Pathfinder assembles relational XQuery processing techniques into a purely relational XQuery processing stack.

- **FLWOR**, node construction, ...
- **loop-lifting** (VLDB 2004)
- **staircase join** (VLDB 2003)
- **XPath accelerator** (SIGMOD ’02)
- **SQL**, relational algebra

Diagram:
- **RDBMS**
- **Tree Encoding**
- **XPath Axes**
- **Compiler**
- **XQuery**

Jens Teubner, TU München
We provide **full XQuery support.**

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>literals</td>
<td>42, "foo", (), ...</td>
</tr>
<tr>
<td>arithmetics</td>
<td>$e_1 + e_2, e_1 - e_2, ...</td>
</tr>
<tr>
<td>built-in functions</td>
<td>fn:sum($e), fn:count($e), fn:doc($uri), ...</td>
</tr>
<tr>
<td>variable bindings</td>
<td>let $v := $e_1 return $e_2</td>
</tr>
<tr>
<td>iteration</td>
<td>for $v at $p in $e_1 return $e_2</td>
</tr>
<tr>
<td>conditionals</td>
<td>if p then e_1 else $e_2</td>
</tr>
<tr>
<td>sequence construction</td>
<td>$e_1, e_2</td>
</tr>
<tr>
<td>function calls</td>
<td>$f(e_1, e_2, ..., e_n)$</td>
</tr>
<tr>
<td>element construction</td>
<td>element e_1 { e_2 }</td>
</tr>
<tr>
<td>XPath steps</td>
<td>$e/\alpha::\nu$ (full axis feature)</td>
</tr>
</tbody>
</table>

- Expressions nest arbitrarily!
A rather standard relational algebra suffices.

\(\pi \) column projection, renaming
\(\sigma \) row selection
A rather standard relational algebra suffices.

\[\pi\] column projection, renaming

\[\sigma\] row selection

\[\bowtie\] equi-join

\[\times\] Cartesian product

\[\cup, \setminus\] disjoint union, difference

\[\delta\] duplicate elimination
A rather standard relational algebra suffices.

- π: column projection, renaming
- σ: row selection
- \bowtie: equi-join
- \times: Cartesian product
- \cup, \setminus: disjoint union, difference
- δ: duplicate elimination
- ϱ: row numbering
A rather standard relational algebra suffices.

Operators

- **π** column projection, renaming
- **σ** row selection
- **⋈** equi-join
- **×** Cartesian product
- **∪, ** disjoint union, difference
- **δ** duplicate elimination
- **ϱ** row numbering
- **+xml** staircase join*
- **ε, τ** element/text node construction*

Syntactic sugar; expressible by remaining operators.
A rather standard relational algebra suffices.

- π: column projection, renaming
- σ: row selection
- \bowtie: equi-join
- \times: Cartesian product
- \cup, \$: disjoint union, difference
- δ: duplicate elimination
- ρ: row numbering
- ρ*: staircase join*
- ε, τ: element/text node construction*
- \odot: arithm./comparison operator *

*Syntactic sugar; expressible by remaining operators.
A rather standard relational algebra suffices.

\[\pi\] column projection, renaming
\[\sigma\] row selection
\[\bowtie\] equi-join
\[\times\] Cartesian product
\[\cup, \setminus\] disjoint union, difference
\[\delta\] duplicate elimination
\[\rho\] row numbering
\[\star\] staircase join*
\[\varepsilon, \tau\] element/text node construction*
\[\ast\] arithm./comparison operator *

- Operates on node (not tree!) level, 1NF relations.

*Syntactic sugar; expressible by remaining operators.
A rather standard relational algebra suffices.

- \(\pi \) column projection, renaming
- \(\sigma \) row selection
- \(\bowtie \) equi-join
- \(\times \) Cartesian product
- \(\cup, \setminus \) disjoint union, difference
- \(\delta \) duplicate elimination
- \(\varrho \) row numbering
- \(\text{staircase join}\)
- \(\varepsilon, \tau \) element/text node construction
- \(\odot \) arithm./comparison operator

- Operates on node (not tree!) level, 1NF relations.

*Syntactic sugar; expressible by remaining operators.
Version 0.8 of MonetDB/XQuery was released on May 30.

- Unsurpassed scalability, beyond 10 GB input document size.
The Pathfinder project is a joint effort of the Technische Universität München, CWI Amsterdam, and the University of Twente.

Optimizations:
- Algebraic join detection
- Order awareness (avoid ϱ)
- Use functional and multi-valued dependencies for algebraic optimization

Open Source Implementation:

http://www.pathfinder-xquery.org/

- Backed by main memory DBMS MonetDB.

See you in Demo Group 7 (today, 16:00; tomorrow, 16:00)!