Performance Evaluation & SON Aspects of Vertical Sectorisation in a Realistic LTE Network Environment

IWSON 2014 - Barcelona
26 August 2014

Konstantinos Trichias, Remco Litjens, Zwi Altman, Abdoulaye Tall, Pradeepa Ramachandra
Outline

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps
Introduction

- Motivation
 - Increasing traffic demand in mobile networks
 - New systems & features for higher network capacity & improved performance

Active Antenna Systems (AAS)
- Improved network performance
- Reduced costs
- Long-term sustainability

Vertical Sectorisation (VS)
- Increased network capacity
- Improved UE performance

Self-Organizing Networks (SON)
- Intelligent networks
- Multi-layer & multi-RAT functionality
- High degree of flexibility
- High degree of adaptability
 - Spatial traffic variations
 - Temporal traffic variations

How to combine VS with SON to maximize gains and optimize performance?
Outline

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps
Vertical Sectorisation

- VS is performed by splitting the antenna beam serving one cell, into two beams with different electrical tilts – θ_e (split in the vertical plane)

- The mechanical tilt of the antenna remains the same

- The former cell is split into two new cells / sectors serving different areas

- The two sectors have their own physical cell IDs

- Full reuse of the available spectral resources

- Sharing of the total transmit power available for the cell ($P_{\text{total}} = P_{\text{inner}} + P_{\text{outer}}$)
Vertical Sectorisation

- **Pros**
 - Spatial reuse of resources
 - Reduced inter-cell interference (reduced Tx power)
 - Focused beam on high traffic demand area (increased SINR)

- **Cons**
 - Reduced Tx power per sector
 - Increased inter-cell interference (additional cell)
Outline

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps
Modelling & Simulation Scenarios

- Realistic LTE network (Hannover, Germany)
- Advanced AAS model based on Kathrein 3GPP contributions
- Realistic in/outdoor ray tracing propagation model (including 3D building data)
- Realistic traffic intensity maps

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area size</td>
<td>5x7 km² (3x5 km²)</td>
</tr>
<tr>
<td>Nº sites / cells</td>
<td>63 (36) / 84 (51)</td>
</tr>
<tr>
<td>Frequency band</td>
<td>1800 MHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>20 MHz</td>
</tr>
<tr>
<td>Cell max Tx power</td>
<td>40 W (46 dBm)</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>18 dBi</td>
</tr>
<tr>
<td>Antenna mech. tilt</td>
<td>4°</td>
</tr>
<tr>
<td>Session file size</td>
<td>16 Mb</td>
</tr>
<tr>
<td>Scheduling</td>
<td>Fair sharing</td>
</tr>
<tr>
<td>Link adaptation</td>
<td>Modified Shannon curve</td>
</tr>
</tbody>
</table>
Highly loaded scenario (Average cell load 42% - centre of Hannover 60% - 85%)

Simulation of multiple scenarios for different VS parameters values

Electrical tilts are on top of 4° mechanical tilt

θ^e_{outer} was kept at 0° to maintain the coverage level

<table>
<thead>
<tr>
<th>Inner Sector</th>
<th>Outer Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical downtilt</td>
<td>$\theta^e_{\text{inner}} \in {6^\circ, 8^\circ, 10^\circ}$</td>
</tr>
<tr>
<td>Power split</td>
<td>$P_{\text{inner}} \in {0.2, 0.5, 0.8} \times P_{\text{total}}$</td>
</tr>
</tbody>
</table>

$P_{\text{outer}} = P_{\text{total}} - P_{\text{inner}}$

VS status
- VS always ON
- VS always OFF
- VS controlled by SON function

VS level
- Entire network
- Single cell

KPIs
- Average & 10th user throughput
- Coverage ratio
- Resource utilization
- Nº users served per cell
Outline

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps
Numerical Results & Analysis

- Network-wide VS
 - For a highly loaded scenario VS is always beneficial for the network
 - Almost all of the cells present gains in performance
 - Average gains of up to 33% for average user throughput and 95% for 10th percentile
 - Best performance for tilts θ 8-0 and power split depends on KPI
 - P50-50 for average user throughput
 - P20-80 for 10th percentile user throughput

- Power split matching to traffic distribution is very important

- Where does the gain come from? Resource re-use? Change in interference?
Numerical Results & Analysis

- **Single cell VS**
 - When matching of power split is close to traffic distribution, the performance of the VS cell improves
 - Neighbouring cells performance always improves due to decreased inter-cell interference (highly dependent of P_{outer})
 - Majority of users are served by the outer sector (larger footprint)
 - Different power splits have great effect on sector resource utilization

- **Need for a SON function**
 - Activation / de-activation of VS
 - Selection of appropriate cells for VS
 - Optimization of VS parameters
Outline

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps
SON Function Analytical Model

- Design of a VS controller for VS activation / de-activation on a per cell basis
 - Decision based on load estimation of inner & outer sectors
 - Goal: Maximize Mean User Throughput (MUT) within the cell

- Two decision boundaries
 - Activate when VS is OFF (based on estimated load)
 - De-activate when VS is ON (based on actual loads)

- Assumptions
 - Tri-sector site surrounded by six interfering eNBs
 - Worst case scenario = full interference from all eNBs

- Maximize MUT
Outline

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps
SON Function Calibration

- SON model adjustment using the realistic LTE system level simulator
 - Variable loading
 - Evaluate MUT in cases of VS ON & VS OFF
 - Find decision boundaries (logistic regression fitting) by choosing action for maximum MUT
SON Function Calibration

- Performance of VS SON depends on multiple factors
 - Decision timing interval / macroscopic vs microscopic application
 - Cell characteristics
 - Load & traffic distribution
 - Inter-cell interference
 - Tilt & power settings

Average User Throughput

Average User Throughput

Throughput (kbps)

Cell ID
Cell 52
Cell 62

Load
L 0.001
L 0.002
L 0.004
L 0.007

Average User Throughput

Scenario

Throughput (kbps)

Scenario

VS OFF
VS ON
SON VS

VS SON - Per call
VS SON - 1 sec
VS SON - 10 sec

Throughput (kbps)

Throughput (kbps)
Outline

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps
Conclusions & Further Steps

- VS can offer significant gains which depend on
 - Cell load & traffic distribution
 - Interference conditions
 - VS parameters settings

- Need for a smart (de)activation rule & parameter optimization

- SON controller can offer improved performance of VS on a per cell basis

- SON controller performance is sensitive to multiple factors

- Next steps
 - Assess VS performance with respect to the cell’s vertical angular spread
 - Inner & outer sector load estimation optimization
 - VS decision timing optimization
 - VS parameters optimization (tilt & power)
Thank you

Questions ?