A PARTICLE SWARM OPTIMIZATION ALGORITHM FOR MIXED VARIABLE NONLINEAR PROBLEMS

H. Nahvi* and I. Mohagheghian
Department of Mechanical Engineering, Isfahan University of Technology
P.O. Box 84156-83111, Isfahan, Iran
hnahvi@cc.iut.ac.ir - imaniut81@me.iut.ac.ir
*Corresponding Author
(Received: August 26, 2008 – Accepted: July 2, 2009)

Abstract Many engineering design problems involve a combination of both continuous and discrete variables. However, the number of studies scarcely exceeds a few on mixed-variable problems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixed-variable nonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convex optimization problems. In this paper, it will be shown that PSO is one of the best optimization algorithms for solving mixed-variable nonlinear problems. Some changes are performed in the convergence criterion of PSO to reduce computational costs. Two different types of PSO methods are employed in order to find the one which is more suitable for using in this approach. Then, several practical mechanical design problems are solved by this method. Numerical results show noticeable improvements in the results in different aspects.

Keywords Particle Swarm Optimization, Mixed-Variable, Engineering Design

1. INTRODUCTION

In many engineering optimization problems, the variables cannot accept arbitrary values. That is to say, for practical reasons, some or all of the variables must be selected from a list of integer or discrete values. For example, structural members such as sheets or springs may have to be selected from sections available as standard sizes. Also, the numbers of reinforcement rods in concrete members, bolts in connections, or gear teeth are all integers.

In recent years, considerable interest has been expressed by researchers in the area of mixed-variable optimization. Schmit, et al [1] used dual method for discrete-continuous variables. Sandgren [2] and Hajela, et al [3] proposed nonlinear branch and bound algorithms where a solution is first obtained by ignoring the discrete conditions. Typical approach to the solution of optimization problems composed of discrete variables includes sequential linear approach [4], penalty function approach [5], simulated annealing [6] and fuzzy programming [7].

Another novel evolutionary computational technique, Particle Swarm Optimization (PSO),
has been proposed by Kennedy, et al [12]. The development of PSO was based on observations of animals, social behavior such as birds flocking and fish schooling. PSO is initialized with a population of random solutions. Each individual is assigned a random velocity according to both its own flying experience and that of its companions. The individual, namely particle, is then flown through hyperspace. PSO has memory so, knowledge of good solution is retained within all particles; whereas for example in GAs, previous knowledge of the problem will be destroyed once the population changes. In PSO there is a mechanism of constructive cooperation and information sharing between particles. Due to its simple concept, easy implementation and quick convergence, PSO has gained much attention and has been successfully applied in a variety of fields.

Several researchers used PSO as a basic algorithm for solving mixed variable problems. Guo, et al [13] presented a hybrid swarm intelligence approach (HSIA) for solving problems containing integer, discrete, zero-one and continuous variables. Zhang, et al [14], and He, et al [15] proposed a co-evolutionary particle swarm optimization approach and a hybrid particle swarm with differential evolution operator, respectively. They also solved some benchmark problems comprised of mixed variable problems. Elbeltagi, et al [16] compared five evolutionary-based search methods consisting of genetic algorithms, memetic algorithms, particle swarm, ant-colony and shuffled frog leaping. They showed that PSO method performs better than the other algorithms in terms of success rate and solution quality while is preceded by ACO with respect to processing time.

In this paper, two common PSO algorithms are compared and advantages and disadvantages of these algorithms when dealing with mixed discrete nonlinear problems are expressed. Then, by manipulating the convergence criterion, efficiency of the algorithm is improved. Also, two rounding techniques are employed to treat discrete values and the results are compared. Finally, by applying the proposed PSO to numerical examples, it is shown that particle swarm optimization is one of the best methods of solving mixed discrete nonlinear problems.

2. PARTICLE SWARM OPTIMIZATION

The particle swarm optimization (PSO) was inspired by the observations of birds flocking and fish schooling. It differs from other well-known Evolutionary Algorithms (EA) as in EA a population of potential solutions is used to probe the search space; but, no operators, inspired by evolution procedure, are applied on the population to generate a new promising solution. Instead, in PSO, each individual (named particle) of the population (called swarm), adjusts its trajectory towards its own previous best solution (called pbest) and the previous best solution attained by any member of its topological neighborhood. There are different kinds of sharing information between particles. In the global variant of PSO, the whole swarm is considered as the neighborhood. Thus, global sharing of information takes place and the particles benefit from the discoveries and the previous experiences of all other companions during the search for promising regions of the landscape [17]. Alternatively, there are some local variants of PSO wherein particles only make use of their own information and that of the best of their adjacent neighbors.

Each particle in PSO has two main characteristics: its position and its velocity. Assume that the current position and velocity vector of the i-th particle in the d-dimensional search space are denoted as $X_i = (x_{i1}, x_{i2}, ..., x_{id})$ and $V_i = (v_{i1}, v_{i2}, ..., v_{id})$, respectively. The best earlier position of the i-th particle is represented as $P_{best_i} = (p_{best_{i1}}, p_{best_{i2}}, ..., p_{best_{id}})$.

There are different kinds of PSO including global vision of PSO with inertia weight (GWPSO), local vision of PSO with inertia weight (LWPSO), global vision of PSO with constriction factor (GCPSO), and local vision of PSO with constriction factor (LCPSO) [18].

In GWPSO, which is very popular among researchers, there are two methods for updating position and velocity of each particle. The best position of entire group at k-th iteration is used in the first method while in the second method; the best position of entire group up to the current search is employed.

In the first method, the position x_{id}^k and velocity v_{id}^k of particle i in the k-th iteration are
updated as follows:

\[x_{i}^{k+1} = x_{i}^{k} + v_{i}^{k+1} \] \hspace{1cm} (1)

\[v_{i}^{k+1} = w_{i}^{k+1} c_{1} r_{1} (p_{best_{i}}^{k} - x_{i}^{k}) + c_{2} r_{2} (g_{best} - x_{i}^{k}) \] \hspace{1cm} (2)

In Equation 2 \(w \) is the inertia weight, \(c_{1} \) and \(c_{2} \) are positive constants called cognitive and social parameters, respectively, and \(r_{1} \) and \(r_{2} \) are random numbers selected in the interval \([0 \ 1]\). The constants \(c_{1} \) and \(c_{2} \) represent the weighting of the stochastic acceleration terms that pull each particle towards \(p_{best} \) and \(g_{best} \) positions and usually are set \(c_{1} = c_{2} = 2 \).

In the second method \(g_{best} \) is replaced by \(g_{best_{k}} \). As will be shown later, in the numerical examples of mixed-variables or in the problems that only have discrete variables, usage of \(g_{best_{k}} \) is more suitable compared to the use of \(g_{best} \). In other words, the success rate of \(g_{best_{k}} \) is higher than that of \(g_{best} \). The reason is firstly due to the fast convergence of \(g_{best} \) and secondly, the inability of particles to escape from local minima in \(g_{best} \) method. In other words, since the discrete variables are rapidly converged the continuous variables will be obliged to search in a limited specific area which might not be the optimum area.

The role that inertia weight \(w \) plays in the convergence behavior of PSO is very important. The inertia weight is employed to control the effect of the previous velocities on the current velocity. This way, the parameter \(w \) makes a compromise between global and local exploration abilities of the swarm. In PSO, when the search continues, the inertia term decreases linearly as:

\[w = w_{\text{max}} - \left(\frac{w_{\text{max}} - w_{\text{min}}}{k_{\text{max}}} \right) k \] \hspace{1cm} (3)

where \(w_{\text{max}} \) and \(w_{\text{min}} \) are the maximum and minimum values of the inertia term, respectively, and \(k_{\text{max}} \) is the maximum number of iterations. In this paper, these parameters are assumed to be:

\[w_{\text{max}} = 1, \ w_{\text{min}} = 0 \] \hspace{1cm} (4)

Sometimes as particle oscillations become wider, the system will gain tendency to explode [12]. The usual means of preventing explosion is simply to define a parameter \(v_{\text{max}} \) and curb the velocity of every individual \(i \) from exceeding that velocity on each dimension \(d \). In the case that velocity violates, it will be modified as follows:

If \(v_{id} \ > \ v_{\text{max}} \) then \(v_{id} = v_{\text{max}} \)

If \(v_{id} \ < \ -v_{\text{max}} \) then \(v_{id} = -v_{\text{max}} \) \hspace{1cm} (5)

The effect of this is to allow particles to oscillate within the bounds [12].

2.1. Mathematical Formulation of Constraint Problems

Problem definition:

Minimize \(f(x) \)

Subject to

\[x_{i}^{L} \leq x_{i} \leq x_{i}^{U} \quad i = 1, 2, \ldots, n \] \hspace{1cm} (6)

\[g_{h}(x) \leq 0 \quad h = 1, 2, \ldots, m \] \hspace{1cm} (7)

where \(n \) is the number of continuous variables, \(x_{i}^{L} \) and \(x_{i}^{U} \) are the lower and upper bounds of continuous variables, respectively, \(g_{h}(x) \) are applied constraints and \(m \) is the number of constraints.

Penalty function is defined as:

\[F(x) = f(x) + r \sum_{h=1}^{m+2n} \max\{0, g_{h}(x)\} \] \hspace{1cm} (8)

where \(r \) is the penalty parameter, \(m + 2n \) is the number of all inequality constraints including \(g_{h}(x) \) and two supplemental constraints, related to the upper and lower bounds of each continuous variable.

2.2. Treatment of Discrete Variables

Assuming
the number of discrete variables in the problem is s:

$$x_{n+i} \in D_i$$

$$D_i = \{d_{i,1}, d_{i,2}, \ldots, d_{i,f} \} \quad i = 1, 2, \ldots, s$$ (9)

At first these variables are treated as continuous and similar to above, the following supplemental constraints are applied for the upper and lower bounds

$$d_{i,1} \leq x_{n+i} \leq d_{i,f} \quad i = 1, 2, \ldots, s$$ (10)

The new objective function incorporates the behavior constraints as:

$$F(x) = f(x) + r \sum_{h=1}^{m+2n+2s} \max \{0, g_h(x)\}$$ (11)

At any iteration, after finding the new position of particles x^{k+1}, appropriate variables can be made discrete using two methods. The first method is to find the nearest discrete value to the current continuous variable as follows:

$$\min \left\{ \|x_{n+i} - d_{i,1}\|, \|x_{n+i} - d_{i,2}\|, \ldots, \|x_{n+i} - d_{i,f}\| \right\} \rightarrow k_{n+i} = d_{i,q}$$ (12)

The second method is to check the upper and lower discrete values of the current continuous variable and determine which one is the best. It is obvious that second method imposes additional fitness calls to the solution and accordingly increases computational costs. However, when the range of discrete variables is vast, usage of second method leads more accurate results and better convergence [19].

Using these two methods, at any iteration, all of discrete variables that are treated as continuous become discrete. These methods are very simple and efficient and do not have the complexities of the penalty approach. They also surmount shortcomings existing in the methods that adopt discrete values near the optimal solution or use discrete values obtained by rounding off.

2.3. Convergence Criterion In practice, after some iterations all of the particles converge to a specific part of problem’s space and with subsequent iterations, particles only oscillate in that region. These oscillations only increase the precision of results. Most of the times such high precision is unnecessary so, a convergence criterion is introduced based on the required accuracy. When the results attained such accuracy, iterations will be terminated and do not need to reach k_{max}. This can decrease the number of fitness calls and as a result reduce the computational costs. This reduction is more significant in the cases of mixed or discrete variable problems. The convergence criterion is determined as:

$$v_{\text{min}} = \min \left\{ V_{ij} \right\} \quad i = 1, 2, \ldots, c \quad j = 1, 2, \ldots, d$$

Terminate if $v_{\text{min}} < e$ (13)

where c and d are the number of variables and particles, respectively, and e is the required accuracy.

2.4. Optimization Algorithm of Mixed Discrete Variables Problems The algorithm of the proposed method is as follows:

1. The number of particles and maximum number of iterations are determined. The iteration number k is set to $k = 1$.
2. The position and velocity for every particle are set at random.
3. The due variables are made discrete.
4. The values of p_{best}^k, g_{best}^k and g_{best}^k are determined.
5. The value of inertia weight is calculated.
6. The position and velocity of every particle are updated by p_{best}^k and g_{best}^k.
7. If the velocity of particles violate v_{max} and $-v_{\text{max}}$ they are modified.
8. If the minimum value of the particle’s absolute velocity is lower than what was chosen; jump to 11.
9. $k = k + 1$
10. The number of iterations is checked. If $k < k_{\text{max}}$, then return to 3. Otherwise:
11. The value of g_{best} is displayed.
3. NUMERICAL EXAMPLES

To demonstrate the effectiveness of the proposed approach, several applications of optimum design, each corresponds to a particular class, are considered. In the welded beam design the entire variables are continuous while, in the speed reducer design, all of the variables are discrete. In the pressure vessel problem variables are combination of discrete and continuous. In the coil compression spring design problem continuous, discrete and integer variable are exist.

3.1. Example 1. Welded Beam Design

The welded beam shown in Figure 1 is designed for minimum cost subject to constraint on shear stress in weld, τ, bending stress in beam, σ, buckling load on the bar, P_c, end deflection of the beam, δ, and side constraints. This problem involves four continuous variables; the fillet weld leg size, h, the fillet weld length, l, the bar’s width, t, and the bar’s thickness, b. Using the design vector $X = [x_1, x_2, x_3, x_4]^T = [h, l, t, b]^T$, the objective function and constraints are

$$f(x) = 1.10471x_1^2x_2 + 0.0481x_3x_4(14 + x_2)$$

(14)

$$g_1(x) = \tau(x) - \tau_{\max} \leq 0$$

(15)

$$g_2(x) = \sigma(x) - \sigma_{\max} \leq 0$$

(16)

$$g_3(x) = x_1 - x_4 \leq 0$$

(17)

$$g_4(x) = 0.1047l_2^2 + 0.0481l_3x_4(14 + x_2) - 5 \leq 0$$

(18)

$$g_5(x) = 0.125 - x_1 \leq 0$$

(19)

$$g_6(x) = \delta(x) - \delta_{\max} \leq 0$$

(20)

$$g_7(x) = P - P_c(x) \leq 0$$

(21)

$$g_8(x) \text{ to } g_{11}(x): 0.1 \leq x_i \leq 2.0 \ i = 1, 4$$

(22)

$$g_{12}(x) \text{ to } g_{15}(x): 0.1 \leq x_i \leq 10.0 \ i = 2, 3$$

(23)

where

$$\tau(x) = \sqrt{\left(\tau'\right)^2 + 2\tau'\tau'x_2^2 + \left(\tau'\right)^2}$$

(24)

$$\tau' = \frac{P}{\sqrt{2}x_2}, \quad \tau'' = \frac{MR}{J}$$

(25)

$$M = P(L + \frac{x_2}{2}), \quad R = \sqrt{\frac{x_2^2}{4} + \left(\frac{x_1 + x_3}{2}\right)^2}$$

(26)

and

$$J = 2\sqrt{2}x_1x_2\left[\frac{x_2^2}{12} + \left(\frac{x_1 + x_3}{2}\right)^2\right]$$

(27)

$$\sigma(x) = \frac{6PL}{x_4x_3^2}$$

(28)

$$\delta(x) = \frac{4PL^3}{Ex_3x_4}$$

(29)

$$P_c(x) = \frac{4.013\sqrt{E(x_2^2x_4^6/36)}}{L^2}\left(1 - \frac{x_3}{2L}\sqrt{\frac{E}{2G}}\right)$$

(30)

The parameters and material properties are assumed as: $P = 6000 \text{ lb}$, $L = 14 \text{ in}$, $E = 30 \times 10^6 \text{ psi}$, $G = 12 \times 10^6 \text{ psi}$, $\tau_{\max} = 13600 \text{ psi}$, $\sigma_{\max} = 30000 \text{ psi}$ and $\delta_{\max} = 0.25 \text{ in}$.

Figure 1. Welded beam design problem.
In this example, the number of particles, maximum iterations number and convergence criterion value are assumed to be 30, 1000 and 10^{-6}, respectively. The results are obtained through 30 independent runs. Table 1 lists the welded beam design results obtained by different researchers.

As can be seen, the objective function value gained in this research is the best compared to the results of other researchers. The statistical results are shown in Table 2. It is evident that not only the best feasible solution obtained in this paper is the best among other researches also, the average searching quality and the worst solution is better than those of other techniques. The standard deviation of the results of this research is very small.

TABLE 1. Comparison of the Best Solution for Example 1 Found by Different Methods.

<table>
<thead>
<tr>
<th></th>
<th>Ragsdell</th>
<th>Deb</th>
<th>Coello</th>
<th>He</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>0.245500</td>
<td>0.248900</td>
<td>0.208800</td>
<td>0.202369</td>
</tr>
<tr>
<td>(x_2)</td>
<td>6.196000</td>
<td>6.173000</td>
<td>3.420500</td>
<td>3.544214</td>
</tr>
<tr>
<td>(x_3)</td>
<td>8.273000</td>
<td>8.178900</td>
<td>8.997500</td>
<td>9.048210</td>
</tr>
<tr>
<td>(x_4)</td>
<td>0.245500</td>
<td>0.253300</td>
<td>0.210000</td>
<td>0.205723</td>
</tr>
<tr>
<td>(g_1)</td>
<td>-5743.8265</td>
<td>-5758.6037</td>
<td>-0.337812</td>
<td>-12.839796</td>
</tr>
<tr>
<td>(g_2)</td>
<td>-4.715097</td>
<td>-255.5769</td>
<td>-353.902604</td>
<td>-1.247467</td>
</tr>
<tr>
<td>(g_3)</td>
<td>0.000000</td>
<td>-0.004400</td>
<td>-0.001200</td>
<td>-0.001498</td>
</tr>
<tr>
<td>(g_4)</td>
<td>-3.020289</td>
<td>-2.982866</td>
<td>-3.411865</td>
<td>-3.429347</td>
</tr>
<tr>
<td>(g_5)</td>
<td>-0.120500</td>
<td>-0.123900</td>
<td>-0.083800</td>
<td>-0.079381</td>
</tr>
<tr>
<td>(g_6)</td>
<td>-0.234208</td>
<td>-0.234160</td>
<td>-0.235649</td>
<td>-0.235536</td>
</tr>
<tr>
<td>(g_7)</td>
<td>-3604.275</td>
<td>-4465.2709</td>
<td>-363.23288</td>
<td>-11.681355</td>
</tr>
<tr>
<td>(f)</td>
<td>2.385937</td>
<td>2.433116</td>
<td>1.748309</td>
<td>1.728024</td>
</tr>
</tbody>
</table>

TABLE 2. Statistical Results of Different Methods for Example 1.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>2.385937</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(g)</td>
<td>N/A</td>
<td>N/A</td>
<td>1.771973</td>
<td>1.785835</td>
</tr>
<tr>
<td>(f)</td>
<td>1.748309</td>
<td>1.748831</td>
<td>1.782143</td>
<td>0.012926</td>
</tr>
<tr>
<td>This Research</td>
<td>1.724897</td>
<td>1.730813</td>
<td>1.767000</td>
<td>0.010281</td>
</tr>
</tbody>
</table>

3.2. Example 2. Pressure Vessel Design

Optimum design of a pressure vessel is one of the most famous benchmarks for mixed discrete nonlinear programming (MDNLP) problems and several studies of it are available. The pressure vessel is an air storage tank (as shown in Figure 2) with a working pressure of 3000 psi and a minimum volume of 750 ft^3. The cylindrical pressure vessel is capped at both ends by hemispherical heads. Using rolled steel plate, the shell is to be made in two halves that are joined by two longitudinal welds to form a cylinder. Each head is forged and then welded to the shell. Four design variables are considered as \(X=[x_1, x_2, x_3, x_4]^T=[T_s, T_h, R, L]^T\) which indicate thickness of the shell, \(T_s\), thickness...
of the head, T_h, the inner radius, R and length of the cylindrical section, L. Among the variables R and L are continuous while, s_T and h_T are discrete and required to be a standard size (multiple of 0.0625 in). This problem is formulated according to the ASME boiler and pressure vessel code. The objective function is to minimize the total cost of material used, forming, and welding of the pressure vessel. The problem may be mathematically stated as:

Minimize

$$f(x) = 0.6224x_1^2x_3^3x_4 + 1.7781x_2^2x_3^2 + 3.1661x_1^2x_4^2 + 19.84x_1^2x_3^3$$

Subject to the following behavior and side constraints

$$g_1(x) = 0.0193\frac{x_3^3}{x_1} - 1 \leq 0$$

$$g_2(x) = 0.00954\frac{1}{x_2} - 1 \leq 0$$

$$g_3(x) = \frac{750 \times 1728 - \frac{4}{3} \pi x_3^3}{\pi x_2^2 x_4} - 1 \leq 0$$

$$g_4(x) = \frac{x_4}{240} - 1 \leq 0$$

$$25 \leq x_3 \leq 150$$

$$25 \leq x_4 \leq 240$$

Different techniques are employed by researchers for solving this problem. Table 3 indicates a number of results obtained by researchers using particle swarm optimization as the basic solution algorithm while Table 4 shows the results gained by using other methods.

The results of this research, shown in Table 3, are obtained by considering 50, 500, 10^6 as the number of particles, maximum iterations number and convergence criterion, respectively.

As shown in Table 4, the best objective function value obtained by methods excluding particle swarm is 5850.77, credited to adaptive range genetic algorithm (ARGA) [20]. The presented approach found a slightly better optimal solution (5850.385) of the pressure vessel problem. Additionally, it is the best solution among the methods that implemented PSO. On the other hand, the average of function calls in the present solution is 22200 while this value is 30000, and 49000 according to binary method [21] and DEPSO [14], respectively. The number of function calls in CPSO [13] is 200000 and in GA-base is 900000 [9]. The number of function calls is a criterion of measuring the computational cost. Since this value is not reported by all researchers the computational cost can not be properly compared in all the researches.

The statistical results of different methods are shown in Table 5. Significant improvement can be seen in three fields of best solution, worst solution and the average search quality as a result of the work done in this study. As discussed in the previous sections, when the problem consists of a combination of both discrete and continuous variables the usage of g_{best}^k is more efficient than use of g_{best}. This fact can be concluded from Table 6. It is evident from the table that by increasing the number of particles or the maximum iterations value, the improvement will be more significant in attempts that use g_{best}^k.

3.3. Example 3. Coils Spring Design

This example deals with the design of a coil spring under constant axial load. The objective is to design...
TABLE 3. Results of Example 2 using Particle Swarm Optimization as the Basic Solution Technique.

<table>
<thead>
<tr>
<th></th>
<th>Guo</th>
<th>He</th>
<th>He</th>
<th>Kitayama</th>
<th>Zhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>58.29</td>
<td>42.091</td>
<td>42.1</td>
<td>36.684</td>
<td>42.1</td>
</tr>
<tr>
<td>L</td>
<td>43.7</td>
<td>176.747</td>
<td>176.64</td>
<td>224.096</td>
<td>176.64</td>
</tr>
<tr>
<td>T_s</td>
<td>1.125</td>
<td>0.8125</td>
<td>0.8125</td>
<td>0.75</td>
<td>0.8125</td>
</tr>
<tr>
<td>T_b</td>
<td>0.625</td>
<td>0.4375</td>
<td>0.4375</td>
<td>0.375</td>
<td>0.4375</td>
</tr>
<tr>
<td>g_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.004</td>
<td>0</td>
</tr>
<tr>
<td>g_2</td>
<td>-0.0689</td>
<td>-0.036</td>
<td>-0.08</td>
<td>-0.016</td>
<td>-0.08</td>
</tr>
<tr>
<td>g_3</td>
<td>-69.24</td>
<td>0.036</td>
<td>--0.26</td>
<td>-0.066</td>
<td>-0.26</td>
</tr>
<tr>
<td>g_4</td>
<td>-196.3</td>
<td>-63.26</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>Cost</td>
<td>7197.9</td>
<td>6061.077</td>
<td>6059.7</td>
<td>5875.254</td>
<td>6059.7</td>
</tr>
</tbody>
</table>

TABLE 4. Results of Example 2 Obtained by Different Methods Excluding Particle Swarm Optimization Technique.

<table>
<thead>
<tr>
<th></th>
<th>Sandgren</th>
<th>Fu</th>
<th>Wu</th>
<th>Coello</th>
<th>Rao</th>
<th>Lewis</th>
<th>Arakawa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Penalty</td>
<td>MGA</td>
<td>MDHGA</td>
<td>RS + NLP</td>
<td>ARGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>47.000</td>
<td>48.38</td>
<td>58.19</td>
<td>40.324</td>
<td>61.4483</td>
<td>38.76</td>
<td>38.858</td>
</tr>
<tr>
<td>L</td>
<td>117.70</td>
<td>111.75</td>
<td>44.29</td>
<td>200</td>
<td>27.4037</td>
<td>223.299</td>
<td>221.402</td>
</tr>
<tr>
<td>T_s</td>
<td>1.125</td>
<td>1.125</td>
<td>1.125</td>
<td>0.8125</td>
<td>1.1875</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>T_b</td>
<td>0.625</td>
<td>0.625</td>
<td>0.625</td>
<td>0.4375</td>
<td>0.625</td>
<td>0.375</td>
<td>0.375</td>
</tr>
<tr>
<td>g_1</td>
<td>-0.194</td>
<td>-0.191</td>
<td>-0.0017</td>
<td>-0.0421</td>
<td>-0.0013</td>
<td>-0.003</td>
<td>0</td>
</tr>
<tr>
<td>g_2</td>
<td>-0.283</td>
<td>-0.163</td>
<td>-0.0698</td>
<td>-0.1207</td>
<td>-0.0621</td>
<td>-0.014</td>
<td>0.011</td>
</tr>
<tr>
<td>g_3</td>
<td>-0.510</td>
<td>-75.875</td>
<td>-974.58</td>
<td>0</td>
<td>-0.003</td>
<td>-0.07</td>
<td>-0.078</td>
</tr>
<tr>
<td>g_4</td>
<td>0.054</td>
<td>-128.26</td>
<td>-195.7</td>
<td>-0.1667</td>
<td>-0.8858</td>
<td>-1.519</td>
<td>0</td>
</tr>
<tr>
<td>Cost</td>
<td>8129.8</td>
<td>8048.6</td>
<td>7207.5</td>
<td>6288.74</td>
<td>7284.02</td>
<td>5980.95</td>
<td>5850.77</td>
</tr>
</tbody>
</table>
TABLE 5. Statistical Results of Different Methods for Example 2.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zhang (DE) [14]</td>
<td>Zhang (PSO) [14]</td>
<td>Zhang (DEPSO) [14]</td>
</tr>
<tr>
<td></td>
<td>6062.74</td>
<td>6059.714</td>
<td>6059.714</td>
</tr>
<tr>
<td></td>
<td>6126.658</td>
<td>6332.784</td>
<td>6108.177</td>
</tr>
<tr>
<td></td>
<td>6408.792</td>
<td>6820.410</td>
<td>6410.087</td>
</tr>
<tr>
<td></td>
<td>6090.526</td>
<td>6288.745</td>
<td>6308.15</td>
</tr>
<tr>
<td></td>
<td>5921.195</td>
<td>6293.843</td>
<td>6308.15</td>
</tr>
<tr>
<td></td>
<td>5850.385</td>
<td>6147.133</td>
<td>6363.804</td>
</tr>
<tr>
<td></td>
<td>6090.526</td>
<td>6177.25</td>
<td>6469.32</td>
</tr>
<tr>
<td></td>
<td>5921.195</td>
<td>6059.946</td>
<td>6090.526</td>
</tr>
<tr>
<td></td>
<td>6090.526</td>
<td>6177.25</td>
<td>6469.32</td>
</tr>
<tr>
<td></td>
<td>5921.195</td>
<td>6059.946</td>
<td>6090.526</td>
</tr>
<tr>
<td></td>
<td>This Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5850.385</td>
<td>5921.195</td>
<td>6090.526</td>
</tr>
</tbody>
</table>

TABLE 6. Comparison of g_{best} and g_{best}^k for Different Solutions of Example 2.

<table>
<thead>
<tr>
<th>g_{best}^k</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2000</td>
<td>5850.38</td>
<td>6009.7</td>
<td>6090.6</td>
<td>5/30</td>
</tr>
<tr>
<td>15</td>
<td>2000</td>
<td>5850.38</td>
<td>6002.0</td>
<td>6163.9</td>
<td>7/30</td>
</tr>
<tr>
<td>10</td>
<td>4000</td>
<td>5850.38</td>
<td>5991.7</td>
<td>6090.7</td>
<td>9/30</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
<td>5850.38</td>
<td>5921.95</td>
<td>6090.5</td>
<td>16/30</td>
</tr>
<tr>
<td>10</td>
<td>2000</td>
<td>5850.38</td>
<td>6146.6</td>
<td>6424.1</td>
<td>4/30</td>
</tr>
<tr>
<td>15</td>
<td>2000</td>
<td>5850.38</td>
<td>6125.3</td>
<td>6726.5</td>
<td>4/30</td>
</tr>
<tr>
<td>10</td>
<td>4000</td>
<td>5850.38</td>
<td>6082.1</td>
<td>6820.4</td>
<td>7/30</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
<td>5850.38</td>
<td>6083.6</td>
<td>6411.0</td>
<td>5/30</td>
</tr>
</tbody>
</table>
a helical compression spring (Figure 3) with minimum volume of material. There are three different kinds of variables in this example including the integer variable \(N \) that is the number of coils of the spring, the wire diameter \(d \) that is a discrete value chosen as per ASME code and the outside spring diameter \(D \) that is a continuous variable. Using the design vector \(X = [x_1, x_2, x_3]^T = [N, d, D]^T \), the objective function can be obtained as:

\[
f(x) = \frac{\pi}{4} x_3 x_2 (x_1 + 2) \leq 0 \tag{39}\]

The following constraints, defined in [2], are considered

\[
g_1(x) = -S + \frac{8K}{\pi} x_3 x_1 \leq 0 \tag{40}\]

\[
g_2(x) = (\delta + 1.05(x_1 + 2)x_2 - l_{\text{max}} \leq 0 \tag{41}\]

\[
g_3(x) = d_{\text{min}} - x_2 \leq 0 \tag{42}\]

\[
g_4(x) = x_3 - D_{\text{max}} \leq 0 \tag{43}\]

\[
g_5(x) = 3 - C \leq 0 \tag{44}\]

\[
g_6(x) = \delta - \delta_{\text{pm}} \leq 0 \tag{45}\]

\[
g_7(x) = l_f - \frac{(P_{\text{max}} - P_{\text{load}})}{K} - 1.05(x_1 + 2)x_2 \leq 0 \tag{46}\]

\[
g_8(x) = \frac{(P_{\text{max}} - P_{\text{load}})}{K_S} - \delta_{\text{w}} \leq 0 \tag{47}\]

where

\[
\delta = \frac{8P_{\text{max}} x_3 x_1}{G x_2^4} \tag{48}\]

\[
C = \frac{x_3}{x_2} \tag{49}\]

\[
K_s = \frac{(4C - 1)}{(4C - 4)} + \frac{0.615}{C} \tag{50}\]

\[
K = \frac{G x_2^4}{8 x_1 x_3^3} \tag{51}\]

In the above relations, \(S, l_{\text{max}}, d_{\text{min}}, D_{\text{max}}, \delta_{\text{pm}} \) and \(\delta_{\text{w}} \) are the maximum shear stress, the maximum spring free length, the minimum wire diameter, the maximum outside coil diameter, the maximum initial deflection, and the allowable deflection from preload to maximum load, respectively.

Also

\[
5 \leq x_1 \leq 20; x_1 = 5 + k; k = 0, 1, \ldots, 15 \tag{52}\]

\[
0.207 \leq x_2 \leq 0.5 \tag{53}\]

\[
x_2 \in \{0.207, 0.225, 0.244, 0.263, 0.283, 0.307, 0.331, 0.362, 0.394, 0.4375, 0.5\} \tag{54}\]

\[
1 \leq x_3 \leq 3 \tag{55}\]

The values of pre-assigned parameters are chosen as: \(P_{\text{max}} = 1000 \text{ lb}, \; S = 1.89 \times 10^6 \text{ psi}, \; G = 1.15 \times 10^7 \text{ psi}, \; l_{\text{max}} = 14 \text{ in}, \; d_{\text{max}} = 0.2 \text{ in}, \; D_{\text{max}} = 3 \text{ in}, \; \delta_{\text{pm}} = 6 \text{ in}, \; P_{\text{load}} = 300 \text{ lb}, \; l_f = 6.6 \text{ in} \) and \(\delta_{\text{w}} = 1.25 \text{ in} \).
In this example, the number of particles, maximum iterations value and convergence criterion are assumed to be 10, 1000, 10^{-6}, respectively.

The optimum results obtained by the present approach are compared with the results reported in the literature, presented in Table 7. Results of this research is similar to those achieved by Guo, et al [13] using HSIA and is the best result compare to the other researches. Among 30 independent runs, 24 runs find the global optimum (2.6586). The average of function calls in this problem is 7738.

3.4. Example 4. Speed Reducer (Gear Train)

In this example optimum design of a the speed reducer, shown in Figure 4, is considered.

Design variables are face width, b, the teeth module, m, the number of pinion teeth, n, length of shaft 1 between bearings, l_1, length of the shaft 2 between bearings, l_2, diameter of shaft 1, d_1 and diameter of shaft 2, d_2. The design vector is defined as: $X = [x_1, x_2, x_3, x_4, x_5, x_6, x_7]^T = [b, m, n, l_1, l_2, d_1, d_2]^T$ where x_3 is an integer variable, x_1, x_2, x_4 and x_5 are defined as integer multiples of 0.1, x_6 and x_7 are defined as integer multiples of 0.01. The objective is to minimize the total weight of speed reducer. The constraints include limition on the bending stress and surface stress of the gear teeth, and transverse deflection of the shafts 1 and 2 [11]. The mathematical formulation of the problem is:

Minimize

$$f(x) = 0.7854x_1x_2^2(3.3333x_3^2 + 14.9334x_3 - 43.0934) - 1.508x_1(x_5^2 + x_7^2) + 7.477(x_6^3 + x_7^3) + 0.7854(x_4x_6^2 + x_5x_7^2)$$

Subject to the following constraints

$$g_1(x) = \frac{27}{x_1^2x_2^2x_3} - 1 \leq 0$$

$$g_2(x) = \frac{397.5}{x_1^2x_2^2x_3} - 1 \leq 0$$

$$g_3(x) = \frac{1.93x_3^3}{x_2^2x_3^2x_6^2} - 1 \leq 0$$

$$g_4(x) = \frac{1.93x_2^3}{x_2^2x_3^2x_7^2} - 1 \leq 0$$

$$g_5(x) = \{[(\frac{745x_5}{x_2x_3})^2 + (16910)^{0.5}]/0.1x_3^3\} - 1100 \leq 0$$

$$g_6(x) = \{[(\frac{745x_2}{x_2x_3})^2 + (157510)^{0.5}]/0.1x_7^3\} - 850 \leq 0$$

$$g_7(x) = x_2x_3 - 40 \leq 0$$

$$g_8(x) = 5 - \frac{x_1}{x_2} \leq 0$$

$$g_9(x) = \frac{x_1}{x_2} - 1.2 \leq 0$$

$$g_{10}(x) = \frac{(1.5x_6 + 1.9)}{x_4} - 1 \leq 0$$

$$g_{11}(x) = \frac{(1.1x_5 + 1.9)}{x_5} - 1 \leq 0$$

$$2.6 \leq x_1 \leq 3.6$$

$$0.7 \leq x_2 \leq 0.8$$

$$17 \leq x_3 \leq 28$$

$$7.3 \leq x_4 \leq 8.3$$

$$7.3 \leq x_5 \leq 8.3$$

$$2.9 \leq x_6 \leq 3.9$$

$$5.0 \leq x_7 \leq 5.5$$

The problem is solved with 10 particles and 500 maximum iterations. As mentioned in the previous sections, when the problem only consists of discrete variables, using the second approach is more efficient, so this method is used to solve this problem. The optimum solution obtained is $X^* = [3.5, 0.7, 17, 7.3, 7.8, 3.6, 5.29]$ and the optimum objective function value is 3000.8. This solution is
TABLE 7. Best Results Obtained by Other Researches for Example 3.

<table>
<thead>
<tr>
<th></th>
<th>Sandgren</th>
<th>Fu</th>
<th>Wu</th>
<th>Rao</th>
<th>Guo</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>d</td>
<td>1.1807</td>
<td>1.2274</td>
<td>1.2253</td>
<td>1.223</td>
<td>1.223</td>
</tr>
<tr>
<td>D</td>
<td>0.283</td>
<td>0.283</td>
<td>0.283</td>
<td>0.283</td>
<td>0.283</td>
</tr>
<tr>
<td>g₁</td>
<td>-543.09</td>
<td>-550.993</td>
<td>-772.22</td>
<td>-1008.8</td>
<td>-1008.8</td>
</tr>
<tr>
<td>g₂</td>
<td>-8.8187</td>
<td>-8.9264</td>
<td>-8.9357</td>
<td>-8.9458</td>
<td>-8.9458</td>
</tr>
<tr>
<td>g₃</td>
<td>-0.083</td>
<td>-0.083</td>
<td>-0.083</td>
<td>-0.083</td>
<td>-0.083</td>
</tr>
<tr>
<td>g₄</td>
<td>-1.189</td>
<td>-1.77</td>
<td>-1.7726</td>
<td>-1.7747</td>
<td>-1.777</td>
</tr>
<tr>
<td>g₅</td>
<td>-1.172</td>
<td>-1.342</td>
<td>-1.3371</td>
<td>-1.3297</td>
<td>-1.322</td>
</tr>
<tr>
<td>g₆</td>
<td>-5.464</td>
<td>-5.4585</td>
<td>-5.4613</td>
<td>-5.464</td>
<td>-5.464</td>
</tr>
<tr>
<td>g₇</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>g₈</td>
<td>0.0</td>
<td>-1.0174</td>
<td>0.0134</td>
<td>-0.007</td>
<td>0.0</td>
</tr>
<tr>
<td>f(x)</td>
<td>2.7995</td>
<td>2.6709</td>
<td>2.6681</td>
<td>2.6634</td>
<td>2.6586</td>
</tr>
</tbody>
</table>

Figure 4. Speed reducer.

76 - Vol. 24, No. 1, January 2011
identical to the solution reported by Rao, et al [11], obtained by MDHGGA method. The constraints values $g_i(x)$ to $g_n(x)$ are -0.0739, -0.198, -0.5050, -0.9017, -9.5826, -1.5978, -28.1, 0, -7, -0.0493, -0.0104, respectively. This implies that the optimum solution is in the feasible region.

4. CONCLUSION

In this paper the particle swarm optimization algorithm is employed to solve mixed-variable nonlinear problems. Two common PSO algorithms were compared and results of engineering design problems show that for mixed-discrete problems gbest has better performance. Also some changes are performed in the convergence criterion. Simulation results for four constrained engineering design problems are compared with the previously reported results. Noticeable improvements are observed in the results.

5. REFERENCES

