

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2023, Vol. 39, No.(5): Pg. 1360-1366

www.orientjchem.org

Elegant Explorations of Ionic Liquids in the Expeditious Synthesis of Fe₃O₄ Nanoparticles

SANGITA R. BHIRUD^{1,3}, CHANDRAKANT H. SARODE¹, GAURAV R. GUPTA^{2*}, RAKESH P. CHAUDHARI³ and GANESH R. CHAUDHARI^{3*}

¹Department of Chemistry, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, 425201, India.

²Department of Chemistry, NTVS's G. T. P. Arts, Commerce and Science College, Nandurbar, 425412, India.

³Department of Chemistry, Arts and Science College, Bhalod, 425304, India. *Corresponding author E-mail: drgrc76@gmail.com, grgupta83@gmail.com

http://dx.doi.org/10.13005/ojc/390533

(Received: July 25, 2023; Accepted: September 03, 2023)

ABSTRACT

Ionic Liquids (ILs) are becoming an innovative and attractive synthesis medium for inorganic nano-materials, allowingmore efficient, environmentally benign and sustainable preparation of high quality nano-materials. The present study explores the potentials of imidazolium ionic liquids as a stabilized reaction medium in the synthesis of metal oxide nanoparticles. Furthermore, a detail explanation regarding the methods of modifying surfaces with ILs of varying chain length for the formation of Fe₃O₄ nanoparticles have been addressed.

Keywords: Ionic Liquids (ILs), Metal oxide nanoparticles, Co-precipitation.

INTRODUCTION

Transition metal nanoparticles are critical for a wide range of potential applications in science and industry, including sensors and catalysts.¹⁻⁵ Several physical and chemical approaches were used to form metal oxide nanoparticles of Ru, Rh, Ir, Mn, Fe, Zn, Cu and Co.⁶⁻¹¹ Magnetite NPs,an important family of nanoparticles, has been extensively used as a catalyst,¹² adsorbent,¹³ and sensor.¹⁴ As a result, regulated synthesis, as well as the generation of stabilized metal nanoparticles, is critical.¹⁵ To develop new methods an era of green synthesis approach is gaining great attention in upcoming research and development on materials science and technology. Ionic liquids (ILs) have been increasingly used and researched in recent years as reaction media, for catalysis,¹⁶ biocompatible protein stabilization,¹⁷ surfactant,¹⁸ environmentally friendly chemical processes,¹⁹ micro-extraction technique,²⁰ electrochemical non-enzymatic detection of sulfite in food samples,²¹ dye-sensitized solar cells,²² in biomedical and pharmaceutical applications²³ and so on. Furthermore because of their particular physical and chemical properties, they can be

This is an <a>Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC- BY). Published by Oriental Scientific Publishing Company © 2018

1361

used to synthesize nanoparticles²⁴ and to form colloidal nanocrystals (NCs).25 Because their electrostatic stability, ILs have the potential to be used in the synthesis of inorganic nanomaterials²⁶ and nanoflakes.27 Metal oxide nanoparticles are protected from electrostatic charge by the strong polarity, high dielectric constant, and supramolecular network of ionic liquids, according to the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. As a result, imidazolium ionic liquids ILs were utilized as an electrostatic stabilizer, reaction solvent and capping agent for various nano-materials to regulate their size or shape. Metal Nanoparticles (MNPs) in ILs were synthesized using various methods.28-29 ILs were employed to effectively control metal oxide nanoparticle shape, avoid inter-particle aggregation, and optimize particle production. The easiest and most efficient way to create metal oxide nanoparticles at the desired level is with Roomtemperature ionic liquids (RTILs) assistance. lonic liquids have the ability to stabilize metal oxide nanoparticles.^{30,31,32,33}. According to Dupont et al.,34 imidazolium cations present in ILs form a protective layer that stabilizes NP surfaces by providing steric and electronic protection against aggregation. Herein, we describe a smart and aptly developed incorporation of ILs (1-Propyl-3methylimidazolium bromide [C3mim][Br], 1-Butyl-3-methylimidazolium bromide [C4mim][Br] and 1-Hexyl-3-methylimidazolium bromide [C6mim] [Br]) and unconventional methods of synthesis offers additional value to be drawn from the broad matrix of available property combinations. These supramolecular liquids therefore facilitate new and rapid universal manufacturing techniques that provide solutions to the presentcomplications associated with nano-manufacturing, and beyond that will open completely new horizons and possibilities forcontrolling the growth and assembly of nanostructures.

EXPERIMENTAL

Materials

1-methyl imidazole, 1-propyl bromide, 1-butyl bromide, 1-hexyl bromide purchased from Sigma Aldrich, $FeSO_4$.7H₂O, $FeCI_3$.6H₂O and NaOH purchased from Avra Chemicals. All chemicals and solvents were obtained from commercial sources and were used without further purification.

Methods

Fourier-transform infrared spectroscopy (FT-IR)

FT-IR spectrum of synthesized metal oxide NPs was observed by Perkin Elmer-Spectrum RX-IFTIR.

X-ray Diffractometer (XRD)

Crystallite diffraction peaks of synthesized metal NPs was observed by Powder X-ray Diffractometer (X'Pert Pro, PANalytical Netherlands).

Field Emission Scanning Electron (FE-SEM)

Morphology of the synthesized metal oxide NPs was studied by Field Emission Scanning Electron Microscope (SU 8010 Series, Hitachi, Japan).

Synthesis of imidazolium ionic liquids:

Through a water condenser, a stirred mixture of 1-methyl imidazole (30mmol, 2.46 g) and an alkyl halide (30mmol, (propyl bromide, 03.68 g), (butyl bromide, 4.1106 g), (hexyl bromide, 4.65 g)) was slowly added to the molten tetrabutylammonium bromide (TBAB). The reaction mass was extracted with ethylmethyl ketone (50 mLx5) after the reaction mixture had finished adding all the ingredients. The reaction mass guickly split into two immiscible phases after being added to. These phases were then separated using a separating funnel. In order to get tetrabutylammonium bromide for reusing, the ethylmethyl ketone was distilled off after the ionic liquid phase had been transported to a vacuum oven for drying.35

Scheme 1. Synthesis of 1-alkyl-3-methylimidazolium bromides Synthesis of Magnetite (Fe₃O₄) nanoparticles using ionic liquid

The magnetite nanoparticles were prepared via the chemical co-precipitation method by the following 0.11 g of $FeSO_4$.7H₂O and 0.22 g of $FeCI_3$. 6H₂O, with the molar ratio of ferric ion to ferrous ion in the solution of 2:1, were dissolved in 30 mL of deionized water. Then 4mmol IL and 1N NaOH were added to the solution under vigorous stirring at 80°C. The solution color changed from yellow-orange to black rapidly. The magnetite nanoparticles were filtered and thoroughly washed with deionized water several times. Finally, Fe_3O_4 samples were dried in oven at 150°C for 2 hours.

Scheme 2. Synthesis of Fe₃O₄ nanoparticles using ionic liquid RESULTS AND DISCUSSION

Our investigations began with the synthesis, characterization of ionic liquids, and iron oxide nano-particles using modern analytical characterization methods such as X-ray, scanning electron microscopy, and FT-IR. The results obtained for the characterization of the iron oxide nano-particles are discussed briefly in the following sections.

Optimization of reaction parameters

In this study, certain imidazolium ionic liquids were used in order to synthesize iron metal oxide nanoparticles.

The closure scrutiny of Table 1 reveals

that the concentration of ionic liquid plays a subtle role in the synthesis of metal oxide nanoparticles. The experimental data in hand envisaged that the practical yield of the resulting nanoparticles is to be increased up to 4mmol concentration of IL but there is no significant impact after 4mmol was found. Therefore, 4mmol IL concentration is chosen for metal oxide nanoparticle synthesis.

In the next, effect of temperature on the magnitude of the reaction has been advanced by performing certain experiments and the experimental data is tabulated in Table 2. The data obtained manifests that 80°C is the most suitable condition of temperature to facilitate the synthesis of Fe₃O₄ NPs.

FT-IR analysis of Fe₃O₄ NPs

FT-IR spectroscopy was used to identify the NPs generated through Co-precipitation employing Fe^{2+}/Fe^{3+} precursors in an ionic liquid. In Fig. 1(d) the major phase of the synthesized particles, magnetite, was validated at low frequencies by a prominent absorption band that was centered between 480 and 620 cm⁻¹, with the peak assigned to the vibration and torsional modes of the Fe-O bonds. Broad peaks in the spectrum that appeared around 1636 and 3474 cm⁻¹ were attributed, respectively, to H₂O's stretching and bending vibrations of the -OH bond. Due to the aliphatic C-H of the methylene in the ionic liquid, there are stretching vibrations at 2850-2920 cm⁻¹.³⁶⁻³⁷

Yield (g) NPs Entry NaOH(M) FeSO₄.7H₂O(g) Temperature(°C) %Practical Yield FeCl₃.6H₂O(g) IL(mmol) Without ILs 1 1M 0 11 0.22 0 80 0.08 87.9 1-Propyl-3-methylimidazolium bromide [C3mim][Br] 2 1M 0.11 0.22 0.072 79.1 1 80 3 2 0.078 85.7 1M 0.11 0.22 80 4 1M 0.11 0.22 4 80 0.081 89.0 Fe₃O₄ 5 1M 6 0.11 0.22 80 0.068 74.7 1-Butyl-3-methylimidazolium bromide [C4mim][Br] 6 1M 0.068 74.7 0.11 0.22 1 80 7 2 0.0789 86.7 1M 0.11 0.22 80 8 1M 0.11 0.22 4 80 0.089 97.8 6 9 1M 0.11 0.22 80 0.078 85.7 1-Hexyl-3-methylimidazolium bromide [C6mim][Br] 10 1M 0.11 0.22 1 80 0.0659 72.4 2 0.072 79.1 11 1M 0.11 0.22 80 4 12 1M 0.11 0.22 80 0.0841 92.4 6 13 1M 0.22 80 0.0831 0 11 91.3

Table 1: Optimization of reaction parameters

NPs	Entry	NaOH (M)	FeSO ₄ .7H ₂ O (g)	FeCl ₃ .6H ₂ O (g)	IL(mmol)	Temperature (°C)	Yield (g)	%Practical Yield
Without ILs								
	1	1M	0.11	0.22	0	30	0.05	54.9
	2	1M	0.11	0.22	0	40	0.052	57.1
	3	1M	0.11	0.22	0	60	0.062	68.1
	4	1M	0.11	0.22	0	80	0.08	87.9
	5	1M	0.11	0.22	0	100	0.078	85.7
Fe ₃ O ₄			1-Propyl-	3-methylimidazoliu	m bromide [C	3mim][Br]		
0 4	6	1M	0.11	0.22	1	30	0.038	41.7
	7	1M	0.11	0.22	1	40	0.057	62.6
	8	1M	0.11	0.22	1	60	0.068	74.7
	9	1M	0.11	0.22	1	80	0.072	79.1
	10	1M	0.11	0.22	1	100	0.072	79.1
	1-Butyl-3-methylimidazolium bromide [C4mim][Br]							
	11	1M	0.11	0.22	1	30	0.045	49.4
	12	1M	0.11	0.22	1	40	0.052	57.1
	13	1M	0.11	0.22	1	60	0.062	68.1
	14	1M	0.11	0.22	1	80	0.068	74.7
	15	1M	0.11	0.22	1	100	0.067	73.6
			1-Hexyl-3	-methylimidazoliur	n bromide [C6	6mim][Br]		
	16	1M	0.11	0.22	1	30	0.043	47.2
	17	1M	0.11	0.22	1	40	0.049	53.8
	18	1M	0.11	0.22	1	60	0.052	57.1
	19	1M	0.11	0.22	1	80	0.0659	72.4
	20	1M	0.11	0.22	1	100	0.0659	72.4
527 50 45 40 55 30 25 20 15 10 4.0 4000.0 3	75243 551.75 361.84 364.85 366	2800 2400 2000	1000 1500 1400 1200 100	80.5	49.5 45 40 35 5 30 25 20 15 10 4000.0 3000 322	2800 2400 2000 12000	1600 1400 1200	90.00 6000 400.0
4000.0		1000 1400 1000 .	(a)		4000.0 3000 321	(b	(m ⁻¹))	1000 0000 0000 400.0
40 %T 35 30 40 5 10 0	root in the second seco			HE CONTRACTOR	48.0 45 40 35 25 20 15 50 15 10.0 25 20 15 10.0 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 25 20 25 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25			
4000	3500 3000	2500 2000	1750 1500 1250 1 (C)	000 750 500	4000.0 3000 320	, (d	cm ⁻¹	1000 8000 6000 400.0

Table 2: Effect of Temperature on the yield of the reaction

Fig. 1. FT-IR spectrum of Fe₃O₄ NPs, (a) Fe₃O₄ NPs synthesized without ionic liquid, (b) with [C3mim][Br] ionic liquid, (c) with [C4mim][Br] ionic liquid and (d) with [C6mim][Br]ionic liquid

XRD analysis of Fe_3O_4 NPs

The crystalline structure of the produced Fe_3O_4 NPs has been confirmed by the XRD investigation. Diffraction peaks at 30.49, 35.85, 43.52, 57.45, and 63.07 were matched to 220, 311, 400, 422, 511 and 440 planes respectively,

in the Fe_3O_4XRD pattern shown in Fig. 2 [Fig.b] The JCPDS Card 01-071-6336 (Joint Committee on Powder Diffraction Standards) and the diffraction peaks are in good agreement, which amply demonstrates that the produced Fe_3O_4 NPs are crystalline in nature.38The Debye Scherrer equation was used to get the average crystallite size.

$\mathsf{D} = \mathsf{K}\lambda/\beta \ \mathsf{Cos}\theta$

Where, D is average particle size (nm),

Fig. 2. XRD spectrum of Fe₃O₄ NPs, (a) Fe₃O₄ NPs synthesized without ionic liquid, (b) with [C3mim][Br] ionic liquid, (c) with [C4mim][Br] ionic liquid, (d) with [C6mim][Br] ionic liquid

Morphology of Fe₃O₄ nanoparticles

Figure 3 shows SEM pictures of metal oxide nanoparticles made with various imidazolium ionic solutions. Fe_3O_4 nanoparticles are all sphere-like formations, as can be seen. While Fe_3O_4 nanoparticles prepared with imidazolium ionic liquid exhibit very moderate dispersion (Fig. 3b, 3c, and 3d), those prepared without ionic liquid exhibit significant agglomeration (Fig. 3a). Therefore, [C6mim][Br], one of the three imidazolium ionic liquids used in the study, could offer both steric and electrostatic stability. It reduces the possibility of close particle interactions producing big particle sizes.³⁹

CONCLUSION

K is constant as equal to 0.94, is wavelength of

X-ray radiation. β - is full-width at half maximum (FWHM) of peak in radians and θ is diffraction

angle (degree). The calculated average crystallite size of green synthesized Fe₂O₄ NPs is found to be

in the range of 11-13nm.

In conclusion, we have shown a simple and efficient co-precipitation technique for the one step production of Fe_3O_4 NPs utilizing imidazolium ionic liquid. Our findings show that employing ionic liquid during synthesis resulted in lower particle sizes than doing so without.

ACKNOWLEDGEMENT

The authors are thankful to the Principal of Arts and Science College, Bhalod and Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, for the facility given for the present research work.

Conflict of Interest

The authors declare that there is no conflict of interest related to this article.

REFERENCES

1. Verma, C.; Ebenso, E. E.; Quraishi, M. A. J. Mol.

Liq., 2018, doi:10.1016/j.molliq. 2018.12.063

- Ojha, N. K.; Zyryanov, G. V.; Majee, A., Charushin, V. N.; Chupakhin, O. N.; Santra, S. *Coord. Chem. Rev.*, **2017**, *353*, 1-57, doi:10.1016/j.ccr.2017.10.004
- Migowski, P.; Dupont, J. A., Eur. J., 2006, 13(1), 32–39. doi:10.1002/chem.200601438
- Cheng, T.; Zhang, D.; Li, H.; Liu, G. Green Chem., 2014, 16(7), 3401-3427. doi:10.1039/ c4gc00458b
- Bhirud, S.; Sarode, C. H.; Gupta, G. R.; Chaudhari, G. R. *Curr. Nanomater.*, **2023**, DOI: 10.2174/24054615086662305081246 07
- Christian Vollmer, C.; Redel, E.; Shandi, K. A.; Thomann, R.; Manyar, H.; Hardacre, C.; Janiak, C. *Chem. Eur. J.*, **2010**, *16*, 3849 -3858
- Bussamara, R.; Melo, W. W. M.; Scholten, J. D.; Migowski, P.; Marin, G.; Zapata, Machado, J.M.G. Teixeira, S.R.; Novakb, M. A.; Dupont, J. Dalton Trans., 2013, 42, 14473-14479
- Sharma, R. K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R. S.; Gawande, M. B. *Green Chem.*, **2016**, *18*(11), 3184-3209. doi:10.1039/c6gc00864j
- Rajiv Gandhi, R.; Gowri, S.; Suresh, J.; Sundrarajan, M. *J. Mater. Sci. Technol.*, **2013**, *29*(6), 533-538. doi:10.1016/j.jmst. 2013.03.007
- Amaliyah, S.; Pangesti, D. P.; Masruri, M.; Sabarudin, A.; Sumitro, S. B. *Heliyon.*, **2020**, *6*(8), e04636. doi:10.1016/j.heliyon.2020. e04636
- Scariot, M.; Silva, D. O.; Scholten, J. D.; Machado, G.; Teixeira, S. R.; Novak, M. A.; Ebeling, G.; Dupont, *J. Angew. Chem. Int. Ed.*, **2008**, *47*, 9075-9078, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi: 10.1002/ anie.200804200n
- 12. Khalifeh, R.; Naseri, V.; Rajabzadeh, M.; *Chemistry Select.*, **2020**, *5*(37), 11453-11462. doi:10.1002/slct.202003133
- Venkateswarlu, S.; Yoon, M.; Kim, M. J. Chemosphere., 2022, 286, 131673, doi: 10.1016/j.chemosphere.2021.131673
- Mollarasouli, F.; Zor, E.; Ozcelikay, G.;
 Ozkan, S. A. *Talanta.*, **2021**, *226*, 122108.

doi:10.1016/j.talanta.2021.122108

- 15. Sundrarajan, M.; Ramalakshmi, M. *E-J Chem.*, **2012**, *9*(3), 1070-1076
- Sood, K.; Saini, Y.; Thakur, K. K.;*Mater. Today: Proc.*, **2021**, *81*(2), 739-744, doi: org/10.1016/j.matpr.2021.04.225
- 17. Reslan, M.; Kayser, V., **2018**, *10*(3), 781–793. doi:10.1007/s12551-018-0407-6
- Seoud, O. A. E.; Keppeler, N.; Malek, N. I.; Galgano, P. D. *Polymers.*, **2021**, *13*, 1100. https://doi.org/10.3390/polym13071100
- Nasirpour, N.; Mohammadpourfard, M.; Zeinali Heris, S. Chem. Eng. Res. Des., 2020, doi: https://doi.org/10.1016/j.cherd.2020.06.006
- Marcinkowska, R.; Konieczna, K.; Marcinkowski, L.; Namiesnik, J.; Kloskowski, A. *Trends Anal. Chem.*, **2019**, *119*, 115614.
- Manusha, P.; Senthilkumar, S. J. Mol. Liq.,
 2020, 301, 112412.
- Tseng, S. K.; Wang, R. H.; Wu, J. L.; Jyothibasu, J. P.; Wang, T. L.; Chu, C. Y.; Lee, R. H. *Polymer.*, **2020**, *210*, 123074, https:// doi.org/10.1016/j.polymer.2020.123074.
- Egorova, K. S.; Ananikov, V. P. J. Mol. Liq., 2018, 272, 271-300.
- 24. Safari, J.; Zarnegar, Z. *New J. Chem.*, **2014**, *38*, 358-365, DOI: 10.1039/c3nj01065a
- Kamysbayev, V.; Srivastava, V.; Ludwig, N. B.; Borkiewicz, O. J.; Zhang, H.; Ilavsky, J.; Lee, B.; Chapman, K. W.; Vaikuntanathan, S.; Talapin, D. V. ACS Nano., 2019, 13, 5760-5770, DOI: 10.1021/acsnano.9b01292
- Hammond, O. S.; Mudring, A. V. Chem. Commun., 2022, 58, 3865, doi: 10.1039/ d1cc06543b
- Liu, X.; Duan, X.; Qin, Q.; Wangc, Q.; Zheng, W. *Cryst. Eng. Comm.*, **2013**, *15*, 3284-3287, DOI: 10.1039/c3ce00035d
- Zwara, J.; Gawron, M. P.;Luczak, J.; Pancielejko, A.; Lisowski, W.; Trykowski, G.; Medynska, A. Z.; Grabowska, E. Int. J. Hydrog. Energy., 2019, 44, 26308e26321.
- 29. Mudhoo, A.; Kumar G. *Biochem. Eng. J.*, **2018**, https://doi.org/10.1016/j.bej.2018.07.018
- 30. Faizan, M.; Ahmed, R.; Ali, H. M. *J. Taiwan Inst. Chem. Eng.*, **2021**,1-33.

- 31. Wegner, S.; Janiak, C. *Top. Curr. Chem. (Z).*, **2017**, *375*, 65, doi: org/10.1007/s41061-017-0148-1
- Cao, H.; Hu, Y.; Xu, W.; Wang, Y.; Guo, X. J. Mol. Liq., 2020, 319, 114354, doi. org/10.1016/j.molliq.2020.114354
- Zwara, J.; Paszkiewicz-Gawron, M.; Łuczak, J.; Pancielejko, A.; Lisowski, W.; Trykowski, G.; Zaleska-Medynska, A.; Grabowska, E.; *Int. J. Hydrog. Energy.*, **2019**, *44*, 26308-26321, https://doi.org/10.1016/j. ijhydene.2019.08.094
- Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R. Acc. Chem. Res., 2011, 44, 1223-1231.
- 35. Gupta, G. R.; Chaudhari, G. R.; Tomar, P. A.;

Waghulde, G. P.; Patil, K. *J. Asian J Chem.*, **2012**, *24*(10), 4675-4678.

- Chaki, S. H.; Malek, T. J.; Chaudhary, M. D.; Tailor, J. P.; Deshpande, M. P. Adv. Nat. Sci: Nanosci. Nanotechnol., 2015, 6, 035009, doi:10.1088/2043-6262/6/3/035009
- Petcharoena, K.; Sirivat, A.; *Mater. Sci. and Eng. B.*, **2012**, *177*, 421-427, doi:10.1016/j. mseb.2012.01.003
- Sun,X.; Xu, L.;Jiang, W.; Xuan, Y.; Lu, W.; Li, Z.; Yang, S.; Gu, Z. *Environ. Sci. and Pollution Res.*, 2020, Springer-Verlag GmbH Germany, https://doi.org/10.1007/s11356-020-10541-5
- Sun, K.; Sun, C.; Tang, S. *Cryst. Eng. Comm.*, 2015, DOI: 10.1039/C5CE02095F