Floorplanning for Partially-Reconfigurable FPGAs via Feasible Placements Detection

May 5, 2015

Marco Rabozzi: marco.rabozzi@mail.polimi.it
Antonio Miele: antonio.miele@polimi.it
Marco D. Santambrogio: marco.santambrogio@polimi.it
Rationale and Novelty

• Problem statement
 – Given a partially-reconfigurable FPGA, find on-chip area constraints to meet the design requirements

• Novelty:
 – Efficient exploration of the solution space driven by tight LP relaxations of the problem
 – Control on the shapes and positions of allowed areas
 – Possibility to customize the objective function by giving an arbitrary cost to each different area
Floorplanning problem

• Given:
 – The FPGA description
 – A set N of reconfigurable regions (RRs)
 – The resource requirements $\forall n \in N$

• Goal:
 – Find a rectangular area for each region, such that:
 • No two regions overlap
 • Complete tiles are covered
 • All the resource requirements are met
 • A given objective function is optimized
Proposed Approach

- Reconfigurable regions + Resource requirements
- FPGA
- Floorplan solution
- Feasible placements generation
- Possible regions placements
- MILP model
- MILP Solver
 \[\min c_1^t x + c_2^t y \]
- Invalid and redundant placements
- User-defined linear Objective Function
MILP model overview

• Sets:
 – **N**: set of regions (A, B, C)
 – **P_n**: set of feasible placements for region **n** (\(P_A=\{1,2,3\}, P_B=\{4,5\}, P_C=\{6,7\}\))

• Variables:
 – \(x_{n,p}\): binary variable set to 1 if and only if region **n** is assigned to placement **p**

• Constraints:
 – No conflicting placements
 – One placement for each region

\[
\begin{align*}
x_{A,1} + x_{C,7} & \leq 1 \\
x_{A,2} + x_{B,4} & \leq 1 \\
x_{B,5} + x_{C,6} & \leq 1 \\
x_{A,3} + x_{B,4} + x_{C,6} & \leq 1
\end{align*}
\]

Derived from a clique of size 3: tighter formulation + constraints compaction
Benchmark results

- 20 designs with different number of regions and device occupancy rates to test the effectiveness of the proposed approach (PA)

- Global wire length objective function to compare to [1] and [2]

- MILP solver execution time limited to 1800 seconds

<table>
<thead>
<tr>
<th># RR</th>
<th>Average wire length improvement w.r.t. [1]</th>
<th>Average execution time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6.99%</td>
<td>7.48%</td>
</tr>
<tr>
<td>10</td>
<td>7.56%</td>
<td>12.05%</td>
</tr>
<tr>
<td>15</td>
<td>8.83%</td>
<td>19.46%</td>
</tr>
<tr>
<td>20</td>
<td>5.47%</td>
<td>19.98%</td>
</tr>
<tr>
<td>25</td>
<td>5.52%</td>
<td>19.84%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupancy</th>
<th>Average wire length improvement w.r.t. [1]</th>
<th>Average execution time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>8.44%</td>
<td>19.87%</td>
</tr>
<tr>
<td>75%</td>
<td>5.49%</td>
<td>20.29%</td>
</tr>
<tr>
<td>80%</td>
<td>6.20%</td>
<td>13.33%</td>
</tr>
<tr>
<td>85%</td>
<td>7.36%</td>
<td>9.56%</td>
</tr>
</tbody>
</table>

THANK YOU!
FOR ADDITIONAL QUESTIONS CONTACT ME
marco.rabozzi@mail.polimi.it
Feasible placements generation

• A placement p for region n is feasible if it covers all the resources required by region n and does not overlap with user defined invalid areas

• Placements generation strategies:
 – P_n: all feasible placements
 • Provable optimal solutions
 • High exploration cost
 – P_{n}^{irr}: irreducible placements
 • Provable optimal solutions for area minimization
 • Preserve problem feasibility
 • Low exploration cost
 – P_{n}^{w}: width-reduced placements
 • Suitable for wire length optimization
 • Medium exploration cost

Examples of feasible placements

Requires: 3x \square 1x \square

$\in P_{n}^{w}$: The width cannot be reduced
$\notin P_{n}^{irr}$: The height can be reduced

Invalid areas

$\in P_{n}^{w}$, $\in P_{n}^{irr}$: No possible shrinking

$\notin P_{n}^{w}$, $\notin P_{n}^{irr}$: The width can be reduced