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Abstract
Human movements and the collective behavior of interacting characters in crowds can be described by nonlin-
ear dynamical systems. The design of stability properties of dynamical systems has been a core topic in control
theory and robotics, but has rarely been addressed in the context of computer animation. One potential reason
is the enormous complexity of the dynamical systems that are required for the accurate modeling of human body
movements, and even more for the interaction between multiple interacting agents. We present an approach for
the online simulation of realistic coordinated human movements that exploits dynamical systems that are simple
enough in order to permit a systematic treatment of their stability. We introduce contraction theory as a novel
framework that permits a systematic treatment of stability problems for systems in character animation. It yields
tractable global stability conditions, even for systems that consist of many nonlinear interacting modules or char-
acters. We show some first simple applications of this framework for the animation of coordinated behavior in
groups of interacting human characters.

Categories and Subject Descriptors (according to ACM CCS):
I.3.7 [Computer Graphics]: Three Dimensional Graphics and Realism —Animation;
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence —Coherence and coordination;
G.1.7 [Numerical Analysis]: Ordinary Differential Equations —Convergence and stability

1. Introduction

The online simulation of human behavior is a core prob-
lem in computer animation with important applications such
as computer games. While the dominant approach for the
generation of realistic human movements is based on off-
line synthesis using motion capture, this approach cannot
easily be transferred to real-time applications. Only re-
cently, researches have started to develop methods in or-
der to learn models for online synthesis from motion cap-
ture data [SHP04,SLSG01,HPP05]. Dynamical systems de-
rived, for example, from biomechanical or physical mod-
els seem particularly appropriate for real-time synthesis
[TW90, GTH98, BRI06]. However, it has turned out that
such models for the generation of human movements with
high degree of realism typically have to be rather detailed
[Ter09, HWBO95, AHS03], resulting in complex dynami-
cal systems whose properties are difficult to control. Con-

sequently, the dynamical stability properties of such systems
have rarely been addressed, and given their complexity it is
an open question whether they can be treated at all.

An important domain of the application of dynamical sys-
tems in computer animation is the simulation of autonomous
and collective behavior of many characters, e.g. in crowd
animation [MT01, TCP06]. Some work in this domain has
been inspired by observations in biology showing that coor-
dinated behavior of large groups of agents, such as flocks of
birds, can be modeled at an emergent behavior that results
from the dynamic interactions between individual agents,
without requiring a central mechanism that ensures coor-
dination [Cou09, CDF∗01]. One example is the tendency
of multiple agents to synchronize their behavior, for ex-
ample during walking or applauding. It is well-known that
such behaviors can be analyzed efficiently within the frame-
work of nonlinear dynamics [PRK03]. This makes it in-
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teresting to exploit the underlying principles for the auto-
matic synthesis of collective behavior in computer animation
[TWP03, Rey99, BH97]. So far, the design of such technical
systems has been often heuristic, exploiting empirical results
from simulations instead of deriving the system parameters
from theoretical results on the system dynamics. However,
the controlled engineering of such system makes more sys-
tematic theoretically founded approaches highly desirable.
A critical limiting factor in this context is the complexity
of the dynamical models for individual agents or charac-
ters, which often makes a systematic treatment of stability
properties infeasible. In previous work, we have developed a
method that approximates complex human behavior by rela-
tively simple nonlinear dynamical systems. Consistent with
related approaches in robotics [GRIL08,AMS97,SIB03] and
biology [FH05], this method generates complex movements
by combination learned movement primitives [PMOG08].
The resulting system architecture is rather simple and thus
suitable for a treatment of dynamical stability properties.
While the design of stability properties is a central topic
in robotics [BRI06, RI06, GRIL08], it is rarely addressed in
character animation.

The goal of this article is to introduce a novel framework
for the analysis and design of the stability properties of sys-
tems for interactive character animation. Exploiting models
that are based on learned movement primitives, we obtain a
system dynamics that can be analyzed, even for situations
with multiple characters.

We introduce contraction theory as new theoretical ap-
proach that permits a treatment of the dynamical properties
of networks of coupled nonlinear dynamical elements. Con-
traction theory has been applied successfully before to an-
alyze other types of complex systems [LS98, Slo03, WS05,
PS07].

The paper is structured as follows: After a brief discussion
of related approaches (Section 2), we first introduce some
basic concepts from contraction theory (Section 3) and de-
rive more detailed mathematical results that are important
for our applications (Section 4). We then discuss several
applications of these results in the context of our learning-
based real-time animation system (Section 5), followed by
some conclusions.

2. Related Work

The dynamics of collective behaviors of animals has been
analyzed extensively in biology, e.g. for collective motions
in flocks [Cou09, CDF∗01]. These observations have in-
spired a variety of approaches in particular in robotics, where
group coordination and cooperative control have been stud-
ied in the context of the navigation of groups of vehicles,
or the control of agents that realize coordinated behavior for
useful tasks (e.g. [Mat95, BH97]). The dynamics of inter-
active group behavior has been rarely discussed in the field

of computer animation [Rey99]. However, the simulation of
collective behavior by self-organization in systems of dy-
namically coupled agents seems interesting for several rea-
sons: First, it might help to reduce the computational costs of
traditional computer animation techniques, such as scripting
or path planning [TCP06, TWP03]. In addition, the gener-
ation of collective behavior by self-organization results in
spontaneous adaptation to perturbations or changes in the
number of characters [CS07, OEH02].

3. Basic mathematical methods

Our animation systems models the behavior of characters
by the learning of mappings between the stable solutions of
relatively simple nonlinear dynamical systems and the com-
plex trajectories of real human behaviors [GMP∗09]. More
detailed physical or biomechanical models of such com-
plex human movements are typically rather complex (re-
quiring around 30 degrees of freedom for sufficient real-
ism [HWBO95, GTH98]). Nonlinear systems of this com-
plexity typically are not accessible for a more detailed anal-
ysis of their dynamical stability properties. By learning of
appropriate simplified models our approach results in dy-
namical models with a limited degree of complexity. Using
appropriate mathematical methods, this makes it possible to
develop a framework for the analysis and design of their sta-
bility properties.

In the following a single character will be described by a
dynamical system of the form

ẋ = f(x, t) (1)

where the variable x signifies the dynamical state of the char-
acter. For a walking avatar, this dynamics could be given by
a limit cycle oscillator, whose periodic solution is mapped
onto the joint angles of the character. The nonlinear mapping
between dynamical state x and the joint angles is learned us-
ing kernel methods (see Section 5.1 for details). The learned
nonlinear mapping is bounded and acts as nonlinear observer
of the state variable that does not modify the overall stability
properties of the system, unless the joint angles are fed back
into the dynamical state. The dynamics (1) can also be inter-
preted as describing a central pattern generator that drives
the movement of the character.

In the following we will describe methods from contrac-
tion theory [LS98] that are useful for the analysis of the sta-
bility of networks of such central pattern generators. Specif-
ically, we will introduce the basic definitions of the contrac-
tion theory and will rehearse some major theorems that are
central for derivation of new results in Section 4.

3.1. Notations

In the following we will derive bounds for the convergence
of solutions of the dynamical system of the form (1). These
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bounds depend of the eigenvalues of matrices that are de-
rived from the Jacobian of the system J(x, t) = ∂f(x,t)

∂x . Given
a square matrix A, in the following the matrix As = (A +
AT )/2 signifies its symmetric part. Moreover, we define the
real-valued matrix functions λmin(As) and λmax(As) which
correspond to the smallest, respectively largest, eigenvalue
of the symmetric matrix As. This implies that the matrix As
is positive definite (denoted by As > 0) if λmin(As) > 0, and
negative definite (denoted by As < 0) if λmax(As) < 0. The
matrix inequality A > B denotes λmin(As) > λmax(Bs).

If the matrix is itself a function of state and time (i.e.,
As(x, t)) we say that it is uniformly positive definite if there
exists a real β > 0 such that ∀x, ∀t : λmin(As(x, t))≥ β.
Likewise, we say it is uniformly negative definite if there ex-
ists a β > 0 such that ∀x, ∀t : λmax(As(x, t))≤−β.

3.2. Contracting dynamical systems

Dynamical systems describing the behavior of autonomous
characters are essentially nonlinear. This makes the analysis
of their stability properties for systems including multiple
interacting characters a very difficult problem. A major dif-
ficulty of this analysis is that for nonlinear, as opposed to
linear dynamical systems, stability properties of parts usu-
ally do not transfer to composite systems. Contraction the-
ory [LS98] provides a general method for the analysis of
essentially nonlinear systems, which permits such a transfer,
making it suitable for the analysis of complex systems with
many components. The classical approach for the stability
analysis of nonlinear systems is to compute first the station-
ary solutions of the dynamics, and then to establish its local
stability by linearization in the neighborhood of this solu-
tion. Already the computation of stationary solutions is of-
ten difficult or possible only numerically. Contraction theory
takes a different approach and characterizes the system sta-
bility by the behavior of the differences between solutions
with different initial conditions. If these differences van-
ish exponentially over time, and its solution converges to-
wards a single trajectory, independent from the initial states,
the system is called globally asymptotically stable. Interest-
ingly, the analysis of such differences between solutions is
often simpler than the classical linearization approach, mak-
ing systems tractable that would be impossible to analyze
with the classical approach.

More concretely, assume x(t) is one solution of the sys-
tem and x̃(t) = x(t)+δx(t) a neighboring one. The function
δx(t) is also called virtual displacement (see Fig.1). If the
virtual displacement is small enough the last equation to-
gether with equation (1) implies

δ̇x(t) = J(x, t)δx(t)

implying through d
dt ||δx(t)||2 = 2δxT (t)Js(x, t)δx the in-

equality:

||δx(t)|| ≤ ||δx(0)|| e
R t

0 λmax(Js(x,s)) ds (2)

virtual 
displacement 
dx(0)

dx(t), t>0

trajectories

virtual 
velocity   
dx(t)

x(0)

x(0)

Figure 1: Two trajectories of a dynamical system and the
virtual displacement.

If the Jacobian is uniformly negative definite this equation
implies that any nonzero virtual displacement decays expo-
nentially to zero over time. This decay occurs with a conver-
gence rate (inverse timescale) that is bounded from below
by the quantity ρc =−supx,t λmax(Js(x, t)). By ’concatenat-
ing’ such virtual displacements at fixed points in time one
can show that any difference between the trajectories decays
to zero with at least this time constant [LS98]. This has the
consequence of all trajectories converging towards a single
trajectory exponentially. Therefore, this motivates:

Definition 1 With respect to the dynamical system
ẋ = f(x, t), the regions in state space for which the sym-

metrized Jacobian Js = 1
2 ( ∂f

∂x + ∂f
∂x

T
) is uniformly negative

definite are called contracting regions. All solutions that
start in these regions converge towards a single trajectory
for t →∞.

The previous argumentation can be extended by measur-
ing the length of the virtual displacement using a different
metric (coordinate system). By assuming a uniformly invert-
ible square matrix Θ(x, t), which in most cases is state- and
time-dependent, one can introduce the transformed displace-
ment δz(t) = Θ(x, t)δx(t). Analogous to the previous case
one finds:

d
dt

(δzT
δz) = 2δzT

δ̇z = 2δzT (Θ̇+Θ
∂f
∂x

)Θ−1︸ ︷︷ ︸
F

δz

This implies the following general result:

Theorem 1 Assume that for the system (1) it is possible to
find a square matrix Θ(x, t) such that Θ(x, t)T

Θ(x, t) is uni-
formly positive definite, and such that the generalized Jaco-
bian

F = (Θ̇+Θ
∂f
∂x

)Θ−1 (3)

is uniformly negative definite, then all system trajecto-
ries converge exponentially to a single trajectory, and the
system is called contracting. The rate of convergence of
||δz(t)|| is at least ρc =−supx,t λmax(Fs(x, t)). The matrix
M(x, t) = Θ(x, t)T

Θ(x, t) is also called the contraction met-
ric.
Conversely, the existence of a uniformly positive definite
metric M(x, t) = Θ(x, t)T

Θ(x, t) with respect to which the
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system is contracting is a necessary condition for the global
exponential convergence of trajectories [LS98]. Further-
more, all transformations Θ corresponding to the same M
result in the same eigenvalues for the symmetric part of
F [Slo03], and thus the same convergence rate. (The proofs
can be found in [LS98, Slo03].)

3.3. Partial contraction and flow-invariant manifolds

Many systems are not contracting with respect to all dimen-
sions of the state space, but show convergence with respect
to a subset of dimensions. A typical example is an externally
driven nonlinear oscillator. By its tendency to self-initiate
oscillatory solutions it is unstable, and thus non-contracting,
within a region around the the origin of state space. How-
ever, independent of the initial state, it might converge expo-
nentially against a single trajectory that is determined by the
external driving signal. Partial contraction [WS05] allows to
capture this property in a mathematically well-defined man-
ner, and to derive from it results in the global stability of
the system. The key idea is to construct an auxiliary system
that is contracting with respect to a subset of dimensions (or
submanifold) in state space.

Theorem 2 Consider a nonlinear system of the form

ẋ = f(x,x, t) (4)

and assume that the auxiliary system

ẏ = f(y,x, t) (5)

is contracting with respect to y uniformly for all relevant x.
If a particular solution of the auxiliary system verifies a spe-
cific smooth property, then all trajectories of the original sys-
tem (4) verify this property with exponential convergence.
The original system is then said to be partially contracting.

A ’smooth property’ is a property of the solution that de-
pends smoothly on space and time, such as convergence
against a particular solution or value. The proof of the theo-
rem is immediate noticing that the observer-like system (5)
has y(t) = x(t) for all t ≥ 0 as a particular solution. Since all
trajectories of the y-system converge exponentially to a sin-
gle trajectory, this implies that also the trajectory x(t) veri-
fies this specific property with exponential convergence.

Related to partial contraction are the following methods
that will be crucial for the derivation of results on the syn-
chronization of groups of avatars. Again starting form the
equation (1), we assume the existence of a flow-invariant
linear subspace M, i.e. a linear subspace M such that ∀t :
f(M, t) ⊂M). This implies that any trajectory starting in
M remains inM. Further, we assume that p = dim(M) and
consider an orthonormal basis (e1, ...,en) where the first p
vectors form a basis ofM and the last n− p a basis ofM⊥,
the orthogonal space ofM. We define an (n− p)×n matrix
V whose rows are eT

p+1, ...,e
T
n . This matrix can be regarded

as projection on M⊥, which implies x ∈M ⇔ Vx = 0. It

verifies VVT = In−p and VT V + UT U = In, where U is the
matrix formed by the first p basis vectors.

Theorem 3 Assuming that for the dynamical system (1) a
flow-invariant linear subspace M exists with the associated
orthonormal projection matrix V. A particular solution xp(t)
of this system converges exponentially toM if the auxiliary
system

ẏ = Vf
(

VT y+UT Uxp(t), t
)

(6)

is contracting with respect to y for all relevant xp, then start-
ing from any initial conditions, all trajectories of the original
system will exponentially converge to the invariant subspace
M. If furthermore all the contraction rates for (6) are lower-
bounded by some constant λ > 0, uniformly in xp and in a
common metric, then the convergence to M will be expo-
nential with a minimum rate λ.

The proof for this theorem can be found in [PS07]. It im-
plies that a simple sufficient condition for global exponential
convergence to M is given by the following inequality that
needs to hold uniformly:

V
(

∂f
∂x

)
s
VT < 0 (7)

An even more general condition can be derived if there exists
a constant invertible transform Θ onM⊥ such that

ΘV
(

∂f
∂x

)
s
VT

Θ
−1 < 0 (8)

is fulfilled uniformly [PS07].

3.4. Linear coupling of dynamical primitives

The techniques described previously can be applied to an-
alyze the stability of networks of coupled dynamical ele-
ments, such as oscillators. We applied this approach in or-
der to analyze the stability of groups of characters that are
coupled in order to coordinate their behaviors.

We assume in the following n systems with linear, so
called diffusive coupling in the form (cf. [WS05]):

ẋi = f(xi, t)+ ∑
j 6=i

Ki j(x j−xi) ∀i = 1, ...,n (9)

In the case of diffusive coupling, after synchronisation, the
dynamics of each subsystem is equivalent to the dynamics
of uncoupled subsystem.

The matrix L with the blocks (Lii = ∑ j 6=i Ki j and
Li j =−Ki j for j 6= i) is called Laplacian matrix of the cou-
pling. With this matrix and the definitions x = [xT

1 , ...,xT
n ]T

and f(xi, t) = [f(x1, t)T , ..., f(xn, t)T ]T the equation sys-
tem can be written in vector form: ẋ = f(x, t)−Lx. This
implies that the Jacobian of the system is given by
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J(x, t) = D(x, t)−L, where

D(x, t) =


∂f
∂x (x1, t) 0 0

0
. . . 0

0 0 ∂f
∂x (xn, t)

 . (10)

For the case of diffusive coupling, we assume again the ex-
istence of a flow-invariant linear subspaceM of the x space
that contains a particular solution of the form x∗1 = · · ·= x∗n .
For this solution all state variables xi are identical and thus in
synchrony. In addition, for this solution the coupling term in
equation (9) vanishes so that the form of the solution is iden-
tical of the solution of the uncoupled systems ẋi = f(xi, t).

From the last secition, it can be implied that V is a pro-
jection matrix onto the subspaceM⊥, a sufficient condition
for convergence toward this solution, which is the matrix in-
equality V(D(x, t)− L)sVT < 0. From this inequality the
following sufficient condition for exponential convergence
can be derived [PS07]

λmin(VLsVT ) > sup
x,t

λmax

((
∂f
∂x

(x, t)
)

s

)
(11)

which implies the following minimum convergence rate:
ρc =−supx,t λmax(V(D(x, t)−L)sVT ).

4. Mathematical results

The animation systems discussed in the following exploit
character models whose behavior is driven by nonlinear limit
cycle oscillators. The stationary solution of these oscillators
is given by a sinusoidal oscillation with a constant equi-
librium amplitude. Groups of interacting characters can be
modeled by coupled networks of such nonlinear oscillators.
In the following, we describe how methods from contrac-
tion theory can be exploited to analyze the dynamics of such
networks, providing mathematical results that help to design
the behavior of animations of the collective behavior of such
interacting characters.

4.1. Andronov-Hopf oscillator

The dynamics of an individual character is modeled by
an Andronov-Hopf oscillator, a nonlinear oscillator whose
choice of parameters, is characterized by a limit cycle that
corresponds to a circular trajectory in phase space. For ap-
propriate re-parametrization (rescaling of time and state-
space axes) the dynamics of this oscillator is described by
the differential equations [AVK87]:ẋ(t) =

(
1−

(
x2(t)+ y2(t)

))
x(t)−ω y(t)

ẏ(t) =
(

1−
(

x2(t)+ y2(t)
))

y(t)+ω x(t)
(12)

which can be written compactly in vector form (with
x = [x,y]T ):

ẋ(t) = f(x, t) (13)

Introducing polar coordinates r(t) =
√

x2(t)+ y2(t) and
φ(t) = arctan(y(t)/x(t)), this system can be rewritten:{

ṙ(t) = r(t)
(

1− r2(t)
)

φ̇(t) = ω

The symmetrized Jacobian of this system is given by

Js =
[

1−3r2 0
0 0

]
showing that, according to Definition 1, this system is semi-
contracting [PS07] in the region |r| > 1/

√
3 where its sym-

metrized Jacobian is uniformly negative definite. A more
general result can be obtained by using a different metric (cf.
Section 4.2). Introduction of the new variable ρ = 1/r2 > 0
transforms the dynamics into the form:

˙(r2) = 2r2
(

1− r2
)
⇒ ρ̇ = 2(1−ρ)

In this case, one of the eigenvalues of the symmetrized Jaco-
bian are −1 and 0, so that the system is semi-contracting in
the whole phase plane, excluding the points with ρ = 0.

4.2. Symmetric coupling of two oscillators

The constraints that guarantee the synchronization of two
symmetrically coupled oscillators can be proven following
[PS07]. The dynamics of two Hopf oscillators with sym-
metric diffusive linear coupling is given (using xi = [xi,yi]T ,
i = 1,2, and the definition according to equation (13)) by:(

ẋ1
ẋ2

)
=
(

f(x1)
f(x2)

)
− k

[
I −I
−I I

]
︸ ︷︷ ︸

L(2)

(
x1
x2

)

⇔ ẋ = f(x)− k L(2)x (14)

According to the definition discussed in Section 3.3, a flow-
invariant manifold M of this system is given by the linear
2-dimensional subspace that is defined by the linear relation-
ship x1 = x2. For points on this manifold the coupling term
vanishes, and the solution of the coupled system coincides
with the solutions of the uncoupled individual oscillators.

By interchanging the columns of the matrix L(2)−λI it is
easy to show that det(L(2)−λI) = λ

2(λ−2)2. This implies
that the matrix L(2) has rank 2. Its nullspace is 2-dimensional
and thus coincides with M. If according to Section 3.3 the
matrix V is a projector ontoM⊥ this implies that the matrix
VL(2)V

T has only the eigenvalues 2.

The Jacobian for a single oscillator is given by

J(xi) =
∂f
∂xi

=

[
−(x2

i + y2
i −1)−2x2

i −2xiyi−ω

−2xiyi +ω −(x2
i + y2

i −1)−2y2
i

]
implying |Js(xi)−λI| = (1 − r2 − λ)(1 − 3r2 − λ) with
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r2 = x2
i + y2

i . The eigenvalues of the matrix Js(xi) are thus
bounded by 1 from above.

Using the derived bounds for the eigenvalues, a sufficient
condition for global exponential convergence of the coupled
oscillator system can be derived from equation (11):

λmin

(
V(kL(2))V

T
)

= 2k > sup
x,t

λmax

((
∂f
∂x

)
s

)
= 1 (15)

This implies that a sufficiently strong coupling with k > 1/2
guarantees the global exponential convergence against a sta-
ble behavior.

4.3. Symmetric all-to-all coupling of N oscillators

The last analysis can be extended for to any number N of
coupled oscillators. In this case, the 2N-dimensional square
matrix L has the form:

L =


(N−1) 0 −1 0 . . .

0 (N−1) 0 −1 . . .
−1 0 (N−1) 0 . . .
0 −1 0 (N−1) . . .
. . .


i.e., Lii = N− 1 and Li j =−1 if i 6= j and (i + j)mod2 = 0,
and Li j = 0 otherwise. By rearranging of the columns and
rows this matrix can be restructured in the form:

L =
[

LG 0
0 LG

]
(16)

where:

LG =


(N−1) −1 −1 . . .
−1 (N−1) −1 . . .
−1 −1 (N−1) . . .
. . .

 (17)

Note that LG = NI−11T . The matrix 11T has rank 1 and the
eigenvector 1 with the eigenvalue N, while all other eigenval-
ues are 0. From det(LG−λI) = det(−11T − (λ−N)I) = 0
follows that the matrix LG has one eigenvalue 0 and all other
N − 1 eigenvalues are N. From this follows with equation
(16) that two eigenvalues of the matrix L are 0, while all
non-zero eigenvalues are N.

As for equation (15) one obtains the inequality
Nk > supx,t λmax

((
∂f
∂x

)
s

)
= 1. Global exponential conver-

gence to a stable synchronized solution is thus guaranteed
for k > 1/N .

4.4. Symmetric couplings with more general structure

Following the procedure in [WS05], we discuss in the fol-
lowing systems with more general symmetric couplings of
N oscillators, where we assume equal coupling gains k. The
corresponding dynamics is:

ẋi = f(xi)+ k ∑
j∈Ni

(
x j−xi

)
, ∀i = 1, . . . ,N (18)

where Ni denotes the set of indices of all oscillators that
are coupled with oscillator i. The couplings are assumed to
be bidirectional, defining an undirected graph of couplings.
This implies j ∈Ni iff i ∈N j. By construction the coupling
graph is balanced, i.e. the sum of the (weighted) connections
towards each oscillator equals the sum of (weighted) connec-
tions away from this oscillator. The corresponding symmet-
ric Laplacian matrix L a block structure, where the blocks at
positions (i, i) are given by −I and where the i-th diagonal
block is given by niI, ni signifying the number of elements
inNi.

Like in the previous sections, this matrix, by appropriate
sorting of columns and rows, can be brought in the form[

LG 0
0 LG

]
, where LG is called Laplacian matrix of the

coupling graph. Since the network is balanced, the sum of
the rows of this matrix are zero. This implies that 1 is an
eigenvector with eigenvalue 0. Again, the block structure im-
plies that all eigenvalues of LG appear twofold in the matrix
L. Consequently, two of its eigenvalues are zero, indepen-
dently of the form of the setsNi.

Following again the argumentation in the last sections one
can derive a necessary condition for the exponential conver-
gence from equation (11):

λmin

(
V(kL)sVT

)
= kλ

+
L > sup

x,t
λmax

((
∂f
∂x

)
s

)
= 1 (19)

Here, λ
+
L signifies the smallest non-zero eigenvalue of the

matrix LG that depends on the form of the coupling. The
matrix V defines the projection to orthogonal complement
of the flow invariant manifold x1 = · · · = xn. The condition
for exponential convergence is thus k > 1/λ

+
L .

Figure 2 shows a number of coupling graphs that have
been used in our animation system. Panel a shows a sym-
metric chain of a set of N oscillators. In this case, the first
nonzero eigenvalue of the matrix LG can be shown to be
λ

+
L = 2(1−cos(π/N)) [WS05]. For a symmetric ring (panel

b) one can show λ
+
L = 2(1− cos(2π/N)).

Finally, a star coupling of N > 2 oscillators can be in-
terpreted as a network, where N − 1 oscillators are con-
nected bidirectionally with the one in the center of the star,
with the same weights, while they are not coupled with
each-other. If the first oscillator is in the center this implies
for the elements of the Laplacian matrix (LG)1,1 = N − 1,
(LG)1,i = (LG)i,1 =−1, (LG)i,i = 1, for i > 1, while all other
entries are zero. It can be shown that the eigenvalues of this
matrix are 0, 1 ((N−2) times), and N. This implies λ

+
L = 1

and thus the stability condition k > 1.

4.5. Leader-group interaction

We will also consider scenarios where multiple characters
are coupled asymmetrically to a single one, which can act as
a ’leader’ that controls the pattern of the others.
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1 21 N

1 21 Na)

b)

Figure 2: Symmetric coupling. a) Chain and b) ring cou-
pling of N oscillators.

Assume first a follower scenario, where a single oscillator
is coupled to the group of N identical oscillators that are
already synchronized. The underlying dynamics is defined
by:

ẋ0 = f(x0)− k

(
Nx0−∑

i
xi

)
= f(x0)− kN (x0−x1)

A particular solution of this system is x0 = x1. If the sys-
tem is partially contracting in x0 this implies the exponential
convergence of the follower state x0 against the equilibrium
state x1 of the other oscillators. This condition is obviously
fulfilled if kN > supx,t λmax

((
∂f
∂x

)
s

)
= 1.

In a leader scenario, the single oscillator feeds unidirec-
tionally into all other N oscillators with the same coupling
strength α, but not vice versa. This situation is described by
the dynamics (for 1≤ i≤ N):

ẋ0 = f(x0) (20)

ẋi = f(xi)+ kI ∑
j∈Ni

(
x j−xi

)
+α(x0−xi)

Since the leader oscillator does not receive external inputs
it oscillates autonomously, and x0 can be treated as exter-
nal input. Applying partial contraction analysis to the second
equation one obtains using the same definitions as in Section
3.3 and x̃0 = [xT

0 , ...,xT
0 ]T the dynamics:

ẋ = f(x)− kLx−αx+αx̃0 (21)

This implies J(x, t) = D(x, t)− kL−αI, and the contraction

condition λmin (kLG +αI) > supx,t λmax

((
∂f
∂x

)
s

)
= 1.

For the special case that the N oscillators (except for the
leader oscillator) are symmetrically coupled all-to-all this
contraction condition becomes kN + α > 1. This implies
that for kN < 1 contracting behavior can still be guaran-
teed when the coupling α to the leader oscillator is suffi-
ciently strong. The minimum convergence rate is then given
by ρc = kN +α.

5. Results

5.1. Overview of the system

Our animation system is described in detail in [GMP∗09].
It approximates periodic and non-periodic body movements
by simple coupled networks of nonlinear dynamical systems
(movement primitives) whose stable solutions are mapped

onto the angle trajectories of a skeleton model with 17 joints.
The mapping is learned using kernel methods from exam-
ple trajectories that have been assessed using motion cap-
ture, and whose dimensionality is reduced applying a special
blind source separation method that results in highly com-
pact and accurate models for trajectories with very few es-
timated source terms. We have shown previously that this
approach was suitable for the online generation of realistic-
looking complex behavior of individual characters and for
the simulation of group behavior, generated by coupling of
the dynamical systems that control the individual avatars.
Here, we exploit the advantage that the state dynamics can
be chosen quite independently of the simulated behavior,
making it possible to choose simple dynamical primitives so
that the collective system dynamics is accessible for stability
analysis.

An overview of the system is shown in Figure 3. The indi-
vidual dynamic primitives, that control each individual char-
acter are given by Hopf oscillators. The stable solution of
these oscillators are mapped onto three periodic ’source sig-
nals’ σ j(t), j = 1...3 per character that are extracted from
example trajectories by a special blind source decomposi-
tion algorithm that is described in detail in [OG06]. This al-
gorithm approximates the joint angle trajectories ξi(t) by a
mixture model of the form:

ξi(t) = mi +∑
j

wi jσ j
(
t− τi j

)
(22)

The mixing weights wi j, time delays τi j, and the means of
the joint angles mi are determined by the blind source de-
composition algorithm.

To generate the source signals online, the state of each
limit cycle oscillator [x,y]T was mapped onto the values of
the corresponding source signals σ j using a Support Vector
Regression (SVR) with Gaussian kernel [Vap98]. This map-
ping was trained with pairs of source signals extracted from
motion capture data, and stable solutions of uncoupled Hopf
oscillators.

The translation of the characters was computed by enforc-
ing the kinematic constraints for the ground contact of the
feet. Character speed was modulated by appropriate choice
of the eigenfrequency ω of the oscillators.

5.2. Collective behavior fulfilling / violating contraction
bounds

The following section presents a number of examples illus-
trating the behavior of groups of characters when the under-
lying dynamics fulfills or violates the bounds for contracting
system behavior.

The first set of demonstrations shows the synchronization
between a group of three characters with all-to-all coupling,
for different coupling strengths. As shown in Section 4.1 for
three oscillators in this case the dynamics is contracting for
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Figure 3: Illustration of the system architecture for real-time
animation. The phase space of the limit cycle oscillator is
mapped onto the time-shifted source signals using Support
Vector Regression. Joint angles are reconstructed by com-
bining the time-shifted source signals linearly according to
a learned mixture model.

k ≥ 1/3. [Movie_1] shows a group of characters, starting
with random initial step phases, for the case that the cou-
pling strength k = 0.334 fulfills this theoretical bound. In
this case the dynamics quickly converges to a stable state, the
characters walking in synchrony. Contrasting with this case,
[Movie_2] shows an example where the coupling strength
k = 0.111 violates the theoretical bound, resulting in very
slow synchronization (reaching and equilibrium state only
after hundreds of steps). The fact that the system still con-
verges to a stable solution reflects that the bounds derived
by contraction theory define sufficient, but not necessary
stability conditions. For an even stronger violation of the
theoretical bound, as shown in in [Movie_3] for the choice
k =−2.0, results in a system dynamics that does not result in
the formation of a coordinated behavioral pattern anymore.
The strong coupling deforms the limit cycles in phase space,
resulting in unnatural joint trajectories and very slow propa-
gation of the characters.

The following set of demonstrations was generated as-
suming a bidirectional chain coupling between the oscilla-
tors. As shown in Section 4.1 for three oscillators (char-
acters) in this case the dynamics is contracting for k ≥ 1.
[Movie_4] shows an example with k = 1.0 that fulfills the
theoretical bound, resulting in the quick synchronization of
the characters. Contrasting with this example, [Movie_5]
shows the case k = 0.333 that violates the contraction con-
dition. In this case the characters do not realize coordinated
behavior in the observed time interval.
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Figure 4: a) Dispersion of the phase of the oscillators, av-
eraged over 100 simulations with random initial conditions,
as function of time (gait cycles). After an offset time, during
which the dispersion remains relatively constant, it decays
exponentially. Convergence rates were estimated by fitting
linear function to this decay. b) Offset times (in gait cycles)
as function of the coupling strength. (End of offset time inter-
val was defined by the point where the regression line crosses
the level R̂ = 1.)

5.3. Theoretical vs. empirical convergence rates

As a more systematic validation of our theoretical bounds we
also computed empirical convergence rates λ

exper = 1/τ
exper

for groups of characters of different size N. These rates were
obtained assuming approximately exponential convergence
of the sizes of virtual displacements: ||δx|| ∼ e−t/τ

exper
. The

norm of the virtual displacements was approximated by the
angular dispersion R̂ = (1− 1

N |∑ j eiφ j |)
1
2 [Kur84] of the

phases φ j of the oscillators, averaged over 100 simulations
with random initial conditions.

Figure 4a) shows the logarithm of this dispersion mea-
sure as a function of time (in gait cycles). It shows an initial
constant segment (offset time), and after that a nearly linear
decay with time, from which the time constant τ

exper can be
estimated by linear regression. Figure 4b) shows the offset
times as function of the coupling strength to different types
of coupling.

Figure 5a) shows the dependency between coupling
strengths k and the convergence rate λ

exper as estimated from
simulations in the regime of the exponential convergence.
As derived from the theoretical bound, the convergence rate
varies linearly in with coupling strength. In case of three os-
cillators the ring coupling is equivalent with all-to-all cou-
pling. Figure 5b) shows the slope dλ

exper(k)/dk of this lin-
ear relationship as function of N, the number of oscillators
in the network. We find a close similarity between the the-
oretically predicted relationship (dashed curves) and the re-
sults from the simulation (indicated by the stars). In addi-
tion, it is evident that for all-to-all coupling the convergence
rate increases with the number of oscillators, while for chain
or ring coupling the convergence speed decreases with the
number of oscillators (for fixed coupling strength). These re-
sults show in particular that the proposed theoretical frame-
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Figure 5: a) The relationship between convergence rate and
coupling strength k for different types of coupling graphs. b)
Slopes of this relationship as function of the number N of
Hopf oscillators, comparing simulation results (indicated by
asterisks) and derived from the theoretical bounds (Section
4.1).

work is not only suitable for proving asymptotic stability,
but also for guaranteeing the convergence speed of the sys-
tem dynamics.

5.4. Leader-group interaction

As discussed in Section 4.5, one can introduce a leader that
can entrain all other characters in the scene by its own be-
havior. In addition, coupling with a leader can synchronize
other characters in the scene that would not synchronize oth-
erwise. In Section 4.5 we showed that, assuming k signifies
the coupling strength between the members of the group and
α the strength of the coupling between the members and the
leader, contracting behavior is obtained for kN +α > 1.

Different behaviors are illustrated in the following
movies, that show five characters. One of them is the leader
(dark grey) that was coupled unidirectionally to all mem-
bers of the of group. Without the leader the group (α =
0) shows exponential convergence for k > 1/4. The movie
[Movie_6] shows a case with k = 0.01, i.e., the system is
non-contracting and no coordinated behavior is reached in
the simulation. If a leader with sufficiently strong coupling
to the other group members (α = 1) is introduced the theoret-
ical contraction bound is fulfilled. As shown in [Movie_7],
in this case fast convergence to a coordinated behavior is ob-
served even for small values of k. The next example shown in
[Movie_8] corresponds to the case k = 0.2 and α = 0.25, ful-
filling also the theoretical bound for contraction. The char-
acters converge very quickly to a coordinated behavior. This
case shows an example where all characters are initially not
coupled (yellow bar on time line) and start with random ini-
tial phases. After activation of the coupling (green bar) the
leader experiences a phase perturbation. The group quickly
adopts again the behavior of the leader. [Movie_9] shows
a corresponding example where a perturbation of the same

size is not applied to the state of the leader but to the one
of a group member. In this case, the group member quickly
adopts again the behavior of the group. (All movies are also
presented [here].)

6. Conclusion

We have presented a new approach for the design stabil-
ity properties of animation systems that generate collective
behavior of characters through self-organization from in-
teracting dynamical models. Opposed to many existing ap-
proaches, our system generates realistic-looking behavior
from relatively simple nonlinear dynamical systems. Op-
posed to more detailed biomechanical or physical models,
such systems are in principle accessible for an application of
tools from stability theory. We also have introduced contrac-
tion analysis as a new framework for the study and to design
the stability properties of online animation systems. The pro-
posed theoretical approach has the advantage that it permits
to derive global stability results for nonlinear systems from
local stability properties that can be easily verified. In addi-
tion, contraction theory offers the possibility to treat the sta-
bility of complex systems, since it permits to transfer stabil-
ity results from components to composite systems [LS1998].
Many other approaches for stability analysis do not have this
property, which makes the analysis of complex systems of-
ten intractable. In addition, we demonstrated that this theory
also is suitable to compute bounds for the convergence rate
of such systems, where sufficiently fast convergence is im-
portant for many applications.

The examples presented in this paper were very sim-
ple, and we have presented elsewhere [GMP∗09, PMOG08,
MPO∗08] that the same type of animation system also can
simulate much more complex and non-periodic body move-
ments. While the present paper tried to sketch some first
steps towards a development of a systematic approach for
the design of the dynamics of such online animation sys-
tems, future work needs to test whether this work can be ex-
tended to more complex systems that combine periodic and
non-periodic primitives, and other dynamical components,
such as navigation, or the arbitration of different behaviors.

7. Acknowledgements

This work has been supported by DFG Forschergruppe ’Per-
ceptual Graphics’, the EC FP6 project ’COBOL’ and the
Hermann und Lilly-Schilling-Stiftung. We thank W. Strasser
and A. Schilling for many interesting discussions.

References

[AHS03] ALBRECHT I., HABER J., SEIDEL H. P.: Construc-
tion and animation of anatomically based human hand models.
Proc. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA 2003) (2003), 98–109.

c© The Eurographics Association 2009.

http://www.uni-tuebingen.de/uni/knv/arl/avi/vriphys/Movie_6.avi
http://www.uni-tuebingen.de/uni/knv/arl/avi/vriphys/Movie_7.avi
http://www.uni-tuebingen.de/uni/knv/arl/avi/vriphys/Movie_8.avi
http://www.uni-tuebingen.de/uni/knv/arl/avi/vriphys/Movie_9.avi
http://www.uni-tuebingen.de/uni/knv/arl/avi/vriphys/vriphys_movies.html


A. Park, A. Mukovskiy, J.J.E. Slotine and M.A. Giese / Design of dynamical stability properties in character animation

[AMS97] ATKESON C. G., MOORE A. W., SCHAAL S.: Locally
weighted learning for control. AI Review 11 (1997), 75–113.

[AVK87] ANDRONOV A. A., VITT A. A., KHAIKIN S. E.: The-
ory of Oscillators. Dover Publication Inc., New York, 1987.

[BH97] BROGAN D. C., HODGINS J. K.: Group behaviors for
systems with significant dynamics. Autonomous Robots 4, 1
(1997), 137–153.

[BRI06] BUCHLI J., RIGHETTI L., IJSPEERT A. J.: Engineering
entrainment and adaptation in limit cycle systems - from biologi-
cal inspiration to applications in robotics. Biological Cybernetics
95, 6 (2006), 645–664.

[CDF∗01] CAMAZINE S., DENEUBOURG J. L., FRANKS N. R.,
SNEYD J., THERAULAZ G., BONABEAU E.: Self-Organization
in Biological Systems. Princeton University Press, New Jersey,
2001.

[Cou09] COUZIN I. D.: Collective cognition in animal groups.
Trends in Cognitive Sciences 13, 1 (2009), 1–44.

[CS07] CUCKER F., SMALE S.: Emergent behavior in flocks.
IEEE Trans. Automat. Control 52, 5 (2007), 852–862.

[FH05] FLASH T., HOCHNER B.: Motor primitives in vertebrates
and invertebrates. Curr. Opin. Neurobiol. 15, 6 (2005), 660–666.

[GMP∗09] GIESE M. A., MUKOVSKIY A., PARK A., OM-
LOR L., SLOTINE J. J. E.: Real-Time Synthesis of Body
Movements Based on Learned Primitives. Springer-Verlag,
Berlin/Heidelberg, 2009.

[GRIL08] GAMS A., RIGHETTI L., IJSPEERT A. J., LENARCIC

J.: A dynamical system for online learning of periodic move-
ments of unknown waveform and frequency. In Proc. of the
sec. IEEE RAS / EMBS International Conference on Biomedical
Robotics and Biomechatronics (2008), 85–90.

[GTH98] GRZESZCZUK R., TERZOPOULOS D., HINTON G.:
Neuroanimator: Fast neural network emulation and control of
physics based models. Int. Conf. on Comp. Graph. and Interac-
tive Techniques, Proc. ACM SIGGRAPH’98 61, 5 (1998), 9–20.

[HPP05] HSU E., PULLI K., POPOVIć J.: Style translation for
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crowds. Proc. ACM SIGGRAPH ’06 25, 3 (2006), 1160–1168.

[Ter09] TERZOPOULOS D.: Artificial life and biomechanical sim-
ulation of humans. Digital Human Symposium 2009 (2009), 8–
13.

[TW90] TERZOPOULOS D., WATERS K.: Physically-based facial
modelling, analysis, and animation. J. Visualization and Com-
puter Animation 1, 2 (1990), 73–80.

[TWP03] TANG W., WAN T. R., PATEL S.: Real-time crowd
movement on large scale terrains. Theory and Practice of Com-
puter Graphics (2003), 146–153.

[Vap98] VAPNIK N. V.: Statistical Learning Theory. Wiley-
Interscience, 1998.

[WS05] WANG W., SLOTINE J. J. E.: On partial contraction
analysis for coupled nonlinear oscillators. Biological Cybernetics
92, 1 (2005), 38–53.

c© The Eurographics Association 2009.


