
Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Portably Preventing
File Race Attacks with

User-Mode Path Resolution
IBM ResearchDan Tsafrir

Microsoft ResearchTomer Hertz

UC BerkeleyDavid Wagner

IBM Research
dilmasilva@us.ibm.com

Dilma Da Silva

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Given a “check use” pair of file operations:

TOCTTOU
(Time Of Check To Time Of Use)

1) Check something about filename “f”

2) Based on the result, use “f” in some way

• A TOCTTOU race condition lurks here

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Example 1: garbage collector

root

unlink (/tmp/etc/passwd)

readdir (/tmp)
lstat (/tmp/etc)
readdir (/tmp/etc)
lstat (/tmp/etc/passwd)

attacker

mkdir (/tmp/etc)
creat (/tmp/etc/passwd)

rename (/tmp/etc, /tmp/x)
symlink (/etc, /tmp/etc)

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Example 2: mail server

root

lstat (/mail/ann)

fd = open (/mail/ann)

write (fd, …)

attacker

unlink (/mail/ann)

symlink (/etc/passwd, /mail/ann)

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Example 3: setuid

root

if (access (fname) == 0) {

fd = open (fname)
read(fd, …) …

}

attacker

unlink (fname)
symlink (secret_file , fname)

access() manual:
“The access system call is a potential security hole
due to race conditions and should never be used.”

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

New API
Schumuck & Wylie 1991; Maziéres & Kasshoek 1997; Wright et al.
2007

Existing Solutions

Static detection
Bishop 1995; Viega et al. 2000; Chess 2002; Chen & Wagner 2002;
Schwartz et al. 2005;

Dynamic detection
Ko & Redmond 2001; Goyal et al. 2003; Lhee & Chapin 2005; Joshi et
al. 2005; Wei & Pu 2005; Aggarwal & Jalote 2006

Dynamic prevention
Cowen et al. 2001; Tsyrklevich & Yee 2003; Park et al. 2004; Uppuluri
et al. 2005; Wei & Pu 2006

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

(106)(73)

Vulnerabilities are widespread
sy

m
lin

k
at

ta
ck

vu
ln

er
ab

ili
ti

es

per-year data from the NVD
(National Vulnerability Database)

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

The problem: No solution for
existing systems !

Static detection
Finds races, doesn’t fix them

Prevention & new APIs
Not prevalent

But once a race is found…
What should the programmer do?

Much harder to solve than, say,
buffer overflow

Even for experts

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Previously suggested solutions for the
access-open race

1. Switch to “real” identity before open
=> Not portable [see “Setuid Demystified”,

Usenix Security 2001]

2. Do open + fstat to check ownership
=> Bug

3. Use Unix-domain socket to pass open fd
=> Not portable X 2

4. Use hardness amplification
=> Discussed next…

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

#define SYS (call) if((call) == -1) return -1

int access_open (char * fname) {

}

SYS(access (fname, R_OK));
SYS(fd2 = open (fname, O_RONLY));
SYS(fstat (fd2 , & s2));

Hardness amplification
[Dean & Hu, Usenix Security 2004]

SYS(access (fname, R_OK));
SYS(fd1 = open (fname, O_RONLY));
SYS(fstat (fd1 , & s1));

p

p2K

for (i = 1 … K) {

}

SYS(access (fname, R_OK));
SYS(fd1 = open (fname, O_RONLY));
SYS(fstat (fd1 , & s1));

SYS(close (fd2));
CHK(CMP (& s1 , & s2));

return fd1;

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Defeating the K-race
[Borisov et al., Usenix Security 2005]

“ link1 / link2 / link3 / … / linkN / file ”

“ chain3 / d / d / … / d / … ”

“ chain1 / d / d / … / d / link2 ”

“ chain2 / d / d / … / d / link3 ”

“ chainN-1 / d / d / … / d / linkN ”

…

“ target_directory / file ”

Filesystem maze:

Composed
of 10,000s of
directory entries

Requires 100s of Megabytes!

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Defeating the K-race
[Borisov et al., Usenix Security 2005]

Maze takes a long time to traverse
Often results in going to disk

Path traversal updates symlink access time
Attacker can poll symlink access time and figure out what
the defender is doing

The attack (tricking victim to open ‘secret’)
Just before access() set target file to be public
Just before open() set target file to be ‘secret’

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Defeating the K-race
[Borisov et al., Usenix Security 2005]

Prepare K+1 mazes that point to a public file
Prepare K+1 mazes that point to a private file

1) Link “link1” to “chain1” of ith public maze
Poll atime

for(i = 0 … K)

2) Link “link1” to “chain1” of ith private maze
Poll atime

Maze attack:

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Consequences

It was previously believed that

[Wei and Pu, FAST 2005]:
“TOCTTOU vulnerabilities are hard to exploit,
because they […] relay on whether the attacking
code is executed within the usually narrow window
of vulnerability (on the orders of milliseconds).”

• This is no longer the case…
- The maze attack always wins (p ≈ 1)
- And is generic!

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Filepath syscalls are O(n) algorithms
open, stat, chdir, access, chown, …
n = path’s component number
Must visit n inodes

Dean & Hu’s K-race technique is O(n•K)
file (n = 3): “f1 / f2 / f3”

K-race visits (K = 2): f1, f2, f3, f1, f2, f3

Row-oriented traversal

f1 / f2 / f3 / … / fn

f1 / f2 / f3 / … / fn

f1 / f2 / f3 / … / fn

K rows

n columns
… … … …

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Column-oriented traversal

f1 / f2 / f3 / … / fn

f1 / f2 / f3 / … / fn

f1 / f2 / f3 / … / fn

K rows

n columns
… … … …

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Column-oriented traversal

int access_open(char * fname) {

}

if(fname is absolute) chdir (“/”) + make relative

foreach atom in fname do // atoms of “x/y” are “x” and “y”

if(is symlink) SYS(fd = access_open(atom’s target))
else SYS(fd = atom_race (atom, & s))

if(not last) SYS(fchdir (fd) ; close (fd))
else break

return fd

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

How safe is it?

Obviously, maze attack fails
But maybe someday somebody will do better?
We seek a stronger result, with the help of a hypothetical
“know all” attack:

Exposed defender: for(i = 1 … 106)

s = LSTAT ; lstat (f , & s1)
s = ACCESS ; access (f)
s = OPEN ; fd = open (f)
s = FSTAT ; fstat (fd, & s2)
s = CLOSE ; close (fd)

if(! syscalls failed &&
! symlink(s1) &&
s1.inode == s2.inode &&
s1.inode == secret_ino)

losses++

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

How safe is it?

UltraSPARC-II
448 MHz
4 cpus

Solaris 8

Pentium-III
550 MHz

4 cpus
Linux 2.4.16

PowerPC/4
1.45 GHz

8 cpus
AIX 5.3

AMD dual core
2.2 GHz
4 cpus

Linux 2.6.22

Intel Core 2 Duo
2.4 GHz
2 cpus

Linux 2.6.20

0

5

10

15
local FS

NFS

K value for attack duration > 100 years

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Papers

Previous slides - conference version
“Portably solving file TOCTTOU races with hardness
amplification”
In USENIX Conference on File and Storage Technologies
(FAST)
Feb 2008

Following slides - journal version
“Portably preventing file race attacks with user-mode path
resolution”
Submitted (TISSEC)

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

int access_open(char * fname) {

if(fname is absolute) chdir (“/”) + make relative

foreach atom in fname do // atoms of “x/y” are “x” and “y”

if(is symlink) SYS(fd = access_open(atom’s target))
else SYS(fd = (atom, & s))atom_race

Must it be probabilistic?

if(not last) SYS(fchdir (fd) ; close (fd))
else break

return fd
}

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Must it be probabilistic?

if(fname is absolute) chdir (“/”) , make relative

foreach atom in fname do // atoms of “x/y” are “x” and “y”

if(is symlink) SYS(fd = access_open(atom’s target))
else SYS
…

struct credentials {
uid_t uid;
gid_t gid;
gid_t *supplementary;
int size; // of supplementary array

};

int access_open(char * fname) {, struct credentials * c

(fd = atom_race (atom, & s))(fd = atom_open (atom, & s, c))

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

if (c->uid == 0) return fd; // root
else if (s->uid == c->uid) return fd if s->mode permits user;

int atom_open(char * atom, struct stat * s, struct credentials * c)
{

SYS(fd = open (atom)); // we did lstat (atom, &s) before
SYS(fstat (fd,&s2)); // and doing fstat(fd,&s2) after
CHK(CMP (s, &s2)); // => it’s a hard-link atom

A deterministic solution

close(fd);
return -1;

}

else if (s->gid == c->gid) return fd if s->mode permits group;
else if (s->gid in c->sup) return fd if s->mode permits group;
else return fd if s->mode permits others;

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Overhead

UltraSPARC-II
448 MHz
4 cpus

Solaris 8

Pentium-III
550 MHz

4 cpus
Linux 2.4.16

PowerPC/4
1.45 GHz

8 cpus
AIX 5.3

AMD dual core
2.2 GHz
4 cpus

Linux 2.6.22

Intel Core 2 Duo
2.4 GHz
2 cpus

Linux 2.6.20

0

2

4

6

Slowdown relative to naive access/open

5

3

1

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Generalizing

Not just setuid (“check”)
Credentials structure decouples identity
“Deputy” is no longer confused…
Exactly same solution to access-open & mail-server

Not just open (“use”)
fd/inode mapping is immutable => invulnerable
Once fd is safely opened, can use fchown, fchmod, ftruncate,
fchdir, fstat, … (instead of chown, chmod, truncate, chdir,
stat…)

Other check / use operations?

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Generalizing

typedef int (* transaction_t) (char * atom,
struct stat * s,
int fd);

int collect_garbage (char * atom, struct stat * s, int fd) {
if (S_ISLNK (s)) return -1;
if (S_IDDIR (s)) return 0;
if (s->atime > time(0) - 72*3600) return unlink (atom);
return 0;

}

int check_use (

int flags, // for when open()ing last atom
transaction_t tr); // applied to each atom along ‘fname’

char * fname, // filepath to check/use
struct credentials * c, // with these credentials

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Limitations

File creation
Race typically associated with temp files

File execution
Can’t open file “for execution” (only read/write)
No standard fexec

Multithreading
Due to fchdir
But openat(2) will solve this problem

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Conclusions

POSIX filesystem API is broken
Semantics inherently promote TOCTTOU races

Existing solutions can only locate races
But otherwise relate to non-prevalent systems
Programmers are on their own

We propose user-mode path resolution
Effectively binds check/use pairs in a generic way
Efficiency/safety tradeoff becomes explicit
Pairs encapsulated, new programmers educated

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

Thanks !

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

BACKUP SLIDES

Storage Developer Conference 2008
© 2008 IBM. All Rights Reserved.

www.storage-developer.org

How safe is it?

Expected time TK until K consecutive rounds are lost:

Measure t & p under “ideal” attack conditions:
SMPs / CMPs only (some older & slower)
Multiple attackers, different busy-wait periods
Small memory, recursive bg grep-s, huge dir

t = avg. time to finish one round
p = probability to lose one round

TK = t • p -K

	Slide Number 1
	TOCTTOU�(Time Of Check To Time Of Use)
	Example 1: garbage collector
	Example 2: mail server
	Example 3: setuid
	Existing Solutions
	Vulnerabilities are widespread
	The problem: No solution for existing systems !
	Previously suggested solutions for the access-open race
	Hardness amplification�[Dean & Hu, Usenix Security 2004]
	Defeating the K-race�[Borisov et al., Usenix Security 2005]
	Defeating the K-race�[Borisov et al., Usenix Security 2005]
	Defeating the K-race�[Borisov et al., Usenix Security 2005]
	Consequences
	Row-oriented traversal
	Column-oriented traversal
	Column-oriented traversal
	How safe is it?
	How safe is it?
	Papers
	Must it be probabilistic?
	Must it be probabilistic?
	A deterministic solution
	Overhead
	Generalizing
	Generalizing
	Limitations
	Conclusions
	Thanks !
	Slide Number 30
	How safe is it?

