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Abstract

Deep neural network features can be used to train encod-
ing models that accurately predict brain activity from the
visual cortex. Using these features together with ultra-
high field fMRI could open a new set of opportunities
ranging from human vision to areas such as learning
and memory consolidation. Is it possible to apply en-
coding models based on deep neural network features
to high-resolution fMRI data? We investigated this us-
ing the feature-weighted receptive field (fwrf) model on
ultra-high field fMRI during a natural image viewing task.
Applying the fwrf model to our data we were able to pre-
dict brain activity along the ventral visual stream (VVS).
In line with previous studies, we found a shift from low
to high network layers while predicting brain activity in
early visual areas compared to higher regions of the VVS.
We conclude that encoding models based on neural net-
work features can be applied to ultra-high field fMRI data,
suggesting similar processing of visual scenes in neural
networks and the human visual association cortex. Our
results suggest that these models cannot only be used
to study vision but other processes such as memory and
imagination.
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Introduction

Every day we experience constant visual input until we go to
sleep. While receiving this input we need to process it, react
to it and/or store it into our memory. One question in cognitive
neuroscience is to explore how the brain is able to perform
this continuous task and specifically how visual input is repre-
sented on a neural level.

The first step to investigate this question would be to pre-
dict how the brain will react to visual input. Over the past

years encoding models emerged as new tools to study hu-
man vision and the underlying neural processes by enabling
researchers to predict brain activity based on stimulus fea-
tures (Kay, Naselaris, Prenger, & Gallant, 2008). Additionally,
neural networks from computer vision provide insight into how
visual input is processed as they show a similar processing hi-
erarchy as visual processing along the visual pathway (Güçlü
& van Gerven, 2015). St-Yves and Naselaris (2018) devel-
oped a method that combines neural networks from vision with
brain data from functional MRI into one model. Using their
feature-weighted receptive field model (fwrf) they were able
to accurately predict brain activity based on encoding models
trained on brain activity and neural network features.

Currently, the main focus of neural network based encod-
ing models lies in vision neuroscience. To facilitate their use
in other fields of research such as memory or imagination, the
use of higher MRI field strength for higher spatial resolution
and higher sensitivity may have strong advantages compared
to lower field strengths (Dumoulin et al., 2018). In addition,
these advantages enable the use of larger field of view sizes,
covering nearly the whole brain while keeping spatial reso-
lution high. Thus, in order to gain new opportunities to ap-
ply deep neural network (DNN) based encoding models out-
side of vision research and outside of visual cortical areas,
there is need for an implementation for ultra-high field MRI.
Though there are studies applying encoding models to data
from higher field strength of 4-7 Tesla (Naselaris et al., 2015;
Nishimoto et al., 2011), these studies did not use neural net-
work based encoding models and only covered parts or the
occipital cortex.

We therefore aimed to investigate whether the fwrf model
can be applied to ultra-high field fMRI data. Our second aim
was to test whether - depending on the region of interest -
different DNN layers contribute differently to the model’s pre-
diction accuracy.
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Methods

First, a pre-trained deep neural network (Krizhevsky,
Sutskever, & Hinton, 2012) for object recognition was used
to process 1,400 colored natural images. Images represented
seven distinct categories (animals, objects, city scenes, faces,
people, nature landscapes, buildings) and consisted of 200
images per category. DNN activations for each network layer
were extracted for all images. Next, two subjects underwent
a natural image viewing task during functional MRI record-
ings (1,5x1,5x1,5 mm, TR=2 sec., whole brain) in a Siemens
7 Tesla Magnetom. Time courses for all voxels were ex-
tracted as input for the encoding model. In the last step,
feature-weighted receptive field models, as implemented by
St-Yves and Naselaris (2018), were trained based on ex-
tracted voxel time courses and DNN unit activations for each
subject. Trained fwrf models were then used to predict the
voxel time course of a new set of images from validation fMRI
runs.

Results

Implementing the fwrf model for ultra-high field fMRI

Our first goal was to implement the fwrf model for our 7 Tesla
fMRI dataset. Using the methods described above we were
able to predict voxel activity for areas along the ventral visual
stream (VVS) based on the trained encoding models (Figure
1).

Whereas voxels outside the VVS mostly showed very low
correlations (Pearson), correlations within the VVS reached
values of up to r = 0.68 (subject 2: r = 0.75), demonstrat-
ing the link between the visual pathway and DNN features.
Overall, 37 of 80 images (subject 2 = 26/80) showed a max-
imum correlation coefficient on the diagonal (Figure 2), indi-
cating that the predicted voxel activity correlates highest with
the real activity for these images, i.e. these images were
identified correctly. The last finding concerning the correla-
tion between predicted and real activity patterns showed that
there are higher correlations for images of the same category
(Figure 2) causing some of the images to be misclassified as
another similar image from the same category (e.g. cat and
cheetah) than for images of different categories.

Shift in DNN layer contribution along the VVS

Our second analysis tested for a hypothesized shift in pre-
diction accuracy depending on the DNN layer and the region
of interest along the VVS. We investigated this by comparing
the percentage of layer contribution to prediction accuracy for
the new set of images (Figure 3). In both subjects we found
that layers that process low visual features such as spatial fre-
quencies indeed showed higher contributions to accuracy in
early visual areas like V1 and V2. Reversely, DNN layers that
process higher visual features (e.g. faces or object classes)
showed higher contributions to prediction accuracy in higher
visual processing areas, e.g. the lateral occipital cortex (LOC)
and the fusiform gyrus.

Figure 1: Predicted and real activity time course for the vali-
dation set from one voxel within the VVS (subject one). The
validation set consisted of 80 images from all 7 image cate-
gories. Overall 5,744 voxels for subject one and 9,841 voxels
for subject 2 showed Pearson correlation coefficients higher
than r = 0.2.

Figure 2: Pearson correlation coefficients of predicted and real
voxel time course using the 5,744 voxels showing Pearson
correlation coefficients higher than r = 0.2 (subject one). The
figure shows (1) high correlation coefficients on the diagonal
as well as (2), higher within-category than between-category
correlations on the off-diagonal.
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Figure 3: DNN layer contribution to prediction accuracy of the
encoding model. While early DNN layer (conv1-5) showed
higher contributions to prediction accuracy for early visual cor-
tex, contribution of higher DNN layers (fc6-8) increased further
along the visual pathway (results from subject one).

Conclusion
Our results indicate that the fwrf model by St-Yves and Nase-
laris (2018) can be applied to ultra-high field MRI data. Using
this model, we were able to predict brain activity based on
image features from a DNN. Higher similarities within as com-
pared to between image categories across the VVS demon-
strate the networks ability to grab visual categorical informa-
tion, not only basic visual features.

We were also able to replicate the parallel processing hi-
erarchy of stimulus features, starting with low DNN layer fea-
tures in early visual areas ranging to categorical features for
high DNN layers in later areas along the VVS, as proposed by
Güçlü and van Gerven (2015) and Cichy et al. (2016). Using
ultra-high field fMRI data, we could show a step-like shift of
layer contribution along fine-graded regions of the VVS even
into regions as late as the fusiform gyrus.

After predicting brain activity from stimulus features, the
next step would be to reconstruct stimuli based on fMRI data.
While reconstructing images from brain activity using neu-
ral networks can already be achieved (Seeliger et al., 2018;
Shen, Horikawa, Majima, & Kamitani, 2019), the use of ultra-
high field fMRI data might improve this reconstruction. Given
the high spatial resolution, one might be able to reconstruct
even complex, categorical-based image features. This could
get us closer to the ultimate goal of reconstructing mental im-
ages.

Taken together our findings suggest that deep neural net-
work based encoding models can be applied to ultra-high field
high-resolution datasets, covering more than the occipital cor-
tex. This in turn shows that these models could have a larger
field of application, using the advantages of voxel wise mod-
els, neural network features and parallel visual processing in
men and machine to investigate other questions such as how
neural representations are changed during learning and con-
solidation processes.
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