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Simple Summary: Clostridium perfringens (Cp.) is an important microorganism from a clinical,
food and veterinary point of view. In humans, it is the causal agent of foodborne diseases, commonly
associated with the consumption of chicken meat, while, in broilers, it causes clinical or subclinical
necrotic enteritis. Cp. has the ability to synthesize toxins, bacteriocins, and enzymes of different
nature, which modify the anatomical structure of the intestinal mucosa, enterocytes, and the cellular
matrix altering the physiological activities of the gastrointestinal tract, resulting in gastrointestinal
disorders, diarrhea, and if it is not attended, death, resulting in significant economic losses for the
poultry industry. Food additives such as probiotics, prebiotics, synbiotics, essential oils, organic acids,
and enzymes have been presented as alternatives to mitigate the incidence of necrotic enteritis (NE)
in broilers, by improving the overall intestinal health and producing healthy birds for consumption.
It is imperative to conduct further research on alternatives and efficient products to modulate the
intestinal microbiota, and to know the role they play in the immune system, complementing the
current demand, economic gain, and keeping the ecology.

Abstract: Clostridium perfringens (Cp.) is the cause of human foodborne desease. Meat and poultry
products are identified as the main source of infection for humans. Cp. can be found in poultry
litter, feces, soil, dust, and healthy birds’ intestinal contents. Cp. strains are known to secrete over
20 identified toxins and enzymes that could potentially be the principal virulence factors, capable
of degrading mucin, affecting enterocytes, and the small intestine epithelium, involved in necrotic
enteritis (NE) pathophysiology, also leading to immunological responses, microbiota modification
and anatomical changes. Different environmental and dietary factors can determine the colonization
of this microorganism. It has been observed that the incidence of Cp-associated to NE in broilers has
increased in countries that have stopped using antibiotic growth promoters. Since the banning of
such antibiotic growth promoters, several strategies for Cp. control have been proposed, including
dietary modifications, probiotics, prebiotics, synbiotics, phytogenics, organic acids, and vaccines.
However, there are aspects of the pathology that still need to be clarified to establish better actions to
control and prevention. This paper reviews the current knowledge about Cp. as foodborne pathogen,
the pathophysiology of NE, and recent findings on potential strategies for its control.
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1. Introduction

Clostridium perfringens is a Gram-positive, anaerobic, nonmotile rod that forms subterminal spores.
The size of the bacillus on the environment where is found, for example, in culture media for sporulation
based on starch the bacillus is long. Meanwhile, in media rich in glucose the bacillus is short. Vegetative
cells are relatively cold resistant, and their spores are heat resistant [1,2]. C. perfringens can hydrolyze
gelatin and reducing nitrates to nitrites; in sulphite media, it generates black colonies due to sulphite
reduction. A characteristic test is the lactose fermentation produced by this microorganism, known as
stormy lactose fermentation in milk due to the large amount of gas it generates [3,4]. This bacterium can
develop under microaerophilic conditions due to its ability to produce high amounts of the enzyme
superoxide dismutase [5,6]. Its ability to form spores allows it to be ubiquitous and can be found in the
environment [7,8].

Beef and poultry, as well as other meat products, are the most important vehicles for this
microorganism [9–11], although it has also been recovered from vegetables [12] and spices [13].
Butler et al. (2015) [14] described the transmission of C. perfringens through water by contact with
animals and transmission from person to person. Considered a natural inhabitant of the gastrointestinal
tract, the main source of contamination towards meat is fecal matter [15].

According to data reported by the CDC (2019) [16], C. perfringes is one of the five pathogens that
most frequently cause foodborne illnesses in the United States, ranking second among the etiological
agents identified, and, in Australia, it is considered one of the bacteria causing outbreaks [17].

The consumption of chicken meat is important worldwide and a 13% increase in its production is
estimated for the year 2027 (OECD-FAO, 2017). In animal production, approximately 70% of the total
cost is attributable to the feed. The diets for farm animals contain antibiotics or growth promoters that
seek to improve the productive parameters on the farm; however, there is a tendency to use them less
frequently, seeking to replace them with what is currently known as sustainable animal diets [18].

It is important to mention that some pathogens that cause disease in chickens can be transmitted
to humans through their consumption. Salmonella, Campylobacter jejuni, and C. perfringens are the most
studied so far. C. perfringens is the cause of subclinical necrotic enteritis in broilers, producing toxins
and is the cause of disease in humans [9,19].

2. C. perfringens as a Foodborne Pathogen

Clostridium perfringens can produce a large amount of toxins (Table 1). Toxinotypes of C. perfringens
cause different diseases in both humans and animals, ranging from subclinical manifestations to
serious, life-threatening diseases (Table 2) [20].

Table 1. Types of Clostridium perfringens according to the toxins produced and the genes that encode
the toxins.

Toxins

Type Alpha (α) Beta (β) Epsilon (ε) Iota (ι) CPE NetB
(plc o cpa) * (cpb) * (etx) * (iap y ibp) * (cpe) * (netB) *

A + − − − − −

B + + + − − −

C + + − − +/− −

D + − + − +/− −

E + − − + +/− −

F + − − − + −

G + − − − − +

*Gene for each toxin. Taken from Rood et al., 2018 [21].
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These diseases are mediated by one or more C. perfringens toxins [21,22]. Enteric infections in
humans and animals have been shown to be associated with C. perfringens type C [23,24], while the
other type of toxins have been confirmed to cause disease in humans or animals, but not both (Table 2).
Of the seven C. perfringens toxin types described, type A is the most frequently identified strain [12,25].
However, type F is the one that causes food-related poisoning in humans [21,26].

Table 2. Toxigenic types of Clostridium perfringens and their association with diseases in humans
and animals.

Type of
Toxin Main Toxin Diseases that Cause

A
α

Wound infection in humans (gas gangrene or clostridial myonecrosis),
necrotic enteritis in birds, ulcerative abomasitis, mild necrotizing
enteritis in piglets, and endotoxemia in South American camelids.

α, CPE Food poisoning in humans, non-food gastrointestinal diseases in
humans, and diarrhea in animals such as dogs, pigs, and foals.

α, β2 Gastrointestinal disease in swine.
B α, β, ε Dysentery and hemorrhagic enteritis in lambs and kids.

C
α, β Necrotizing enteritis in humans, enteritis in dogs, chickens, and South

American camelids.
α, β, β2 Gastrointestinal disease in swine.

D α, ε Enterotoxemia in sheep and goats (pulpy kidney disease).
E α, ι Enterotoxemia in rabbits, dogs, cattle, and sheep.
F α, CPE Human food poisoning and non-food associated diarrhea.
G α, NetB Subclinical necrotic enteritis in chickens.

Bruce et al., 2006; Kiu& Hall, 2018 and Rood et al., 2018 [20,21,27].

The diversity of toxins produced by C. perfringens has allowed it to be the cause of various diseases
in humans and animals. In humans, it is associated with diseases related to food consumption that has
been prepared or preserved in inadequate hygienic conditions [17,28]. This type of illness is usually
characterized by watery diarrhea and abdominal pain, without fever or vomiting, and the symptoms
disappear after 12 to 24 hours [29]. Non-food associated diarrhea due to C. perfringens has also been
described, which usually occurs after a treatment with broad-spectrum antibiotics, and it is common in
older adults. It is worth mentioning that this type of diarrhea usually last longer than those associated
with contaminated food [30]. Another symptom is necrotic enteritis (NE) caused by C. perfringens type
C [31]. Myonecrosis due to C. perfringens (also known as gas gangrene) is another condition that can
occur in people because of wound infection, generating significant pain, gas accumulation at the site of
infection and extensive muscle necrosis, which can put people’s life at risk [32,33].

The toxin of this bacterium also affects some animal species. For example, in broilers the toxin
causes necrotic enteritis, which could lead economic losses. The role of the necrotic enteritis B-like toxin
(NetB) present in G strains causes NE, which is more frequent in chickens fed wheat or barley-based
diets than in those fed with corn [34,35], due to the difference in clostridia proliferation in the diets
resulting in a higher number of bacteria in the intestine, as well as a lack of fluidity and digestion,
generating an increase in the incidence of NE in chickens and increasing the viscosity of the intestinal
contents, mucus production, and growing bacteria [35,36].

3. Necrotic Enteritis Pathophysiology

Clostridium perfringens is a bacterium found in the gastrointestinal tract of broilers and is acquired
from environmental sources such as water, food, or any part of the farm producing these birds, being
part of their microbiota [37]. However, a high enumeration number of this microorganism and the
presence of toxins in some strains can cause different types of pathologies, among them necrotic
enteritis (NE). It is important to mention that an elevated enumeration of C. perfringens by itself is not
the cause of NE but must be accompanied by one or more predisposing factors to develop clinical signs
and lesions of the pathology. Enumerations of 0 to 105 CFU/g of C. perfringens have been observed
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in the intestine of healthy chickens, while animals with NE report enumerations of 106–108 CFU/g,
besides the presence of bacteriocins, adhesins, proteolytic enzymes, collagenolytic enzymes, necrotic
toxin enteritis B-like (NetB) and tpeL [38,39].

Currently, the NetB toxin is considered the determining factor inducing NE in birds [40,41].
This 33-kDa toxin is a member of the family of pore-forming toxins with a beta barrel structure
encoded by the netB gene located in an 85 kb plasmid. The toxin production is stimulated when the
C. perfringens concentration is higher than 109 CFU/g and the bird has low food bioavailability, has a
high consumption of polysaccharides, dysbiosis or has suffered intestinal damage. This damage could
be caused by coccidial pathogens of the Eimeria species, and their colonization causes the release of
plasma proteins to the gastrointestinal tract lumen, including more than 11 amino acids, growth factors,
and vitamins; they will supply the growth substrate for C. perfringens [42–44].

When C. perfringens enters the gastrointestinal tract of the bird and encounters a favorable
environment, it secretes adhesins and proteolytic enzymes that exert their action on the intestinal
mucosa and the surface of the intestinal epithelial membranes, due to their composition. The intestinal
mucosa contains mucin binding sites for bacterial adhesins and O-glycosylated glycoproteins that will
be degraded by chitinases to provide energy substrates for bacteria. At the same time, C. perfringens
can secrete the bacteriocin perforin, which will inhibit other strains of Clostridium, allowing it to have
greater bioavailability of nutrients and damage the intestinal mucosa [43–48].

Besides colonization and degradation of the intestinal mucosa, the NetB toxin will generate pores
to access the enterocytes, and at the same time, adhesins and enzymes capable of degrading collagen
of the cell matrix are secreted, which together will allow for the colonization and will determine
the NE appearance. NetB toxin production is positively regulated by the VirR/VirS two-component
phosphorelay system and by the Agr-type quorum sensing system, the latter being responsible
for mediating the regulation of genes involved in phospholipid metabolism and adherence [49,50].
In addition, the phosphorelay system regulates the production of sialidases or neuraminidases with
the capacity to hydrolyze the α-glucosidic bond of terminal sialic acid in host glycoproteins and
glycolipids, to produce free sialic acid that can be used as a carbon source [45,51], nitrogen, amino acids
and energy, as it is metabolized to fructose 6-P by the pathogenic microorganism. They also participate
in bacterial adhesion by modifying the epithelial surface and exposing receptors on the enterocyte
membrane. Subsequently, C. perfringens adheres to extracellular matrix compounds such as type III,
IV and V collagen, fibrinogen and vitronectin, to later secrete collagenolytic enzymes and hydrolyze
them. Adhesion to the extracellular matrix occurs through the fimbrial adhesins of NetB-positive
strains [43,44,46,48]. The primary changes occur in the basolateral membrane of the enterocytes, to
finally produce necrosis at the level of the mucosa as a result of the destruction of the lamina propria,
interruption of intercellular junctions and changes in the extracellular matrix, thus leading to cellular
death [45,46].

The netB gene along with 36 additional genes, including those that code for two glycohydrolases,
two leukocidins, chitinases, an internalin-like protein, a metalloprotease, and several adhesin-like
proteins, is located in a plasmid of approximately 85 kb that encodes the pathogenicity loci (NELoc-1,
42 kb), which has been specifically harbored by bird isolates with NE. The high conservation degree of
the sequence of this and other identified plasmids (NELoc-2 and NELoc-3) suggests that these come
from a recent evolutionary event through conjugative transfer. In accordance with these findings, it is
assumed that various virulence factors participate in NE development, whose genes are grouped in
pathogenicity loci, some of which are harbored in plasmids [52].

The structural analysis of NetB shows that the interaction domain and binding of the protein
with membrane lipids is rich in aromatic amino acids, being essential amino acids R230 and W287,
and structurally differs from other proteins of the hemolysin family, substantial for oligomerization of
residue S254, suggesting that NetB has a different binding mechanism to membrane receptors [45];
according to some experiments, it is suggested that it binds to membrane cholesterol [53]. Once NetB
is secreted in a soluble monomeric form, it binds to the cell surface through the RIM domain and
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subsequently oligomerizes, producing a pre-heptameric pore in the lipid bilayer. This oligomerization
process induces conformational changes in the protein to generate a barrel structure with antiparallel
β-sheets and forms a mushroom-like transmembrane pore with a subsequent alteration of membrane
permeability [53,54]. The heptameric pore formed at the plasma membrane level by the NetB toxin
has an internal diameter of 26 Å, with a hydrophilic nature, which favors the destabilization of the
ion flow by allowing the exit of K+ ions and the entry of Ca2+, Na+ and Cl- (showing preference for
cations), producing osmotic cell lysis [22,41,55]. As intracellular calcium increases, the cascade of
events for necrosis programming is influenced by the activation of calpain and cathepsin secretion
from lysosomes. In addition, an alteration in the mitochondrial activity is observed with an increase in
reactive oxygen species and a decrease in ATP [56]. Free radicals can accumulate in the mitochondria
and uncouple the proteins of the mitochondrial inner membrane, leading to a decrease in ATP levels,
with losing the integrity of the intercellular junctions in the gastrointestinal epithelium, increasing the
permeability of the mucosa and, finally, cell death (Figure 1) [56,57].
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Clostridium perfringens. Created with BioRender.com

In the conserved region of the plasmid NELoc-1 that codes for the NetB toxin, there is also the
gene that codes for the zinc metalloprotease, ZmpA, which, together with another metalloprotease,
ZmpB, has been implicated in NE in chickens. Such proteins have high binding affinity for the mucin
glycoprotein, a constituent of the mucosa of the gastrointestinal epithelium. Such metalloproteases
participate in the development of NE, since the zmpA gene has been identified in isolated strains of
birds with the disease, although the zmpB gene was still identified in isolates of birds in the absence of
the disease, the lack of one or both genes generate strains with reduced virulence, which is why they
are presumed to participate together in pathogenesis’s development [47].

Likewise, it has been observed that the expression of the tpeL gene occurs during sporulation and
the TpeL toxin is secreted to promote the adhesion of C. perfringens type A in epithelial cell cultures [58];
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disease and mortality are induced more rapidly in birds infected with TpeL-producing strains, which
could potentiate the effect of other toxins like NetB [59]. The binding and entry of this toxin into the
enterocyte is mediated by the endocytic receptor Lpr1 [60].

3.1. Clinical Alterations

Chicken’s intestinal health is determined by the balance between anatomical components and
their physiological activities. However, the development and maturation of the gastrointestinal tract
is generated through the bird’s life, as well as the exposure to different environmental variables,
which will establish the morphological changes and the specific activities of each intestinal segment.
Thus, the mucosa and intestinal villi with their microvilli are necessary for the adequate absorption
of nutrients and the establishment of the intestinal microbiota, while the gut-associated lymphoid
tissue (GALT), together with the mucosa and microbiota, provides an immune complex that will
work as a gastric defense mechanism [61–63]. Therefore, an aggression to any of these components,
especially in the first weeks of life, could trigger an alteration in the integrity of the intestinal epithelium,
in the bioavailability and absorption of nutrients, promoting a bacterial dysbiosis and an intestinal
inflammatory process.

Due to the above, the chicks, being immunologically and physiologically immature, are more
susceptible to be infected by C. perfringens (NetB positive), either clinically or subclinically. The clinical
phase of disease caused by C. perfringens infection is called NE and is characterized by a sudden
increase in mortality of up to 50% of the population [44,64]. The main characteristic is necrosis at the
intestinal level, whose clinical signs include depression, dehydration, drowsiness, diarrhea, and a
decreased food consumption. Likewise, lesions are observed throughout the gastrointestinal tract
mainly in the jejunum, ileum, expanding to the cecum and duodenum, with a thin, dilated wall and
with the presence of gas. The mucosa is gray-brown or yellow-green, and, occasionally, lesions occur
in other organs like the cecum, liver, and kidney [42,56,64].

At the microscopic level, in the early stages of the disease, a hyperemic lamina propria is observed,
with infiltration of heterophiles, lymphocytes, and plasmatic cells, edematous areas and structural
alterations. Likewise, villi flattening, and the congestion of blood vessels are observed in the lamina
propria and submucosa. Subsequently, there is necrosis in the mucosa and villi, a pseudomembrane
with a tissue fragment, fibrin presence with cellular adhesions to the gastric mucosa, where there are
bacterial conglomerates. In the later stages of the disease, blood vessels, liver and kidney are affected,
accompanied by red cell changes and necrosis in follicular lymphocytes [42,44,56,64].

While subclinical pathology has several non-specific signs, such as poor digestion, low weight
gain, increased feed conversion ratio, and an increased risk of mortality, lesser-grade histopathological
lesions can be observed in the intestinal tract, including ulcers, bile duct hyperplasia, and inflammation.
The chronic subclinical disease process allows bacteria to reach the bile duct and bloodstream, therefore,
the pathogen can be found in the liver [42,65,66]. Because the subclinical process does not have
exacerbated clinical manifestations and high mortality, many birds do not receive treatment, which
leads to severe economic losses.

3.2. Immune System Activity

Part of the clinical picture of the disease is due to the action of the immune system against the
aggression exerted by the virulence factors of C. perfringens. The first step is observed in the intestinal
mucosa, whose degradation allows access to nutrients and pathogen colonization; therefore, bacterial
accumulations are observed in this segment and a decrease in the thickness of the intestinal mucosa.

Subsequently, the formation of the transmembrane pore in the enterocyte and the alteration in
the extracellular matrix by the collagenolytic enzymes of C. perfringens will affect the tight junctions
and their components, as well as the binding proteins claudins, occludins, molecules of junctional
adhesion molecules (JAMs), coxsackie virus and adenovirus (CAR) receptors, and tricellulins, until
the damage compromises the integrity of the lamina propria [42,45,67]. This is accompanied by the



Animals 2020, 10, 1718 7 of 28

activation of the mucosal immune response to increase epithelial permeability. Thus, pro-inflammatory
cytokines, such as TNF, IL-1-, and LIGHT (tumor necrosis factor superfamily member 14), promote
the dysfunction of the barrier generated by tight junctions by inhibiting the transcription of binding
proteins and inducing the redistribution of occludins, ZO-1 and claudins-1 through the dynamics
of the cytoskeleton. Additionally, cytokines promote the transcription of MLCK kinase (Myosin
Light-chain kinase), which activates myosin II by phosphorylation, which leads to the reorganization
of tight junction proteins and even promotes endocytosis of the binding complex from the apical
zone of the enterocyte, thus altering paracellular permeability [57]. The loss of the tight junction
integrity results in a leaky gut, altering the passage of solutes in the transmembrane, affecting the
cytoskeleton and function of the enterocyte, or giving way to microorganisms or their components,
such as lipopolysaccharides to circulation (endotoxemia). This compromises the epithelial function,
the structure of the apical and basolateral barrier of the enterocyte, causing diarrhea besides activating
the gastric immune system, resulting in local and, later, systemic inflammation [67,68].

During the inflammatory process, there is activation of CD4, Th1 and Th17 lymphocytes, whose
inflammatory cytokines promote the recruitment of heterophiles, monocytes, and lymphocytes, as
well as their translocation and migration to the damaged site. Therefore, its accumulation results
in an inflammatory process accompanied by the flattening of villi and hyperplasia of the crypts,
which, together with the degradation of the gastric mucosa and alteration of the enterocyte, leads
to a decrease in the absorption surface and diarrhea [56,67,69]. Villi flattening decreases the site of
absorption of macro and micronutrients that impact on the health status of the bird, which can present
mal absorption, malnutrition, food deficiencies and pathologies related to nutrition such as anemia,
low weight and low feeding efficiency [62,70].

The effect on the enterocyte and tight junctions, caused by the NetB toxin and collagenolytic
enzymes, is enhanced by the presence of other inflammation mediators, since these exert their action
on vascular permeability, which causes overexpression of oxygen reactive species and capillary
congestion, leading to edema and the possible presence of hemorrhages, and necrosis [42,63,71].
The increase in vascular permeability at the injury site caused by inflammatory mediators such
as histamine, leukotrienes, prostaglandins, among others, stimulating endothelial cells to express
adhesion molecules in the basement membrane, which allow the anchoring of heterophiles and platelets.
These cells are exposed to inflammatory mediators and are activated to release oxidant molecules and
proteases (elastase), in addition to cytokines like TNF and IL-1β, which damage the endothelium and
microvasculature by increasing the inflammatory response recruiting more leukocyte cells [72].

Heterophiles transmigration between endothelial cells disrupts inter-endothelial junctions, and
in conjunction with the reorganization of tight junction proteins promoted by TNF and IL-1β, there
is a considerable increase in vascular leakage [57,72]. Macrophages located in the lamina propria,
the submucosa, and the intestinal lymphoid organs are among the first cells of the epithelium to
respond to infection. Activated macrophages produce cytokines TNF, IL-8 and IL-1β; in addition, they
can produce nitric oxide, which has a vasodilator and antimicrobial effect. IL-8 promotes the attraction
of lymphocytes, the activation and degranulation of heterophils, in response to mediators such as
cyclooxygenase-2 and 5-lipoxygenase that produce potent vasoactive and pro-inflammatory effects by
activating endothelial cells, neutrophils, and platelets [72].

The extracellular matrix of an inflamed tissue is composed of fibronectin, fibrinogen,
and vitronectin, which are deposited in the tissues as a result of plasma extravasation and by
protein synthesis, from stromal cells, in response to the activation of the inflammatory mediators and
adhesion of the heterophiles, which, when degranulated, release proteases with fibrinolytic activity,
with the consequent deposition of fibrin in the injured tissue. For their part, activated mast cells release
histamine, 5-hydroxytryptamine, proteases, heparin, cytokines and other inflammatory mediators from
their granules, which increase vascular permeability, generate vasodilation, alter intestinal motility,
promote epithelial cell secretion, with the consequent increase in transit, and the expulsion of intestinal
content [72].
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The loss of mucosa, the flattening of villi and the alteration of intestinal permeability generate
a change in the site of action and the available nutrients of the intestinal microbiota, and with it an
alteration in the bacterial communities and their metabolic and immunological effect [73]. Dysbiosis is
mainly seen in bacterial groups such as Ruminococcus, Clostridium, and Lactobacillus. The first is found in
a higher percentage in the cecum with a metabolic activity that includes the production of butyric acid.
Gharib-Naseri et al. [38] reported that low Ruminococcus enumerations have been observed in chickens
with NE, which could cause a decrease in the main energy metabolite of the intestinal epithelium,
butyrate, which decreases blood flow that is linked to nutrients absorption, reducing cell proliferation,
mucin production, as well as the defense mechanisms and anti-inflammatory activity of IL10 [63].

On the other hand, it has been observed that in chickens that have been challenged, Lactobacillus
enumerations, particularly in cecum, are higher compared to controls. This could be due to disturbances
in the bioavailability of nutrients in the models, the increase due to the recovery of the chickens after
NE or due to the over-influx of the ileum to the cecum due to the microbial challenge and that is
related to a greater amount of acid lactic in blind. On the other hand, it has been reported that in
animal models that were infected with C. perfringens, said pathogen displaces or inhibits the native
microbiota, particularly the Clostridial community, whose proportion in healthy birds is represented by
Clostridium proponicum, Clostridium leptum, and Ruminococcusbromii. Competition between clostridials
probably allows bacteria such as lactobacilli to increase their enumerations and the overpopulation of
other less dominant species [38,74,75].

4. Detection Mechanisms

4.1. Histopathological Detection

Evaluating the damage of the disease has been carried out through biological models. To do this,
the presence of colonies of Gram-positive bacilli is observed, and a score has been proposed that allows
a semi-quantitative evaluation, whose criteria include the observation of macroscopic and microscopic
damage to the epithelium, mucosa, and reliability of the intestine and gas accumulation [70].

After histopathological evaluation, it is common to find necrotic enteritis (NE) lesions in the
proximal region of the jejunum (between the distal end of the duodenum and Meckel’s diverticulum),
anywhere in the small intestine, as well as in the cecum and/or the colorectal region (Table 3).

Table 3. Lesions found on histopathological examination.

Lesion Characteristics

Necrosis
Mucous discolored, thick, coarse granular texture, moderately firm and

adherent or smooth, and moist. Areas of intensely eosinophilic villi
covered with clostridia delimited by heterophilic infiltrate with fibrin.

Ulcers
Sunken fossae with rough and reddened exposed surface, crater-like,
thinning and detachment of mucosa, shiny appearance. Presence of

re-epithelialized ulcers on the serous surface.
Hemorrhage Limited in the margin of the lesions or in the intestinal lumen.

Thin and flaccid intestinal wall

Detachment of large areas of mucosa that accumulate in the intestinal
lumen, loss of smooth muscle tone, presence of discoloration produced
by thick dark green bile at the duodenum and proximal jejunum. Smelly

gas build-up.

Cooper et al., 2013; Smyth, 2016 [64,66].

Occasionally, multifocal coagulative necrosis lesions can be found in the liver and bile ducts,
with the presence of exudative fibrin and Gram-positive bacilli; the tissue appears thickened and with
granulomatous inflammation [64]. The gross lesions that occur in the NE are recorded according to a
scale of tissue damage (Table 4).
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Table 4. Scale of gross lesions in the small intestine with chronic enteritis.

Number Lesions

0 No apparent injuries.

1 Thin or brittle wall.
Congested intestinal mucosa.

2 Focal necrosis or ulceration (1 to 5 lesions).
3 Coalescent multifocal areas of necrosis (6 to 15 lesion targets).
4 Extent of severe necrosis (more than 16 lesion targets.
5 Necrosis patches 2–3 cm long (variable amount).
6 Extensive diffuse necrosis (variable amount).

Keyburn et al., 2006; Shojadoost et al., 2012; Yang et al., 2019 [76–78].

Birds that die from NE undergo a rapid decomposition, the intestine begins an autolysis process,
which makes the histopathological analysis difficult; thus, the diagnosis requires further evaluation.

4.2. Immunological Detection

Through an ELISA-type immunosorbent assay, it has been possible to detect the presence of
high levels of CPA toxin in intestinal samples from chickens with NE and/or serum anti-CPA [64] or
anti-NetB [79] antibodies, the latter reflecting a clinical or subclinical picture of the disease. It is worth
mentioning that toxins can be degraded by proteases, or be produced after death, so their detection is
not conclusive for NE.

Recently, a method has been developed to detect the levels of IL-10 in serum of infected chickens
and intestinal epithelial cells stimulated with C. perfringens, with an ELISA to capture antigens by mouse
monoclonal antibodies against chicken IL-10, representing a useful tool to monitor the disease [80].

4.3. Molecular Detection

C. perfringens detection in samples from the gastrointestinal tract of chickens can be performed
by quantitative real-time PCR using a fluorogenic assay, with a hydrolysis probe (5′ nuclease) for
the detection and quantification of specific 16S rDNA sequences for C. perfringens obtained from
the gastrointestinal contents of chickens [81]. The pathogenic strains can be detected through the
identification of genes coding for the relevant toxins in the netB and tpeL pathogenesis of NE in
isolated clinical samples, with a specific multiplex PCR, thus allowing for more efficient sampling and
diagnosis [43,82].

Although the detection of pathogenic strains of C. perfringens may be simple, the diagnosis of
NE as such is not possible in a timely manner, since it is feasible until the bird has died. Among the
strategies used for raising healthy animals is the use of various methods of disease control through
the incorporation of compounds in the diet that contribute to modulating their nutrition. The diet
significantly affects the intestinal microbiota of broilers and is responsible for regulating important
aspects such as immune and metabolic response.

5. Control

The intestinal microbiota of broilers constitutes a crucial factor in modulating the immune
response and productive efficiency. However, its composition is affected by the diet supplied
and the incorporation of food additives (antibiotics or other growth promoters) to improve the
productive parameters on the farm, causing alterations that favor the development of pathogens such
as C. perfringens. Currently, there is a trend to replace the use of antibiotics with what is known as
sustainable animal diets [18].

The basic strategies used to control necrotic enteritis (NE) in broilers are the reduction of pathogens
and modification of diets and/or feed additives [82]. The first strategy usually involves establishing
biosecurity and sanitation protocols on farms. For its part, the nutritional approach includes the use
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of probiotics, prebiotics, symbiotics, phytogens, organic acids, and dietary modifications, which are
discussed below.

5.1. Probiotics

The incorporation of probiotics in diets has been considered as a promising alternative to the use
of antibiotics and growth promoters. Probiotics have been defined as "live microorganisms which,
when administered in adequate amounts, can confer benefits to the health of the host" [83].

The benefits attributed to the probiotics incorporated in broilers diets are diverse and
include: (1) modulation in the composition of the intestinal microbiota through the production
of pathogen growth inhibitory metabolites; (2) improving food efficiency conversion and, therefore,
a significant increase in production performance, in addition to showing improvement in meat quality;
(3) stimulation of the immune system, increasing the levels of immunoglobulins in serum, specifically
IgG (or IgY) and IgA and the secretion of IgA in mucous membranes (sIgA), while reducing the severity
of pro-inflammatory processes, and (4) contribution to the improvement in the safety of raw meats
destined for human consumption by competitive exclusion mechanisms and/or by neutralization of
toxins [84–89].

Probiotics are widely used microorganisms to deal with specific diseases such as avian subclinical
NE. The efficacy of probiotics belonging to the genera Bacillus, Lactobacillus, Enterococcus, Bifidobacteria,
and Saccharomyces has been evaluated both in vivo and in vitro [90]. However, in in vivo tests using
strains of the Bacillus, Lactobacillus, and Enterococcus genera, their beneficial effects have been described
in greater depth (Table 5). One of these studies performed a meta-analysis that included independent
trials carried out in different countries simultaneously, demonstrating in large-scale evaluations that the
supplementation of probiotics like B. subtilis DSM32315 significantly improves productive parameters
and decreases the histological damage caused by C. perfringens [91].

The composition of the microbiome associated with broilers has been correlated with improved
production efficiency, alluding to the fact that the use of probiotics represents a viable alternative to
avoid the use of antibiotics in diets [92]. It has been suggested that probiotics may beneficially affect
the structure of the host gut microbiota, consequently improving the growth and survival of farm
organisms [86]. The main effects described in animals whose diets were supplemented with probiotics
are related to an increase in the enumerations of Lactobacillus, Bifidobacterium, and Butyricicoccus and
a decrease in Escherichia coli, C. perfringens, and Staphylococci. Stanley et al. (2016) [27] identified
a significant correlation between the presence of Faecalibacterium prausnitzii, feed conversion and
metabolizable energy in broilers ceca microbiota, while the genus Lactobacillus was correlated with a high
level of feed intake and a low feed conversion [93]. In other studies, the efficacy of L. johnsonii FI9785,
a producer of a heterologous endolysin, was observed in vitro and in vivo reducing C. perfringens as a
way to improve the safety of chicken meat for human consumption [94,95] (Table 6).
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Table 5. Probiotics used in the treatment of necrotic enteritis caused by Clostridium perfringens in an avian model.

Genus Strain Results Reference

Bacillus

B. amyloliquefaciens H57
Improvement of feed conversion.

Lower score in intestinal lesions caused by C. perfringens.
Structural protection of villi at the mucosal level (improves intestinal integrity).

[96]

B. coagulans

Improvement of intestinal morphology and cecum and liver damage decreases (P < 0.01).
Expression increase of fowlicidin-2, an antimicrobial peptide described in chickens.

Increased levels of sIgA and alkaline-phosphatase activity in jejunum.
Increase in the expression levels of lysozyme in the jejunum.

Inhibition of growth, colonization, and invasion by C. perfringens.

[97]

B. licheniformis H2 Normalization of disorders in the microbiota caused by infection with C. perfringens. [98]

Significant suppression of the negative effects on weight gain, decrease in feed
consumption, and feed conversion rate (P < 0.05).

Increase in the villis height: depth ratio of the crypts in the ileum (P < 0.05).
Increase in the activity of antioxidant enzymes and intestinal capacity in ileum, serum,

and liver (P < 0.05).
Increase in the concentration of Bcl-2 protein in the liver.

[99]

B. subtilis DSM32315

Meta-analysis carried out in three different countries and five independent trials.
Significantly improves weight gain and feed conversion.

Decreases mortality.
Lower injury score.

[91]

B. subtilis PB6 Lower score of intestinal lesions.
Increase in the concentration of propionic acid in cecum. [100]

A mix of 6-probiotic strains, 4 Bacillus
subtilis (CPB 011, CPB 029, HP 1.6, and D

014) and 2 Bacillus velezensis (CBP 020
and CPB 035)

Significantly improves feed conversion.
Increase in villus height (P < 0.0001) and in the ratio of villi height: crypt depth

(P < 0.0004) in duodenum and jejunum.
[101]

Lactobacillus L. johnsonii BS15 Significant increase in the levels of IgG (or IgY) and IgA in serum after 21 days.
Beneficial effects on subpopulations of T lymphocytes in peripheral blood. [102]

L. plantarum 1.2567

Significant decrease in the loss of epithelial cells and lymphocyte infiltration, showing an
effect of attenuation of the inflammatory response.

Significant reduction in intestinal injury scores.
Improvement in weight gain.

Improvement in the structure of microvilli.

[103]
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Table 5. Cont.

Genus Strain Results Reference

L. fermentum 1.2029

Attenuation of the inflammatory damage causing distortion in the crypt architecture,
infiltration of granulocytes in the lamina propria and subepithelial and hyperplasia in the

lamina propria.
Modulation in the expression levels of interferon γ, interleukin IL-10 and the Toll-like

receptor 2 receptor.
Decrease in the percentage of injury incidence, intestinal injury score and injury severity.

[104]

L. acidophilus CGMCC 1.1878 and L.
fermentum CGMCC 1.2029

In in vitro assays, both strains degraded C. perfringens α-toxin at 2 and 4 h of incubation.
The pretreatment of C. perfringens with L. acidophilus significantly decreased (P < 0.05) the

percentage of adhesion of the pathogen to chicken intestinal epithelial cells.
The relative expression levels of interleukins 6, 8 and 1β, inducible nitric oxide synthase

and tumor necrosis factor α (TNF-α) were under-expressed in cells treated with
Lactobacillus strains.

[105]

L. plantarum R1.0320

Increase in the villus height: crypt depth ratio.
Greater expression of MUC2 and a decrease in the expression of TNF-α in the mucosa of

the ileum.
Significant increase in the levels of IgA and IgG (or IgY) (on the 3rd day of

administration) and IgM (on the 10th day of administration).

[106]

Enterococcus E. faecium NCIMB 11181

Significant improvement in weight gain.
Lower rate of intestinal lesions, histopathological inflammation, and apoptosis in

intestinal cells.
Overexpression of the gene encoding Claudin-1 that promotes epithelial cell attachment.
Promote a balance in the intestinal immune response by modulating the expression of pro

and anti-inflammatory cytokines, growth factors, heat shock proteins, and negative
regulators of signaling mediated by Toll-like receptors.

Modulation of the intestinal microbiota.

[107]
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Table 6. Probiotic strains used for microbiota modulation to control necrotic enteritis caused by Clostridium perfringens in broiler chickens.

Probiotic Concentration on the Diet Time Results Reference

Bacillus subtilis CGMCC
1.921

1 × 107 and
1 × 108 CFU/g

1 to 24 weeks Significantly lower enumeration of C. perfringens in
ceca digesta (p < 0.05). [108]

Bacillus subtilis PB6 5 × 1011 CFU/kg 35 days

Reduced the intestinal C. perfringens enumeration
significantly (p < 0.05) and improved villi length

by 10.88 and 30.46% (p < 0.05) compared with
uninfected and infected control groups.

[109]

L. acidophilus D2/CSL
CECT 4529 and B. subtilis

PB6 ATCC-PTA 6737

0.1% of L. acidophilus (Lactomalt
D2 Bio®); 0.05% of B. subtilis

(Clostat® brand dry—740210)
5 and 7 months

Significantly decrease in E. coli, Clostridia, and
Staphylococci in cecum and ileum digesta (p <
0.001). The two probiotic-supplemented diets,

increased Lactobacillus spp. and Bifidobacterium spp.
enumeration compared with the control diet.

[110]

A mix of Bacillus subtilis
DSM17299, Clostridium

butyricum, and
Lactobacillus acidophilus

2 × 102 CFU/g and
4 × 102 CFU/g

35 days
Significantly lower enumeration of C. perfringens

and Escherichia coli in caecum and increase the
enumeration of Lactobacillus and Bifidobacterium.

[111]

Enterococcus faecium
NCIMB 11181 1 × 106 CFU/kg 26 days

Microbial community composition among the
different groups, indicating significant variability

in their microbial profiles.
Highest relative abundance of Lactobacillus and

Butyricicoccus in the cecum compared to the
negative control and the C. perfringens-infected
group without the administration of probiotic.

[107]

L. johnsonii

Feed and water
delivery > 106 CFU/g or mL;

oral and litter
delivery > 108 CFU/mL of PBS

21 days

Establishment of the probiotic L. johnsonii in the
intestinal tract.

No statistically significant differences between
delivery methods on the gut microbiota.

Significantly decrease enterobacteria and C.
perfringens in the ileum.

[112]
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In addition to the above, the concept of competitive exclusion has been described, which was born
from the work carried out by Rantala and Nurmi in 1973, who proposed the inclusion of bacteria isolated
from adult chickens to prevent Salmonella Infantis colonization [113]. This term raises the possibility of
“implanting a healthy microbiota” in the first days of the animal’s life, and thus preventing colonization
by pathogens [114]. For this, commercial products (Aviguard®, BROILACT®, PoultryStar®, MSC™)
have been suggested with an effect against C. perfringens, which causes NE in broilers [114]. However,
only MSC™ was evaluated to decrease the enterotoxin produced by C. perfringens, suggesting its
usefulness against the incidence of NE in chickens and reducing the risk of disease in humans [115].

Due to the above, the possibility of an early programming to modulate the intestinal microbiota
has been considered as a potentially useful strategy to improve health, well-being and productivity in
broilers through probiotics, by reducing pathogen enumerations in the gastrointestinal tract of chickens
and, with it, the risk of contamination to contribute to the safety of raw meats [116,117].

5.2. Prebiotics

The International Scientific Association for Probiotics and Prebiotics defines prebiotics as
“a substrate that is selectively used by host microorganisms, conferring health benefits”; when
administered orally, these are called dietary prebiotics [118].

A good prebiotic should meet the following characteristics: 1) resist exposure to gastric acid,
it should not be hydrolyzed or absorbed in the upper part of the gastrointestinal tract; 2) serve as a
selective source of nutrients that support growth and/or metabolic activity of beneficial host members
of the gut microbiota, and 3) induce luminal responses or other systemic physiological responses that
benefit the host in some way [119]. Thus, the compounds that meet these characteristics are indigestible
oligosaccharides or polysaccharides [120], also named refined functional carbohydrates [118], such as
mannan-oligosaccharides (derived from the cell walls of Saccharomyces cerevisiae), β-glucans (derived
from cell walls of fungi or yeasts), galacto-oligosaccharides and fructo-oligosaccharides like inulin,
levan and branched groups (extracted from different plants, hydrolyzed from polysaccharides or
produced by microorganisms) [121], being inulin and fructooligosaccharides the most used in the
poultry industry [122], with a degree of polymerization of two to twenty monomers [123].

The use of prebiotics in poultry production systems is based on the fact that they are able to
improve the intestinal epithelium (longer villi and shallower crypts) [124] and feed conversion and
efficiency [125] through the synthesis of metabolites from their fermentation, such as short-chain fatty
acids [126], mainly acetate, propionate, and butyrate, which are absorbed directly from the hindgut and
used as an energy source in tissues [127], which in turn promote weight gain and performance [125].

Moreover, they improve the mineral absorption, specially Ca and P, when administered at a rate
of 10 g/kg of feed, which in turn impacts bone mineralization in broilers [120], promoting a symbiosis
in the intestinal microbiota, increase intestinal colonization of lactic acid bacteria and are capable of
inhibiting intestinal colonization of pathogens, thereby restricting the amount of toxic metabolites
generated by them (ammonia, indoles, phenols, and thiols) [128]. They also reduce the intensity and
time of histopathological conditions caused by C. perfringens in the jejunum and duodenum [124,126].

The effects obtained are dependent on the quantity, type and origin of the administered prebiotic,
as well as on the characteristics of the birds (breed, sex, age) and the environment (hygiene, house
maintenance, environmental stress, temperature) [120,129].

5.3. Synbiotics

The term synbiotic was used for the first time in 1995 by Gibson and Roberfroid when referring to
“a mixture of probiotics and prebiotics that can beneficially affect the host by improving the survival
and implantation in the gastrointestinal tract of live microorganisms supplemented in the diet, by a
selective stimulation of the growth and/or activation of the metabolism of one or a limited number of
health-promoting bacteria, and therefore, improving the well-being of the host” [130].
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The main reason for using a symbiotic is that the probiotic without the prebiotic will have
less chance of surviving in the gastrointestinal tract, as it will show less tolerance to temperature,
oxygen, and low pH. In addition to the above, the administration of a synbiotic improves the survival
of the probiotic during its passage through the upper gastrointestinal tract [122,131]. Among the
benefits of using synbiotics are: (1) raising the levels of lactobacilli and bifidobacteria, as well as the
balance of the intestinal microbiota; (2) improving immunomodulation; and (3) preventing bacterial
translocation [132]. In broilers, dietary supplementation with synbiotic products has been reported to
significantly improve body weight, average daily weight gain, feed efficiency and percentage of body
mass yield compared to the controls or chickens fed only with probiotics [133].

There are some commercial synbiotic products intended for the chicken meat industry; among them
are: Biomin®IMBO (ME BIOMIN GmbH) made up of Enterococcus faecium and fructooligosaccharides
(FOS), and PoultryStar® (ME BIOMIN GmbH), which includes a mixture of Bifidobacterium animalis,
Enterococcus faecium, Lactobacillus reuteri, L. salivarius, Pediococcus acidilactici and inulin, and Synbiotic
poultry (Vetafarm) containing L. acidophilus, L. casei, L. salivarius, L. plantarum, L. rhamnosus, L. brevis,
Bifidobacterium bifidum, B. lactis, Streptococcus thermophilus and inulin [134].

Synbiotics have been evaluated in the poultry industry to eliminate or decrease intestinal counts
of specific pathogens such as Campylobacter jejunio. Supplementation of a mixture of Bifidobacterium
longum subsp. longum PCB133 and xylooligosaccharides demonstrated their efficacy in reducing the
pathogen through the alteration of the intestinal microbiota when it is developing [135].

Few studies have addressed the use of synbiotics as a strategy to decrease the severity of necrotic
enteritis (NE) caused by C. perfringens. Among the most important results, a consistent impact has
been observed in the reduction of the pathogen enumerations and the severity of the histopathological
damage at the intestinal level, in the intestinal damage score and in mortality percentages (Table 7).
On the other hand, these studies describe an increase in weight gain, in the enumeration of lactic acid
bacteria at the intestinal level, and in the number of specific antibodies at the mucosa level in broilers
(Table 7) [136,137].

The results of studies conducted with synbiotics in chickens remain controversial. Some researchers
have highlighted the efficacy that they have on the significant reduction of pathogens such as
Escherichia coli in the cecum content when used combined, strains from the group of lactic acid
bacteria and yeasts [136]. For their part, Mookiah et al. [137] did not observe a synergistic effect
when combining probiotics with prebiotics (11 Lactobacillus strains and isomalto oligosaccharides) in
determining microbial populations in cecum or volatile and non-volatile fatty acid concentrations
in broilers.

Studying the effect that different synbiotics have on pathogens of sanitary importance such as
C. perfringens and/or its toxins, and their impact on the safety of meat for human consumption, is a
subject that still needs to be explored in more detail.
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Table 7. Effect of the use of symbiotics on health, production parameters and the elimination of Clostridium perfringens in broilers.

Synbiotic Composition Dose Time Results Reference

Enterococcus faecium + FOS +
phycophytic substances 1 kg/ton of feed 3 weeks

Decrease in mortality rate.
Significant improvement (p < 0.05) in the intestinal lesion score.

Absence and reduction of histopathological alterations.
Significant decrease (p < 0.05) in the counts of C. perfringens in
intestine and cecum, from day 3 to day 21, all this between the

control group and the infected group fed with the synbiotic.

[138]

Saccharomyces cerevisiae,
Enterococcus faecium, and Bacillus

spp. (Avi-Lution®)
1 and 2 g/Kg of feed 42 days

Significant increase in weight gain.
Decrease in the percentage of mortality and in cumulative

mortality at day 28 and 42 (both levels of
synbiotic supplementation).

No effect on intestinal lesions was observed.

[139]

Synbiotic mix Kurago Biotek, 1 mL
contains (7 log UFC/g of

Lactobacillus rhamnosus HN001,
Pediococcus acidilactici MA18/5M
and 4.5% Agave tequilana fructans)

50 µL/day 39 and 42 days
Increase in lactic acid bacteria enumerations in the duodenum.

Improvement in intestinal morphology (higher villi and
shallow crypts) in the duodenal mucosa.

[75]

L. reuteri, E. faecium, B. animalis,
and P. acidilactici con FOS. 0.05% 21 and 42 days

Significant difference in the height of the jejunal villi (p < 0.05)
on day 28 and 42.

Significant weight gain (p < 0.01) (at 21 and 42 days of
the experiment).

Significant decrease in C. perfringens enumerations from day 28
to day 42.

Increasing the number of specific antibodies (IgA) at the level of
the ceca mucosa.

[140]
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5.4. Phytogenics

Phytogenic additives are components and biologically active substances extracted from plants,
such as oleoresins, tannins, saponins, flavonoids and alkaloids, with a positive effect on growth and
animal health [141].

Phytogenics increase antimicrobial activity, have antiviral, antioxidant, and anti-inflammatory
properties, stimulating the endocrine and immune system. They promote a higher metabolic and
immune status in chickens, as well as greater well-being. Several plant-derived compounds have been
shown to have beneficial effects on the gut environment and gut microbiota. Its action mechanism
is based on altering the permeability of the membrane of microorganisms, causing the leakage of
intracellular material. It is difficult to identify its active principle, because there is a variation in
growth conditions, climate, harvest, and manufacture, as well as in the biological factors of each plant
species [142,143]. Table 8 shows a list of the plants most used for the control of C. perfringens in broilers,
as well as a description of the effects caused by the phytogenics tested.

Table 8. Phytogenics used in the control of Clostridium perfringens in broilers.

Product Species Results Reference

Anise essential oil Pimpinella anisum

Promotes intestinal development (longer villi
and shallow crypts).

Decreased intensity of intestinal lesions
associated with necrotic enteritis.

[144]

Benzophenanthridine
(alkaloids) Chelidonium majus

Improves productive efficiency parameters.
Reduces intestinal lesions and mortality

associated with necrotic enteritis.
[145]

Oregano essential oil Origanum vulgare

Increase in the body weight and breast weight
at 42 d and promotes the cell proliferation in

duodenum (P = 0.001) and jejunum (P = 0.012).
Significantly decrease in the Clostridium counts.
Decrease of gut lesions caused by C. perfringens

and improved villus height to crypt depth,
improvement of feed conversion efficiency.

Increase of serum antibody titers and tendency
to elevate occludin mRNA expression at the
same time that linearly inhibited the mRNA

expression of TLR-2 and tumor necrotic
factor-α in the ileum.

[146–148]

Carvacrol Origanum vulgare

Improved health (longer villi and shallow
crypts) and function of the intestinal barrier.

They promote intestinal colonization
by Bifidobacterium.

Antimicrobial activity against C. perfringens and
reduction of intestinal lesions associated with

necrotic enteritis.

[141,142,149,150]

Curcumin Curcuma Longa Decreases C. perfringens enumerations in
intestinal contents. [143]

Piperine Piper nigrum Decreases C. perfringens enumerations in
intestinal contents. [143]

Protopine (alkaloids) Eschscholzia californica
Fumaria officinalis

Improves productive efficiency parameters.
Reduces intestinal lesions and mortality

associated with necrotic enteritis.
[145]

Tannins Castanea sativa
Inhibits the growth of C. perfringens in vitro and

in vivo, without affecting food consumption
and weight gain.

[151]

Thymol Thymus vulgaris

Improved health (longer villi and shallow
crypts) and function of the intestinal barrier.

Promotes intestinal colonization
by Bifidobacterium.

Antimicrobial activity against C. perfringens.

[142,149,150]

Sanguinarin Chelidonium majus
Improves productive efficiency parameters.

Reduces intestinal lesions and mortality
associated with necrotic enteritis.

[145]



Animals 2020, 10, 1718 18 of 28

5.5. Organic Acids

Organic acids and their corresponding salts or esters are widely used as a feed additive in poultry
production. They can vary considerably in their functionality due to the number of carbon atoms and
it they are aliphatic or aromatic. They are natural constituents of animal or plant tissues or products of
microbial fermentation [143].

Carboxylic acids with an aliphatic chain or fatty acids are classified into short chain fatty acids
(SCFAs, 1–5 carbon atoms; C1–C5) and medium chain fatty acids (SCFA, 6–12 carbon atoms; C6–C12).
The suggested effects of organic acids are antibacterial activity through pH regulation, changes in
the composition of the microbiota, immunomodulatory action, and stimulation of the intestinal
mucosa [133,143].

Organic acids have been used as inhibitors of enteric pathogens or as antimicrobials.
Their mechanism of action can be by non-dissociation, where, by penetrating the bacterial cell
wall, they alter their normal physiology and generate a change in their internal pH, with a dissociation
between H+ and anions, which leads to energy consumption that puts the growth of the bacteria at risk,
even causing death. In addition, they promote changes in the microbiota, have an immunomodulatory
action and stimulate the intestinal mucosa. The effects in broilers depend on the base of the organic
acid product, dose and type [143,152].

Capric-caprylic, caproic, and lauric acids are associated with improved intestinal histomorphology
and decreased stool C. perfringens enumerations [149]. On the other hand, hexanoic, benzoic and butyric
acids are associated with an improvement in intestinal histomorphology, a decrease in C. perfringens
counts in the liver and cecum content, and a decrease in the frequency and intensity of intestinal lesions
associated with NE [142]. Sodium lauryl lactylate acid has also been reported to prevent and inhibit
intestinal colonization by C. perfringens [153].

5.6. Dietary Modifications and Enzymes

The nutritional content and feed presentation significantly affect the development of NE in
broilers. Dietary management is a promising strategy for its control [151]. In this sense, different
strategies are considered, among which are dietary restriction, modification of the content and source
of macronutrients, [154,155] and the addition of enzymes to the diet [156].

Food restriction is applied in poultry, to control the growth rate and prevent metabolic disorders.
Its protective effect against NE could be attributed to the stimulation of the immune system, the influence
of the endocrine system, a decrease in pH and the viscosity of the intestinal content, promoted by food
restriction [157].

With regard to modifications in the content and source of macronutrients, it has been shown
that the level and source of dietary protein have a direct effect on the concentration of C. perfringens
in broilers [155]; this is how those diets high in protein from fish increase the risk of developing
NE, for which reason the use of other sources such as soy is currently promoted [158]. Regarding
carbohydrates, the administration of whole grains is a frequent practice in poultry rearing, since it is
associated with the improvement in productive performance and the general and intestinal health
of the birds [159]. The use of whole grains to control NE is based on mechanical stimulation of the
gizzard, pH reduction and viscosity of the intestinal content, which together create an unfavorable
environment for the proliferation of C. perfringens [160].

In broiler production, the use of enzymes derived from microorganisms (fungi and bacteria)
through traditional submerged liquid fermentation or solid-state fermentation is common [161].
Enzymes such as proteases, glucanase, manase, cellulase, amylase, phytase and xylanase are
added to the feed to overcome the negative effects of non-starch polysaccharides and increase
the digestibility, management and absorption of nutrients for poultry [157,162,163]. Furthermore,
the proliferation of C. perfringens in the gastrointestinal tract of broilers [150,157,161,164], which is
achieved by reducing the viscosity of the gastric and intestinal contents (cellulase [164], phytase [161],
glucanase [150,157], mannanase [150] and xylase [162,165,166]), promotes intestinal colonization of
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lactic acid bacteria (glucanase [150,157], mannanase [150] and xylase [162,165,166]) and even improves
physical characteristics such as longer villi and fewer deep crypts and functional characteristics such
as gut permeability (glucanase [150,157] and xylase [162,165,166]).

As has been reviewed, there are currently different alternatives to the use of growth-promoting
antibiotics to control NE; however, these alternatives remain questioned in their efficacy [152].
Although the bacterial microbiota associated with broilers has shown variations in the structure
of their communities with regarding control strategies and the influence of pathogenic bacteria,
more comparable studies of farm chicken microbiomes are required that consider individual variability
and variations between samples of cecal, jejunal or associated mucosal content [167] to deepen and
compare the information.

6. Conclusions

Clostridium perfringens is an important microorganism in the clinical, food and veterinary areas.
The diversity of toxins produced by this microorganism not only makes it a risk to human health,
but also to animal health. In the latter, the problem is that it causes subclinical diseases that generate
great losses, particularly in the poultry industry, because C. perfringens is capable of producing various
toxins and bacteriocins, some of which have already been identified and characterized. However,
other pathogenicity factors cannot be discarded.

Currently, the infection produced in broilers, known as necrotic enteritis (NE), associated with
this microorganism, has become a problem to maintaining the health of birds, affecting reproduction
and conservation, and the supply for human consumption, due to the fact that the disease occurs
subclinically and a diagnosis cannot be made in a timely manner, generating significant economic
losses for the producer.

Chicken meat is the most consumed animal protein and enough supply for consumers requires
mass production strategies, exacerbating the problem of by infections by pathogens such as C. perfringens.
Due to this, there is a need to find economical, environmentally friendly and efficient alternatives in
the modulation of the intestinal microbiota, which contribute to the efficient production of broiler
chicken to meet current and future demand.

The use of various food additives based on probiotics, prebiotics, symbiotics, essential oils,
organic acids and enzymes have been presented as various alternatives to mitigate the incidence of NE,
achieving an improvement in the general intestinal health of birds, with the opportunity to produce
healthy birds for consumption.

Perspectives: It is imperative to carry out more research on alternative and efficient products
for the modulation of the intestinal microbiota, in addition to the role they play in the immune
system, where consistent positive effects are needed to fulfill the current demand, while keeping a safe
environment. It is also important to establish standardized protocols that consider individual and
inter-sample variability, and consider the utility of molecular detection mechanisms and epigenetic
modifications underlying treatment with alternative products such as essential oils and organic acids
where research has not yet been clarified.
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