged user; or by a regular user.
 - Based on the source of the storlet, the initiator, and the storlet functionality, a certain level of trust should be associated with the storlet.
- Storlets can run in various types of sandboxes to associate different levels of trust with different storlets:
 - Admin Sandbox the storlet can do all operations.
 - -User Sandbox the storlet is restricted and cannot perform operations such as write to the filesystem, open a socket or access another host directly, spawn threads, etc.

Storlet Engine Deployment in OpenStack Swift

Performance Study: Goals

Answer these questions:

- What performance benefits can be derived by wrapping a function as a Storlet?
- How Storlets affect system performance?
- Performance for Storlets on local storage nodes versus Storlets on interface node?
- What host resources are most affected by Storlet?
- Do the performance issues change for private cloud (LAN) or public cloud (WAN)?

Test setup

Fixity Test Results Treatment Response Time

Fixity Test Results

Treatment Response Time (fitted linear models)

Treatment Content Type: MB_5-100by5
Treatment to Interface Node
Avg. Latency: 0.091
(with concurrent workload)

	Intercept	Slope	R.squared	std-error	correlation
fixityAppWithOutStorletInfrastructure	13	0.29	0.479	0.017733	0.692
fixityStorletAtInterfaceNode	13	0.54	0.557	0.02784	0.746
fixityStorletAtLocalNode	2.9	0.5	0.609	0.023062	0.781
fixityAppWithStorletInfrastructure	12	0.41	0.443	0.026465	0.666

Conclusions

- Introduced storlets for biomedical processes e.g.
 - ROI Extraction
 - Cell Detection
 - Cohort Identification
- Presented the Storlet Engine, an environment supporting computations within storage system
 - Architecture and key features of the system
 - Rules mechanism for automatic conditional invocation of storlets
 - Security model that supports storlets multi-tenancy and various types of sandboxes
 - Performance study of the Storlet Engine prototype
- Implemented a Storlet Engine prototype for OpenStack Object Storage (codenamed Swift) in the context of the ENSURE and ForgetIT EU projects

Acknowledgement

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement 270000 and under grant agreement 600826.

http://www.forgetit-project.eu/

DEMO

ROI Extraction: Trigger Storlet Selection

© 2014 IBM Corporation

× Find:

♣ Next ★ Previous

Highlight all

Match case

Highlight all

Highlight all

Match case

Highlight all

Match case

Highlight all

Match case

Highlight all

Match case

Match

ROI Extraction: Trigger Storlet Window

Trigger Storlet

Sandbox Type AdminSandbox		Description: A storlet is a restricted computational module			
Storlet Name ImageServiceStorlet Storlet Params		executed within the storage close to the data. Triggering a storlet initiates execution of that computational module on the given object.			
0,0,4,600,600					

ROI Extraction: Trigger Storlet Result

Trigger Storlet

ROI Extraction: Storlet Result on Mobile

Cell Detection: Distributed Storlet Execution

Trigger Storlet

Integrity Check: Trigger Fixity Storlet

Integrity Check: Fixity Storlet Result

