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Abstract: Shandong matcha has the quality characteristics of bright green color, seaweed-like aroma
and strong, fresh and brisk taste. In order to identify the characteristic aroma components and
clarify the contribution of the grinding process to the aroma of Shandong matcha. Three grades of
Shandong matcha and corresponding tencha material were firstly tested with sensory evaluation,
and the volatile components were extracted with headspace solid-phase microextraction (HS-SPME)
and solvent-assisted flavor evaporation (SAFE) and analyzed using GC–MS. The sensory evaluation
results showed that high-grade matcha (M-GS) had prominent seaweed-like, fresh and roasted notes,
whereas medium and low-grade matcha (M-G1, M-G2) were gradually coupled with grassy, fatty and
high-fired aromas. GC–MS results showed that in the HS-SPME method, heterocyclic compounds
(45.84–65.35%) were the highest in Shandong matcha, followed by terpenoids (7.44–16.92%) and
esters (6.91–15.27%), while in the safe method, esters were the highest (12.96–24.99%), followed by
terpenoids (10.76–25.09%) and heterocyclic compounds (12.12–17.07%). As a whole, the composition
of volatile components between M-G1 and M-G2 is relatively close, and there are more differences in
volatile components between them and M-GS. The volatile components unique to M-GS were screened
using the odor activity value (OAV) evaluation method, with components such as 3-methyl-2-butene-
1-thiol, 3-ethyl-Phenol, 2-thiophenemethanethiol, 2,4-undecadienal, (E,E)-2,6-nonadienal, (E,Z)- being
evaluated. There were other differentially volatile components, that is, volatile components that
coexist in the three grades of matcha, but with different concentrations and proportions. M-G1 and
M-G2 contained more volatile substances with high-fired aroma, such as 2-ethyl-3-methyl-pyrazine,
coumarin and 5,6,7,8-tetrahydroquinoxaline. The grinding process not only changes the appearance
of tencha, but also increases the content of volatile components of matcha as a whole, enhancing the
aroma and flavor characteristics of matcha. In this study, the contents of 24 volatile components in
matcha were mainly increased, such as benzene, (2,2-dimethoxyethyl)-, cis-7-decen-1-al, safranal and
fenchyl acetate. The dual factors of material tencha and matcha grinding technology are indispensable
in forming the differences in aroma and flavor of Shandong matcha at different levels.

Keywords: Shandong matcha; tencha; solvent-assisted flavor evaporation; headspace solid-phase
microextraction; aroma characteristics

1. Introduction

Matcha is a finely powdered green tea product made from the fresh leaves of tea plants
cultivated in the shade, dried by steam (or hot air) and processed by grinding. Matcha has
almost all the nutrition and health function of green tea, and its powder properties expand
the range of applications [1,2]. In recent years, with the change of matcha consumption from
drinking to eating, the application of matcha has expanded to food [3], health products [4,5],
cosmetics [6,7] and other industries, which has promoted a strong demand for matcha
in China. Due to its fresh color, unique aroma and distinctive taste that is slightly bitter
and sweet, matcha has quickly become a must-have for food lovers, especially among
young people.

Foods 2022, 11, 2964. https://doi.org/10.3390/foods11192964 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods11192964
https://doi.org/10.3390/foods11192964
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://doi.org/10.3390/foods11192964
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods11192964?type=check_update&version=2


Foods 2022, 11, 2964 2 of 15

With the increasing demand for matcha, some tea-producing areas in China that are
rich in green tea have begun to gradually develop and produce matcha. The aroma and
taste characteristics vary among the different tea-producing areas, so understanding these
characteristics is important as they affect consumer preference. The Shandong tea area is
the northernmost tea area in China, and its latitude (34◦22.9′–38◦24.01′ north) is similar to
that of Shizuoka, Japan. More chlorophyll and theanine, which are very suitable for the
production of matcha, are accumulated in the tea leaves. Shandong matcha has the quality
characteristics of soft, fine and uniform powder; bright green soup color; obvious seaweed
aroma and strong, fresh and brisk taste.

The aroma profiles vary among the different tea categories, and even the same category
of tea can have different aroma characteristics. The composition of tea volatiles is complex,
and many compounds exist in trace levels. HS-SPME, SAFE, SBSE, SDE and other technol-
ogy are commonly used to extract volatiles and concentrate them to detectable levels [8–10].
Gas chromatography–mass spectrometry–olfactometry (GC–MS–O), two-dimensional gas
chromatography–mass spectrometry (GC × GC–MS) and odor activity value (OAV) have
been used to elucidate the volatile components by separating, detecting and identifying
them [11–15]. Using the above aroma extraction and identification techniques, researchers
have identified the key aroma compounds in Laoshan green teas, Chinese high altitude and
northernmost black tea, white tea and pu’er tea [16–20]. Some key odorants responsible
for the chestnut-like aroma, clean aroma, orchid-like aroma and cooked corn-like aroma
quality of green teas have been also identified [21–25].

There are also some research reports on the aroma of matcha, mainly involving
Japanese matcha and Turkish tea powder. The effects of tea clones, shading and shooting
period on volatile components in Turkish green tea powder were comparatively studied,
and the potent odorants in Japanese matcha were reported using gas chromatography–
olfactometry (GC-O) [26,27], while Tan et al. compared and characterized the volatiles of
different Japanese green teas (sencha, matcha and hojicha) [10].

Ultrafine grinding is a commonly used material processing technology in food pro-
cessing. While changing the physical properties of food materials, it also affects the sensory
quality of products, such as taste and aroma. This technology has recently been widely
used in the processing of food materials such as buckwheat flour, coix seed flour and rice
flour [28–30]. Superfine powders could provide improved physicochemical properties, for
example, higher antioxidant activity and total phenolic content, better thermal properties
and solubility, superior taste and functional characteristics [29,31,32]. Although matcha
is made from milled tencha leaves, its aroma characteristics are different from those of
tencha. Our previous research showed that superfine grinding was beneficial to reducing
bitterness and preserving briskness of green tea powders. It also increased extraction of tea
polysaccharides markedly, which could lead to more potent antioxidant property of fine
green tea powders [33]. Baba et al. reported the connection between the formation of the
aroma of matcha and its manufacturing process from the point of view of the formation
mechanism of trans-4,5-epoxy-(E)-2-decenal, one of the important odorants of matcha [27].
This indicates that the grinding process not only changes the physical properties of tencha
but also affects its aroma and taste quality.

To the best of our knowledge, there are still very few reports on odorants of Chinese
matcha. Therefore, in this study, the volatile components of three grades of Shandong
matcha were extracted with HS-SPME and SAFE, and the aroma compounds of each matcha
sample were investigated using GC–MS. PCA and OPLS-DA were together conducted to
screen and identify the key aroma compounds contributing to the characteristic aroma of
Shandong matcha. In addition, the differences in aroma components of matcha and its
corresponding tencha material were compared in order to explore the relationship between
the formation of matcha aroma and its manufacturing process.
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2. Materials and Methods
2.1. Tea Samples and Chemicals

The matcha and corresponding tencha material in this study were provided by Qing-
dao Hongyu Matcha Science and Technology Development Co., Ltd., and the model of the
stone-milling used for processing matcha is ZD-HY320-2020 (Quanzhou Yuhao Stone Co.,
Ltd., Quanzhou, China). The three grades of high, medium and low matcha were named
M-GS, M-G1 and M-G2, and the corresponding grades of tencha were named T-GS, T-G1
and T-G2, respectively (Figure 1).
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Figure 1. Processing flow chart of different grades of tencha and Shandong matcha.

The chemical reagents used in the experiment are as follows: Dichloromethane (chro-
matographically pure) was purchased from Tianjin Kemiou Chemical Reagent Co., Ltd.
(Tianjin, China). Ethyl decanoate (Gas chromatography, purity ≥ 98%) was purchased from
Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China). NaCl (analytically pure
reagent) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
N-hexane (chromatographically pure) was purchased from Merck KGaA (Darmstadt,
Germany). [2H2]-benzyl alcohol was purchased from Isoreag (Pelham, NY, USA). Other
reagents of standard chromatographic purity were purchased from BioBioPha Co., Ltd.
(Kunming, China) and Sigma-Aldrich (Saint Louis, MO, USA).

2.2. Sensory Evaluation of Shandong Matcha and Tencha

According to the sensory quality evaluation method in the national standards of the
People’s Republic of China (GB/T 2279-2020), the aroma profiles of the tea samples were
evaluated by 7 professionally trained tea experts (4 males, 3 females; among them, 3 were
aged 30 to 35, 3 were aged 35 to 45 and 1 was aged 45 to 55). The evaluation method of
matcha was adjusted according to the standard, and the ratio of tea to water was 1:50;
that is, 3.0 g of tea sample was put into the evaluation bowl, 150 mL of boiling water
was injected and the tea was fully stirred for 10–15 s. The evaluation started when no
visible particles were found. As it was the main focus of the experiment, only the aroma
of the tea sample was evaluated. According to the evaluation results and referring to the
literature [34], the intensity of aroma characteristics was described with a 5-point intensity
method, with values ranging from 0 to 5 and intensity terms associated with values: “none”
to “intense”. The final results were presented as mean values.

2.3. HS-SPME Procedure

The method of Reference [23] was followed with minor changes. The tencha was
ground in liquid nitrogen and then mixed (matcha samples do not require grinding). After
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mixing, 1.00 g of each sample was placed in a head-space vial, and 3 mL saturated NaCl
solution and 10 µL (50 µg/mL) of internal standard solution containing [2H2]-benzyl
alcohol were added. At a constant temperature of 100 ◦C, the sample was oscillated for
5 min, the 120 µm DVB/CAR/PDMS extraction head was inserted into the head-space vial
and headspace extraction was performed for 15 min. The sample was analyzed for 5 min at
250 ◦C and then separated and identified using GC–MS. Before sampling, the extraction
head was aged at 250 ◦C in a fiber conditioning station for 5 min.

2.4. SAFE Procedure

The method of reference [35] was followed with minor changes. The ground tea
sample was weighed to 7.00 ± 0.05 g, put into a 100 mL conical flask with a stopper
(matcha samples do not require grinding) and 70 mL of methylene chloride was added for
extraction for 17 h. The extraction was carried out at 4 ◦C. After extraction, the sample was
centrifuged at 4 ◦C for 15 min (5500 rpm) and filtered. Next, 70 µL (86.50 mg/L) of internal
standard solution containing ethyl decanoate was accurately added. The temperature of the
water bath and circulating water was set to 40 ◦C, and liquid nitrogen was added into the
cold trap and thermos flask. When the pressure of the system dropped to 5 × 10−3 Pa, the
tea was poured into the drop funnel. After that, the drop funnel was opened, allowing the
tea solution to drop slowly and evenly into the distillation flask. After extraction, the extract
in the receiving flask was concentrated to about 5 mL via rotary evaporation, and finally
the extract was blown to 0.5 mL with nitrogen. The headspace extraction temperature was
60 ◦C, and the remainder of the procedure was consistent with HS-SPME.

2.5. GC–MS Analysis

The GC conditions of HS-SPME and SAFE were consistent. Using a DB-5MS capillary
column (30 m × 0.25 mm × 0.25 µm, Agilent J&W Scientific, Folsom, CA, USA), the flow
rate of the GC carrier gas (helium) was 1.2 mL/min, the temperature of the injection port
was 250 ◦C, there was no shunt injection and the solvent was delayed for 3.5 min. The
heating program was as follows: The initial temperature was 40 ◦C and was held for
3.5 min. The temperature was increased to 100 ◦C at the rate of 10 ◦C/min, then to 180 ◦C
at the rate of 7 ◦C/min and finally increased to 280 ◦C at the rate of 25 ◦C/min and held
thereafter for 5 min.

Electron bombardment ion source (EI), an ion source temperature of 230 ◦C, a four-
stage rod temperature of 150 ◦C, a mass spectrum interface temperature of 280 ◦C and
an electron energy of 70 eV were used. The scan mode of HS-SPME was full scan mode
(SCAN), and mass spectra was scanned in the m/z range 50–500 amu. The scan mode of
SAFE was qualitative and quantitative ion accurate scanning.

2.6. Identification of Volatile Components

Volatile compounds were characterized by the National Institute of Standards and
Technology (NIST) library search program. The relative concentration of volatile com-
pounds is calculated as follows [23]:

Ci = (Cis × Ai)/Ais (1)

Ci is any component (including g/L), the quality of the concentration Cis is internal
standard mass concentration (including g/L), the Ai chromatographic peak area is arbitrary
components and Ais is the internal standard substance of chromatographic peak area.

The relative content of volatile compounds was calculated as follows [10]:

Content = (peak area/total area) × 100%
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2.7. Calculation of Odor Activity Value (OAV)

OAV, the ratio of volatile compound concentration to its threshold value in water, is
calculated as follows [23]:

OAV = c/OT (2)

where c is the concentration of the compound in the sample (ng/mL) and OT is the odor
threshold of the compound in water (ng/mL).

2.8. Statistical Analysis

The GC–MS data were collected and statistically analyzed using Excel 2010, PCA and
OPLS-DA were performed with the Metaware Cloud platform, the significance analysis
was performed using SPSS 20.0 and the histogram was drawn with GraphPad Prism 8.

3. Results
3.1. Aroma Characteristics of Shandong Matcha and Tencha

Three different grades (high, medium, low) of matcha and the corresponding tencha
raw materials were used for sensory evaluation (Table 1). There are significant differences
in the aromas of the three grades of samples. The aroma in M-GS was clean, pure and fresh,
with a light and sweet roasted aroma (seaweed-like aroma), whereas the seaweed-like
aroma in M-G1 was not as strong as that of M-GS, showing a slightly grassy, harsh and
high-fired note. The freshness and fragrance of M-G2 were greatly weakened, and it was
more grassy, harsh, fatty and high-fired. Tencha had the characteristic aroma of steamed
green tea but not of matcha, and the concentration of the aroma was not as strong as that of
matcha. We believe that the aroma substances of matcha and its formation are related to its
unique manufacturing process.

Table 1. Aroma characteristics and intensity description of Shandong matcha and tencha.

Tea Sample
Aroma Characteristics

Fresh and Tender Grassy and Harsh Clean and Pure Fatty and Dull Roasted High-Fired

M-GS 4.86 ± 0.38 a 0.43 ± 0.53 c 4.86 ± 0.38 a 0.57 ± 0.53 d 4.57 ± 0.53 a 0.86 ± 0.38 e

M-G1 4.57 ± 0.53 ab 1.57 ± 0.53 b 4.43 ± 0.53 ab 1.29 ± 0.49 bc 3.14 ± 0.38 b 3.86 ± 0.38 b

M-G2 2.57 ± 0.53 c 3.86 ± 0.69 a 2.86 ± 0.69 c 3.57 ± 0.53 a 2.14 ± 0.69 c 4.43 ± 0.53 a

T-GS 4.71 ± 0.49 ab 1.29 ± 0.49 b 4.43 ± 0.53 ab 1.00 ± 0.00 cd 4.14 ± 0.69 a 1.57 ± 0.53 d

T-G1 4.14 ± 0.69 b 1.43 ± 0.53 b 3.86 ± 0.38 b 1.57 ± 0.53 b 3.43 ± 0.53 b 2.71 ± 0.49 c

T-G2 1.14 ± 0.38 d 4.14 ± 0.69 a 2.43 ± 0.53 c 3.86 ± 0.38 a 2.43 ± 0.53 c 4.43 ± 0.53 a

Data are shown as the mean ± standard deviation (n = 7). Different letters in each column represent significant
difference (p < 0.05).

3.2. Composition of Aromatic Substances in Shandong Matcha and Tencha

In order to obtain more comprehensive volatile components to analyze and evaluate
the aroma composition of matcha tea, headspace solid-phase microextraction (HS-SPME)
and solvent-assisted flavor evaporation (SAFE) were both used to extract the volatile
components of concentrated tea samples. A total of 705 volatile components were detected
in this study, of which 199 volatile components were detected with the HS-SPME method,
and 606 common components were detected using the SAFE method (Table S1).

The volatile components detected with HS-SPME were mainly composed of 10 aromat-
ics, 22 terpenoids, 45 hydrocarbons, 22 ketones, 28 heterocyclic compounds and 31 esters
(Figure 2). The proportion of volatile components in different categories is listed in Table
S1. In matcha, M-GS had the highest proportion of terpenoids, ketones, aldehydes and
alcohols, while M-G1 and M-G2 had the highest proportion of aromatic hydrocarbons,
acids and esters. In tencha, the proportion of alcohols, terpenoids, ketones and heterocyclic
compounds in T-GS was the highest, while the proportions of aromatics, acids, hydrocar-
bons and esters in T-G1 and T-G2 were highest. On the whole, the proportion of esters,
terpenoids, aldehydes and acids in Shandong matcha was lower than that in tencha, while
the proportion of heterocyclic compounds was higher.
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The volatile components detected using SAFE were mainly composed of 41 alcohols,
42 aldehydes, 109 terpenoids, 46 ketones, 112 heterocyclic compounds and 92 esters and
ethers were detected only using this method. In addition, 482 substances were unique
to M-GS. In matcha, M-GS had the highest proportion of alcohols, aromatics, aldehydes,
terpenoids and ketones, while M-G1 and M-G2 had the highest proportion of acids, hy-
drocarbons, heterocyclic compounds and esters. In tencha, the proportion of alcohols,
aldehydes, terpenoids and ketones in T-GS was the highest, while the proportion of aro-
matics, acids and esters of T-G1 and T-G2 was higher than that of T-GS. As a whole, the
proportion of alcohols, aldehydes, hydrocarbons and ketones of Shandong matcha were
higher than those of tencha, while the acids and heterocyclic compounds of Shandong
matcha were lower than those of tencha, and the other classes of compounds exhibited
little difference.

As expected, more volatiles were extracted via SAFE than HS-SPME. The combination
of these two techniques can obtain a more comprehensive volatile composition, which was
used for our subsequent screening of different characteristic aroma substances in matcha.

3.3. Multivariate Statistical Analysis of Shandong Matcha and Tencha
3.3.1. PCA

Principal component analysis (PCA) can preliminarily show the overall difference
between each group and the variation degree between samples within the group. The scores
of PCA of different grades of tencha and Shandong matcha are shown in Figure 3. The
PCA of HS-SPME data showed that the contribution rate of PC1 and PC2 was 59.34% and
12.86%, respectively, and the total contribution rate was 71.94% (Figure 3a). T-GS and M-GS
were obviously separated from other tea samples, M-G1 and M-G2 partially overlapped
and T-G1 and T-G2 achieved better distinction. In the PCA plots of SAFE, PC1 and PC2
contributed 39.56% and 25.81%, respectively, and the total contribution rate was 65.37%
(Figure 3b). T-GS and M-GS are clustered on the left side of the figure, T-G1 and T-G2 are
on the lower right side and M-G1 and M-G2 are on the upper right side. On the whole,
three grades of both Shandong matcha and tencha can be well distinguished, especially for
the distinction between high-grade and medium/low-grade Shandong matcha and tencha.
However, in contrast to tencha, there was some overlap between medium- and low-grade
matcha. This may be caused by the change in the aroma of tencha during the grinding
process, which narrowed the difference between the two grades of matcha.
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3.3.2. OPLS-DA

In order to identify the differential compounds of different grades of tencha and
matcha, the OPLS-DA model was used to analyze the data. OPLS-DA can decompose the X
matrix information into two types of information related to Y and irrelevant differences and
filter the differential variables by removing the latter. In the analysis of the two extraction
methods, the distribution of tencha and Shandong matcha tea was the same (Figure S1). The
total variance (R2) explained by the OPLS-DA model between different grades of matcha
was 71.1–86.5%, and the predicted total variance (Q2) was 89.8–99.2%. The total variance
(R2) explained by the OPLS-DA model between different grades of tencha was 75.0–96.4%,
and the predicted total variance (Q2) was 91.3–99.6% (Table 2). On the whole, compared
with the difference between M-G1 and M-G2, the difference of M-GS vs. M-G1 and M-GS
vs. M-G2 was larger, and this result was also well illustrated in the tencha. Based on the
results of the OPLS-DA model, a combination of fold change (FC ≥ 2 and FC ≤ 0.5) and
VIP value (VIP ≥ 1) was used to screen the key aroma compounds in Shandong matcha.

Table 2. The fitting parameters of OPLS-DA model.

Group
HS-SPME SAFE

R2 (%) Q2 (%) R2 (%) Q2 (%)

T-GS_vs_T-G1 96.42 99.6 75 94.5
T-GS_vs_T-G2 94.19 99.1 84.2 98.3
T-G1_vs_T-G2 85.3 99.3 76 91.3

M-GS_vs_M-G1 84.5 99.2 85.5 99.2
M-GS_vs_M-G2 86.2 98.7 82.8 98.8
M-G1_vs_M-G2 71.1 95.4 77.9 89.8

3.4. Differential Volatile Components in Three Grades of Shandong Matcha
3.4.1. The Common Volatile Components in the Three Grades of Matcha

Based on the screening conditions of OPLS-DA, there were relatively few differential
volatile components between M-G1 and M-G2, with only 57 differential compounds (10 up-
regulated, 47 down-regulated), while a total of 380 (205 up-regulated, 175 down-regulated)
differential volatile components between high-grade matcha (M-GS) and medium- and
low-grade matcha (M-G1 and M-G2) were screened (Table S2).

Among the up-regulated volatile components in M-GS, there were 48 terpenoids,
of which alpha-pinene (herbal), 3-carene (citrus), alpha-ionone (floral), trans-beta-ionone
(floral), alpha-cadinol (woody, herbal), beta-elemen (sweet) and (+)-alpha-pinene (herbal)
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were the main ones contributing to the formation of matcha’s fresh and floral aroma. Thirty-
six heterocyclic compounds with roasted aroma characteristics were screened out, such
as (E)-2-(1-pentenyl)-furan (roasted), hydrocoumarin (tonka), 2H-pyran-2-one and 5,6-
dihydro-6-pentyl-(coconut, sweet),. Twenty-three esters with fruity aroma characteristics
were screened out, such as bicyclo[2.2.1]heptan-2-ol, 1,7,7-trimethyl-, formate, endo-(green,
earthy, herbal), n-propyl acetate (fruity), benzoic acid, 2-propenyl ester (fruity). Seventeen
aldehydes and fourteen alcohols with green aroma characteristics were screened out,
such as (E,E)-2,4-hexadienal (green), (E,E)-2,4-octadienal (green), 2-nonenal (fatty, green),
hexanal (green), (E,E)-2,4-heptadien-1-ol (green), (Z)-2-penten-1-ol (green) and (E,Z)-3,6-
nonadien-1-ol (green). Most of these substances exhibit characteristics similar to seaweed,
fresh and roasted aromas.

Among the up-regulated volatile components in M-G1 and M-G2, there were 40 kinds
of heterocyclic compound; 2H-pyran-2-one, tetrahydro-6-nonyl-(waxy, fatty, cheesy), 2-
ethyl-3,5-dimethyl-pyrazine (nutty, caramellic), 2,3-dimethyl-5-ethylpyrazine (burnt, roasted),
coumarin (tonka, hay) were the main ones, with roasted, burnt and fatty aroma character-
istics. Forty esters with fatty, grassy and green aroma characteristics were screened out,
such as 3-hexen-1-ol, formate, (Z)-(green, fresh, grassy), 3-hexen-1-ol, acetate, (Z)-(green,
fresh, grassy), butanoic acid, 3-hexenyl ester, (Z)-(green, metallic, buttery), 4-decenoic acid,
methyl ester, Z-(fruity, fishy, green) and cis-3-hexenyl cis-3-hexenoate (green, metallic).
Twenty-five terpenoids with fatty, green and herbal aroma characteristics were screened
out, such as linalool (floral, woody, green), (-)-beta-bourbonene (herbal, woody, floral),
(E)-beta-famesene (woody, citrus, herbal) and (E)-nerolidol (floral, green, woody, waxy).
Most of these volatile components present characteristic attributes of fatty, green and
grassy aromas.

Previous studies showed that β-damascone, α-ionone, furan, 2-pentyl-, hexanal, 1-
octen-3-ol, benzaldehyde, 2,4-dimethyl-,α-cadinol, indole and coumarin are key aroma
components of Japanese matcha [10,27], and these components were all detected in this
study (Figure 4).

Foods 2022, 11, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 4. Venn diagram and important differential compounds of different grades of Shandong 

matcha (group 1). Venn diagram of differential compounds in Shandong matcha (group 2). The 

reported key aroma components of Japanese Matcha detected in this study. Different lowercase 

letters represent different significantly on p < 0.05 level. 

3.4.2. Unique Volatile Components in High-Grade Matcha (M-GS) 

In addition to the common components with differences among the three grades of 

matcha, we also screened out the unique volatile components only present in M-GS by 

calculating the odor activity value (OAV). The OAV can be used to reasonably evaluate 

the overall flavor of a food with a single odor component, and key aroma compounds 

with OAV > 1 are usually considered to be the main contributors to the overall aroma [22]. 

In this study, we screened 10 key aroma components with OAV > 1 in M-GS (Table 3). For 

the odor quality of these volatile components, 3-methyl-2-butene-1-thiol (sulfurous), 3-

ethyl-phenol (musty), 2-thiophenemethanethiol (fishy), (E,E)-2,4-undecadienal (green) 

and (E,Z)-2,6-nonadienal (green) all presented pleasant aroma. The threshold value of 3-

methyl-2-butene-1-thiol was the lowest, while the OAV value was the highest, indicating 

that 3-methyl-2-butene-1-thiol contributed the most to the aroma of M-GS. 

In this study, there were common volatile components that differed among the three 

grades of matcha and unique components that existed alone in a certain grade. This 

strongly suggests the possibility that the aroma of matcha is mostly composed of the odor-

ants common to every grade and that a small number of odorants are distinctive for each 

grade. 

  

Figure 4. Venn diagram and important differential compounds of different grades of Shandong
matcha (group 1). Venn diagram of differential compounds in Shandong matcha (group 2). The
reported key aroma components of Japanese Matcha detected in this study. Different lowercase letters
represent different significantly on p < 0.05 level.



Foods 2022, 11, 2964 9 of 15

3.4.2. Unique Volatile Components in High-Grade Matcha (M-GS)

In addition to the common components with differences among the three grades of
matcha, we also screened out the unique volatile components only present in M-GS by
calculating the odor activity value (OAV). The OAV can be used to reasonably evaluate
the overall flavor of a food with a single odor component, and key aroma compounds
with OAV > 1 are usually considered to be the main contributors to the overall aroma [22].
In this study, we screened 10 key aroma components with OAV > 1 in M-GS (Table 3).
For the odor quality of these volatile components, 3-methyl-2-butene-1-thiol (sulfurous),
3-ethyl-phenol (musty), 2-thiophenemethanethiol (fishy), (E,E)-2,4-undecadienal (green)
and (E,Z)-2,6-nonadienal (green) all presented pleasant aroma. The threshold value of
3-methyl-2-butene-1-thiol was the lowest, while the OAV value was the highest, indicating
that 3-methyl-2-butene-1-thiol contributed the most to the aroma of M-GS.

Table 3. Specific aroma components with OAV > 1 in M-GS.

No. Compounds Odor Quality a OTs b (ng/mL) Concentration c

(ng/mL) OAVs d

1 3-Methyl-2-butene-1-thiol sulfurous 0.0002 [36] 0.46 ± 0.1 bc 2316.38
2 Phenol, 3-ethyl- musty 0.05 [36] 3.51 ± 0.83 a 70.26
3 2-Thiophenemethanethiol fishy 0.01 [36] 0.19 ± 0.04 c 19.13
4 (E,E)-2,4-Undecadienal green 0.02 [36] 0.28 ± 0.07 bc 14.23
5 2,6-Nonadienal, (E,Z)- green 0.02 [36] 0.22 ± 0.03 c 11.05
6 2,4-Nonadienal, (E,E)- fatty 0.06 [36] 0.55 ± 0.1 bc 9.24
7 (Z,Z)-3,6-Nonadienal fatty, cucumber 0.05 [36] 0.43 ± 0.05 bc 8.68
8 2-Decenal, (Z)- fatty 0.4 [37] 0.75 ± 0.12 b 1.87
9 2-Nonenal, (E)- fatty 0.19 [38] 0.29 ± 0.03 bc 1.54
10 Phenol, 2-methyl-5-(1-methylethyl)- spicy 0.1 [36] 0.11 ± 0.01 c 1.07

a The odor quality of compounds were taken from http://www.thegoodscentscompany.com/, accessed on May
2022; b OTs: Odor thresholds in water; c Concentration: Data are shown as the mean ± standard deviation (n = 3).
Different letters in each column represent significant difference (p < 0.05); d OAVs were calculated by dividing the
concentration of an odorant by its odor threshold values in water.

In this study, there were common volatile components that differed among the three
grades of matcha and unique components that existed alone in a certain grade. This
strongly suggests the possibility that the aroma of matcha is mostly composed of the
odorants common to every grade and that a small number of odorants are distinctive for
each grade.

3.5. Effect of Grinding Process on Volatile Components of Matcha Aroma

To investigate the connection between the formation of matcha aroma and its grinding
process, the volatile components of three grades of matcha before and after grinding were
compared. After tencha is processed into matcha, except for a few volatile components,
most of the volatile components tend to increase. When T-GS was processed into M-GS,
97 volatile components in M-GS were up-regulated. When T-G1 and T-G2 were processed
into M-G1 and M-G2, 112 and 113 volatile components were up-regulated, respectively
(Table S3).

The up-regulated aroma substances in M-GS were 33 heterocyclic compounds, 14 terpenoids,
13 esters and 10 alcohols in order of number of components. Heterocyclic compounds
had 2-pentyl-furan (fruity, green), 1-(2-pyridinyl)-ethanone (popcorn), 1-(2-furanyl)-1-
pentanone (sweet, caramellic), etc. Terpenoids had terpinolene (herbal, fresh), safranal
(herbal, fresh, metallic), beta-elemen (herbal, waxy, fresh), etc. Esters had 3-mercapto-3-
methylbutyl formate (ester) (sulfurous), benzoic acid, 1-methylethyl ester (floral, sweet,
fruity), benzoic acid, 2-propenyl ester (fruity), etc. Alcohols had (Z)-3-hexen-1-ol (fresh,
green, grassy), (E,Z)-3,6-nonadien-1-ol (green) and so on. Fifty-three of these substances
were differentially volatile components with higher content in the high-grade matcha
screened as outlined in Section 3.4 (Table S4).The up-regulated aroma substances in M-G1
and M-G2 mainly include 16 alcohols, 14 terpenoids and 13 alcohols, such as butanoic
acid, 3-methylbutyl ester (fruity), hexanoic acid, pentyl ester cyclohexene (fruity), safranal

http://www.thegoodscentscompany.com/
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(herbal, fresh, metallic), isopinocarveol (woody), 1-decanol (fatty) and (E)-2-decen-1-ol
(fatty). The compounds with aromas mainly present fatty, fruity and woody notes.

The Venn diagram showed that 24 volatile components were increased in all three
grades of matcha, and these components could contribute to the different aroma character-
istics of tencha from matcha (Figure 5). These volatile components mainly included four
alcohols, three aromatic hydrocarbons, three esters, five heterocyclic compounds and three
terpenoids, such as (2,2-dimethoxyethyl)-benzene (green), cis-7-decen-1-al (citrus), safranal
(herbal) and fenchyl acetate (balsamic).
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Matcha is a powder made by grinding tencha in a stone mill. The unique manufactur-
ing process forms the unique aroma characteristics of matcha. The comparison of the aroma
components of matcha before and after grinding showed that most of the aroma compo-
nents increased, which is why the aroma concentration of matcha is stronger than that
of tencha in the sensory evaluation of matcha. Considering the changes in the content of
characteristic aroma components and the sensory evaluation scores of aroma characteristics,
the grinding process has a very positive effect on the formation of matcha aroma.

4. Discussion

It is generally believed that matcha has a unique green aroma with some sweet and
roasted odors. Tan et al. gave some descriptors of the aroma profile to describe green tea
and matcha, such as floral, hay, leafy, roasted, seaweed-like, sweet and woody [10]. Baba
et al. suggested that sweet, green, metallic and floral notes are essential for the aroma of
Japanese matcha, and some odorants influence the characteristic aroma of each grade [27].
Most potential flavor-contributing compounds reported in matcha previously by Baba
et al., Tan et al. and Huang et al. were present in Shandong matcha [10,27,39]. Based on the
aroma attributes of potential flavor-contributing compounds, the differences for sensory
evaluations in matcha aroma could be explained. In this experiment, high-grade Shandong
matcha had a light sweet and roasted aroma (seaweed-like aroma). Hexanal, 1-octen-3-ol
and 2-pentyl-furan have been proven to contribute to the formation of seafood aroma [40],
among which hexanal is a common aroma component in Pu’er tea [41]. α-ionone, β-
damascone and β-ionone are typical carotenoid degradation products, and the unique
shading technology of tencha was found to enhance carotenoids, which may increase the
content of derived aromatic precursors [10]. α-cadinol is the main component of essential
oil of fresh fruits [42]. In the aroma of tea, the alcoholic aroma substances contribute to
floral and fruity aroma or fragrance. As one of the important glycoside hydrolases in tea,
β-glucosidase mainly hydrolyzes and releases alcoholic aroma. Its activity can be enhanced
by shading and fertilization so as to improve the aroma of tea, thus contributing to the
formation of the flower and fruity note of matcha. 3-Hexen-1-ol, (Z)- can be obtained either
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by lipid degradation or by hydrolysis of its glycoside precursors during the withering
stage [43]. It had a high concentration in green tea, and its content was proportional to the
grade. Medium- and low-grade matcha showed a slightly grassy, harsh and high-fired note.
Coumarin was reported to be a characteristic compound that affects the sweet quality of
Chinese green tea and Japanese green tea [44]. Indole is the characteristic aroma component
of Oolong tea [45]. (E)-linalool oxide (pyranoid) is a glycoside derivative in green tea [43],
and methyl salicylate has been reported to be a key aroma component in black tea [8]. The
above different aroma components are the key to determining the aroma quality of different
grades of Shandong matcha, and this is consistent with the findings of Baba et al. [27].

Heterocyclic compounds were the most differential compounds in different grades
of matcha and were the main products of the Maillard reaction, and the most important
intermediate product of this reaction was glycosamines. The formation of glycosamine
compounds was significantly related to amino acids and reducing sugars in tea [46]. The
high proportion of heterocyclic compounds in total volatile components of Shandong
matcha may be due to the geographical advantages of Shandong province, and the fresh
leaves were treated with shade, so the content of amino acids in fresh leaves was high,
which was conducive to the formation of glycoamine compounds. Huang et al. pointed
out that stone-milled matcha was higher in roasted notes, containing a higher number of
pyrazines [39]. Therefore, the stone grinding process in this study is another reason for
the higher heterocyclic compounds in Shandong matcha. In addition, due to the different
concentration ratios of some common components in different tea samples of different
grades and the interaction between various aroma components, high grade matcha had
a roasted note, while medium- and low-grade matcha had a high-fired note. It is worth
mentioning that our previous electronic nose research found that sulfur compounds have
an important impact on the aroma of matcha, but the proportion of sulfur compounds was
minimal in this study, indicating that sulfide was vital to the aroma of Shandong matcha.
Compared with medium- and low-grade matcha, high-grade matcha contained more
sulfur compounds. The threshold of sulfur compounds was relatively low and contributed
significantly to flavor [47]. 1-p-menthene-8-thiol is often reported in the literature as one of
the most powerful flavor compounds found naturally, with a threshold below 1 × 10−4 in
water [48]. In addition, previous studies reported that dimethyl sulfide was the key aroma
compound in Japanese matcha [27], which presented the aroma of seaweed in green tea; it
was also a key aroma compound in green tea [49,50]. However, dimethyl sulfide was not
detected in this study, which may be a result of its unstable chemical properties and easy
oxidation. Tan et al. suggested that low molecular weight sulfur-containing compounds
such as ethyl mercaptan and dimethyl sulfide were not present in Hojicha as they would
have evaporated during the roasting step [10]. Consumers in the Shandong tea area prefer
tea products with strong aroma, and the baking temperature and degree of baking are
higher than those of Japanese matcha, so no dimethyl sulfide was detected in Shandong
matcha. The above results strongly suggest that the aroma of Shandong matcha at different
grades may be composed of some common components, and the concentration ratio of
common components and the unique components of individual grades make the aroma
different. Therefore, it is necessary to further study the odor activity value and aroma
recombination test to more accurately evaluate the contribution of each aroma component
to the aroma of Shandong matcha.

The grinding process is an important processing link in the production process of
matcha and plays an important role in the formation of the quality of matcha. Numer-
ous studies have shown that changes in the grinding process may lead to changes in
the chemical composition of matcha, especially in the concentration of non-volatile com-
ponents [33,39,51]. It has also been demonstrated that there are differences in aroma
components between different milling processes (cyclone, bead and stone millings), and
stone-milled matcha was perceived to be higher in roasted notes, containing a higher
number of pyrazines [39]. Peng et al. also confirmed that there are differences in aroma
components between green tea powder, green tea and green tea extracts [52]. Among
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the aroma components added after high-grade tencha is made into matcha, there were
53 kinds of aroma components that were different from high-grade matcha and middle and
low-grade matcha. This demonstrated that the grinding process can fully strengthen the
advantages of tencha materials and give the aroma characteristics of high-grade matcha,
such as seaweed-like, fresh and roasted notes. After the medium and low-grade tencha is
made into matcha, the added aroma components mainly present fatty, fruity and woody
aromas, making the medium- and low-grade matcha gradually accompanied by grassy and
fatty aromas. Similar observations were made by Huang et al. for extracted non-volatile
composition [39]. This might be due to an increase in exposed surface area, which encour-
aged greater extraction of these compounds upon brewing. Our previous research showed
that grinding had a significant effect on the non-volatile components of tea powder [33].
This study further studied the effect of grinding on the volatiles of matcha and found
that grinding could increase the concentration of matcha aroma components, enhance
the unique aroma characteristics of matcha and play a positive role in the formation of
matcha quality.

5. Conclusions

In this study, the combined application of HS-SPME-GC/MS and SAFE-GC/MS
obtained a more comprehensive volatile composition of Shandong matcha. Distinctions
between the three grades of Shandong Matcha were observed on the PCA score plots,
especially for high versus low–medium grades. The aroma of matcha is mainly composed
of the odors common to every grade, while a small number of odorants are unique to each
grade. A higher proportion of heterocyclic compounds in Shandong matcha is the key to
its strong roasted aroma, which can meet the demands of consumers in Northern China,
especially in Shandong tea areas. In this study, 10 key aroma components were screened
from the unique components of high-grade Shandong matcha tea, including 3-methyl-
2-butene-1-thiol, 3-ethyl-phenol, 2-thiophenemethanethiol, (E,E)-2,4-undecadienal and
(E,Z)-2,6-nonadienal, all presenting pleasant aromas. In addition, the aroma components
that are common to each grade but differ in content also affect the aroma characteristics
of different grades of Shandong matcha. The volatile components of seaweed aroma
were dominant in high-grade matcha, while the volatile components of high-fired aroma
and crude green gas were dominant in medium and low-grade matcha. The grinding
process can increase the content of volatile components of matcha, effectively increasing
the concentration of matcha aroma. In this study, the number of volatile components in the
matcha showed an increasing trend, far more than the volatile components that showed
a decrease after the three grades of tencha were made into matcha. In conclusion, the
findings of this study contribute to a deeper understanding of the flavor of Shandong
matcha tea. Based on the powder’s physical properties and aroma characteristics, studying
the interaction between matcha and food ingredients and developing novel tea drinks and
matcha products will be the focus of future research on Shandong matcha.
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