Overview of Anti-Diabetic Medicinal Plants: The Nigerian Research Experience

Paul C. Chikezie*, Okey A. Ojiako1 and Kanayo C. Nwufo2

1Department of Biochemistry, Imo State University, Owerri, Nigeria
2Department of Biochemistry, Federal University of Technology, Owerri, Nigeria

Abstract

Medicinal plants have been used since ancient times for the treatment and management of diabetic mellitus (DM) in traditional medicine systems of many cultures throughout the world. Recently, the World Health Organization (WHO) recommended the use medicinal plants for the management of DM and further encouraged the expansion of the frontiers of scientific evaluation of the hypoglycemic properties of diverse plant species. Accordingly, the hypoglycemic activity of a vast number of plant products have been evaluated and confirmed in animal models as well as in human beings. In some cases, the bioactive principles of the medical plants have been isolated and identified. In order to harness these natural resources and maximize the socioeconomic benefits derivable from Nigerian medicinal plants efforts should be geared toward research funding and deployment of Research and Development (R & D) policy framework into medicinal plants research endeavours.

Keywords: Diabetic mellitus; Bioactive principles; Medicinal plants; Nigeria

Introduction

Overview

Herbal medicines involve the integration of several therapeutic experiences and practices of indigenous systems of medicine that may span many previous generations, which often provide valuable guidelines to the selection, preparation and application of herbal formulation with a view to providing therapeutic benefits. Treatment of illness and maintenance of health/well-being using herbal medicines is the oldest and most popular form of healthcare practice known to humanity that has been practiced by all cultures in all ages throughout the history of civilization.

Medicinal plants have been used since ancient times for the treatment and management of diabetic mellitus (DM) in traditional medicine systems of many cultures throughout the world [1,2]. Currently, medicinal plants continue to play an important role in the management of DM, especially in developing countries, where many people do not have access to conventional anti-diabetic therapies [3,4]. In developed countries, the use of anti-diabetic herbal remedies has been on the decline since the introduction of insulin and synthetic oral hypoglycemic drugs during the early part of the 20th century. However, recently in the developed countries, there has been the resurgence of interest in medicinal plants that exhibit hypoglycemic property [5]. The renewed interest in herbal anti-diabetic remedies in developed countries is believed to be motivated by several factors that include: adverse reactions, high secondary failure rates and cost of conventional synthetic anti-diabetic remedies [1]. Recently, the World Health Organization (WHO) recommended the use medicinal plants for the management of DM and further encouraged the expansion of the frontiers of scientific evaluation of hypoglycemic properties of diverse plant species [6]. Consequently, current estimates showed that over 70% of the global population applies resources derived from traditional medicine for the management and alleviation of DM and its complications [5,7,8].

Ethno-pharmacological surveys indicate that more than 1,200 plants are used in traditional medicine systems following claims of their hypoglycemic properties [3,9]. The hypoglycemic activity of a large number of plant products have been evaluated and confirmed in animal models [10-13] as well as in human beings [14,15]. In some cases, the bioactive principles of the medical plants have been isolated and identified [3,11,15]. Nevertheless, the mechanisms of action of most of these anti-diabetic bioactive principles are not well defined and remain largely speculative. However, reports suggest that the array of anti-diabetic bioactive principles in medicinal plants may act in synergy to exert glycemic control [16,17] through interference with one or more processes involved in glucose metabolism and homeostasis [3,18].

The present review sought to highlight some experimentally confirmed anti-diabetic medicinal plants and their bioactive principles that have been implicated in exerting glycemic control. By extension, the outlook and regular form in which scientific investigations on some Nigerian indigenous anti-diabetic medicinal plants are designed and carried out, coupled with the obvious limitations of these research findings were also considered for review.

Common anti-diabetic medicinal plants

It is worthwhile to note here that there is yet no effective cure for DM and available drugs and insulin therapy used for the management of the disease are associated with several undesirable side effects [19-21]. The undesirable side effects and high cost of anti-diabetic drugs led to the search for medicinal plants that exhibit hypoglycemic property, with a view to applying them for the management of DM [22,23]. Several species of medicinal plants used for the management of DM worldwide have been evaluated. Some of these plants include: Allium cepa (Onion), Allium sativum (Garlic), Aloe vera, Cinnamomum cassia,

*Corresponding author: Dr. Paul C. Chikezie, Department of Biochemistry, Imo State University, Owerri, Nigeria, Tel: +2348038935327; E-mail: p_chikezie@yahoo.com

Received March 28, 2015; Accepted May 04, 2015; Published May 07, 2015

Copyright: © 2015 Chikezie PC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Coccinia indica, Gymnema slyvestre (Gurnar), Momordica charantia (Bitter Melon), Catharanthus roseus (Madagascar Periwinkle), Muu-rayi komingii, Ocimum sanctum, Panax ginseng, Trigonella foemun-graecum (Fenugreek), Pierocarpus marsupium (Indian Kino) and Syzygium cumini [3,18,24-26]. A survey of several medicinal plant research findings showed that the polysaccharides, sterols, terpenoids, alkaloids, saponins, flavonoids, amino acids and their derivatives are the most encountered bioactive principles that exhibited glycemic control in experimental animals [18,24,27].

Onion (Allium cepa); Alliaceae and garlic (Allium sativum L.) [28-30]

Oral administration of onion (A. cepa L.) and garlic (A. sativum L.) to alloxan-induced diabetic rats for 30 days ameliorated hyperglycemia, reversed weight loss and depletion of liver glycogen. The anti-diabetic bioactive principles of A. cepa L. and A. sativum L. were S-methylcysteinesulfoxide (SMCS) and S-allylcysteinesulfoxide (SACS) respectively. The studies showed that SMCS and SACS exerted their anti-diabetic properties by stimulating insulin secretion as well as compete with insulin for insulin inactivating sites in the liver. Specifically, SACS inhibited gluconeogenesis in the liver. In addition, SACS from A. sativum L. impeded lipid peroxidation due to its antioxidant and secretagogue actions. The capacities of A. cepa L. and A. sativum L. to alleviate DM in the experimental rats were comparable with diabetic rats treated with glibenclamide and insulin. The study also noted that SMCS and SACS caused significant increase in the biosynthesis of cholesterol from acetate in the liver, which was an indication of low capacities of allium products to protect the rats against risk factors associated with DM.

Aloe vera (Aloe barbedensis); Asphodelaceae [31,32]

A 1.0 µg of five phytosterols- lophenol, 24-methyl-lophenol, 24-ethyl-lophenol, cyclooctanol, and 24-methylene-cyclooctanol from A. vera exhibited comparable capacities to lower blood glucose levels in Type II diabetic BKS.Cg-m+/-Lepr/dyb/dyb mice following 28 day treatment. The five phytosterols caused significant decrease in blood HbA1c levels by 15-18%. Additionally, severe diabetic mice treated with the five phytosterols did not suffer weight loss because they caused the normalization of their serum lipid profiles, whereas insulin treated diabetic mice did not show any glycemic improvement after treatment. The studies showed that phytosterols derived from A. vera gel have a long-term blood glucose lowering effect, which could be applied as agents of glycemic control in Type 2 DM. Studies showed that phytosterols stimulate the biosynthesis and/or release of insulin as well as alter the activity of carbohydrate metabolizing enzymes.

Catharanthus roseus [L.] G. Don; Apocynaceae [33,34]

The Madagascar periwinkle (C. roseus), is a traditional remedy and was marketed in England as ‘Vinculin’ for the treatment of DM. Earlier studies showed that leaf aqueous extracts of C. roseus administered orally to rabbits and dogs caused hypoglycemic response. Similar studies using variety of laboratory animals and limited clinical trials gave negative or at best equivocal results. Alkaloids, notably, catharanthine (17), leurosine (18), lochnerine (19), tetraydroalstonine (20), vindoline (21), and vindoline (22) are the major anti-diabetic principles present in C. roseus. Specifically, studies showed that vincamine (23) and (-)-eburnamomine (24) caused extensive decrease in rat brain tissue glucose concentration, with concomitant increase in lactate and pyruvate concentrations as well as the lactate pyruvate ratio and increase in tissue ATP contents. In vitro studies showed that the quinoline derivatives, quinolate and 3-mercaptopicolinate, inhibited hepatic gluconeogenesis from lactate or alanine by inhibiting muscle cytosolic/mitochondrial phosphoenolpyruvate carboxykinase and cytosolic aspartate aminotransferase activities. Certainly the active alkaloids analogs of C. roseus exhibited oral hypoglycemic activity of one third capacities when compared with tolbutamide.

Oral administration of dichloromethane:methanol (1:1) leaf and twig extracts of C. roseus at dose = 500 mg/kg to streptozotocin (STZ)-induced diabetic rats for 7 and 15 days gave 48.6 and 57.6% hypoglycemic activity, respectively. The same dose for 30 days exhibited protective effect against STZ challenge. The anti-diabetic action of C. roseus was as a result of inhibition of hepatic glycogen synthase, glucose 6-phosphate-dehydrogenase, succinate dehydrogenase and malate dehydrogenase activities coupled with increased mobilization of glucose following treatment of the experimental rats. Similarly, the same dose of C. roseus extracts ameliorated oxidative stress as exemplified by lower levels of 2-thiobarbituric acid reactive substances (TBARS) in diabetic rats following treatment.

Cinnamomum cassie (Chinese cinnamon); Lauraceae [35]

Cinnamon methylhydroxychalcone polymer (MHCP) from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. Therefore, MHCP may be useful in the treatment of Type II DM and in the study of the pathways leading to glucose utilization in peripheral cells.

Coccinia indica; cucurbibaceae [36,37]

Orally administered pectin materials isolated from fruit extracts of C. indica at dose = 200 mg/100 g body weight/day caused hypoglycemia in normal rats. The study noted that pectin materials caused significant reduction in blood glucose and an increase in the liver glycogen as a result of increase in hepatic glycogen synthetase activity and corresponding reduction in phosphorylase activity. Hypoglycemic effect of Ethanolic extract of C. indica is partly due to the repression of the key gluconeogenic enzyme (glucose-6-phosphatase), but did not affect alanine aminotransferase and aspartate aminotransferase activities, in starved male rats.

Ficus bengalensis; Moraceae [38]

Leucocephalogenin-3-O-alpha-L-rhamnose from dimethoxy ether extract of Indian Banyan tree F. bengalensis Linn bark at a medium effective dose = 100 mg/kg caused hypoglycemia and increased blood insulin levels in normal and moderately alloxan-induced diabetic dogs following two hours oral administration. The bioactive glycoside stimulated insulin secretion in the experimental animals. Furthermore, acute (doses = 0.2-1.8 g/kg) administration to mice and chronic (doses = 100, 250 and 500 mg/kg) daily administration to rats for a period of one month respectively did not elicit toxic effects even at the high dose of 1.8 g/kg in experimental animals.

Gymnema slyvestre (Gurnar); Asclepiadaceae [39,40]

G. sylvestre extracts at various doses caused decreased blood sugar level in STZ-induced diabetic rat models, which was comparable with the standard anti-diabetic drug-tolbutamide. Also, human experiments showed that GS4 (dose = 400 mg/day), a water-soluble extract from leaves of G. sylvestre, administered to patients suffering from insulin-dependent diabetes mellitus (IDDM) and placed on insulin therapy, caused the normalization of their serum lipid profiles, whereas insulin
requirements together with fasting blood glucose and glycosylated haemoglobin (HbA1c) and other glycosylated plasma protein levels remained higher than that of the control subjects. Nevertheless, GS4 therapy appears to enhance endogenous insulin biosynthesis, possibly by regeneration/revitalization of the residual β-cells of IDDM individuals.

Ginseng (Panax ginseng); Araliaceae and Fenugreek (Trigonella foenum-graecum L.) [41,42]

In vivo experiments using STZ-induced diabetic rats chronically administered with food mixed with steroid saponins from the seeds of fenugreek (T. foenum-graecum L.) (dose = 12.5 mg/300 g body weight per day) showed significantly increase in food intake as well as the motivation to eat in normal rats. It also stabilized the food consumption in diabetic rats, which resulted in a progressive weight gain in these animals, in contrast to untreated diabetic controls. Aerobic exercise in combination with ginsenosides from *P. ginseng* promote lower serum lipid, regulate lipid metabolism, promote anti-oxidation, and enhance immune activity.

Momordica cymbalaria (Bitter Melon); Cucurbitaceae [34,44]

Oral and intra-peritoneal administration of aqueous fruit extracts of *M. charantia* to normal rats lowered the glycemic response without altering the insulin response. Also, aqueous extract and the residue after alkaline chloroform extraction reduced hyperglycemia in diabetic mice after 1 hour. The recovered plant matters by acid water wash of the chloroform extract following alkaline water wash engendered a slower absorption. These findings suggested that orally administered *M. charantia* extracts lower glucose concentrations independently of intestinal glucose absorption and involved an extra-pancreatic effect.

In another study, *M. cymbalaria* fruit powder caused reduction in blood sugar concentrations in alloxan-induced diabetic rats following 15 days treatment. Elevated serum cholesterol and triglycerides levels were lowered with significant improvement in these animals, in contrast to untreated diabetic controls. Aerobic exercise in combination with ginsenosides from *P. ginseng* promote lower serum lipid, regulate lipid metabolism, promote anti-oxidation, and enhance immune activity.

Muurraya koningii (Cary leaf); Rutaceae [11,12]

A single oral administration of aqueous leaf extracts of *M. koenigii* (doses = 200, 300 and 400 mg/kg) lowered blood glucose level in normal and alloxan-induced diabetic rabbits. The reduction on blood glucose levels in normal and diabetic rabbits corresponded to 14.68% and 27.96% following 4 hours of oral administration of 300 mg/kg of the leaf extract. Likewise, 300 mg/kg of the leaf extract caused a marked improvement in glucose tolerance by 46.25% in sub-diabetic and 38.5% in mild diabetic rabbits at 2 hours post prandial test. The study suggested that the aqueous leaf extracts of *M. koenigii* may be prescribed as adjunct to dietary therapy and treatment of DM. *Aegle marmelos* possess anti-diabetic and hypolipidemic effects in diabetic rats.

Ocimum sanctum (Holy basil); Lamiaceae [45]

Alcoholic leaf extract *O. sanctum* ameliorates hyperglycemia in normal-glucose fed hyperglycemic and streptozotocin-induced diabetic rats by potentiating the action of exogenous insulin in the rats. The anti-diabetic action of alcoholic leaf extract *O. sanctum* was comparable with that of the standard anti-diabetic drug-tolbutamide.

Allium cepa, Allium sativum, Aloe vera, Cajanus cajan, Coccinia indica, Caesalpinia bonducella, Ficus bengalensis, Gymnema sylvestre, Momordica charantia, Ocimum sanctum, Pterocarpus marsupium, Swertia chirayita, Syzigium cumini, Tinospora cordifolia and Trigonella foenum-graecum [3]

All the above named plants stimulate insulin release from isolated pancreatic islets cells by virtue of their phytochemical contents, especially the saponins and glycosides fractions.

Polygala senega; Polygalaceae [18]

The triterpenoid glycoside-Senegin-II and saponins are the main anti-diabetic components of *P. senega* (L.). Study showed that n-butanol extract of *P. senega* rhizomes (SN) (dose = 5.0 mg/kg) caused reduction in the blood glucose of normal and KK-Ay mice following 4 hours intra-peritoneal administration. However, STZ-induced diabetic mice did not experience significant change in the blood glucose following the administration of SN. The study proposed that the hypoglycemic effect of SN occurs without altering plasma insulin concentration.

Syzygium cumini (Eugenia janbolaria); Myrtaceae [46]

At the dose levels of 200 and 400 mg/kg, ethyl acetate and methanol extracts of *S. cumini* (Myrtaceae) seed exhibited significant anti-inflammatory activity in carrageenan induced paw edema in Wistar rats. This anti-inflammatory activity of the plant extract could be of therapeutic benefit by ameliorating increased inflammatory response associated with DM.

Trigonella foenum-graecum (Fenugreek) [47]

T. foenum-graecum (Fenugreek) seeds fraction (dose = 0.5 g/kg body weight) significantly exerted glycemic control in normal, Type I or Type II diabetic rats. The soluble dietary fibre (SDF) fraction controlled elevation of blood glucose after oral ingestion of sucrose in normal and Type I diabetic rats. Intestinal disaccharides activity and glucose absorption were sufficiently suppressed, whereas gastrointestinal motility increased following treatment of the rats with SDF fraction. Daily oral administration of SDF to Type II diabetic rats for 28 days caused decreased serum glucose level but increased liver glycogen content with enhanced total antioxidant status. Serum insulin and insulin secretion were not affected by the SDF fraction. Overall, *T. foenum-graecum* seed extracts enhanced glucose transport in 3T3-L1 adipocytes as well as increased insulin sensitivity. Therefore, SDF fraction of *T. foenum-graecum* seeds exerted anti-diabetic effects through inhibition of carbohydrate digestion and absorption, and enhancement of peripheral insulin action. The anti-diabetic bioactive principles and possible mechanism of action of these medicinal plants are summarized in Table 1.

Nigerian medicinal plants with confirmed anti-diabetic activity

DM is rapidly emerging as a major public health problem in Nigeria. Close to a decade ago, the prevalence rate of Type II DM, according to the International Diabetes Foundation/WHO reports, was estimated to be over 3.4% of 24 million Nigerian DM sufferers between the ages of 20–79 years and with projected estimate of 3.9% rise in 2025 [48,49]. Furthermore, death rates arising from DM and related complications in other sub-Saharan African countries range from 21 to 49 per 100 000 persons, compared with 18 in the USA and 6 per 100 000 persons in the UK [50].

A number of Nigerian indigenous and naturalized medicinal plants used and recommended by traditional healers and herbalists...
for the treatment of DM have been investigated for their anti-diabetic properties using animal models. Most of the studies on medicinal plants with anti-diabetic potentials have been conducted in several Nigerian Research Institutes and Universities [17,26,49,51-54]. Almost all of these scientific investigations were carried out using chemically induced diabetic rats. A few other studies have also been conducted using in vitro cell culture-based bioassays [55].

The names of some Nigerian indigenous anti-diabetic medicinal plants investigated, design of the experiment and outcomes of the investigations are summarized in Table 2.
Brachylaena discolor; Asteraeae, *Cissampelos capensis*, Menispermaceae and *Sciarocarya birrea* C. A Rich; Anacardiaceae

Optimized screening and scoring methods for traditional anti-diabetic plants using Chang liver, 3T3-L1 adipose and C2C12 muscle cells, were measured for glucose utilization in all the three cell lines, toxicity in hepatocytes and myocytes in vitro. Cold dichloromethane (DCM); methanol (MeOH) (1:1) extract of *B. discolor* gave the best overall results, with all plant parts exhibiting high activity scores and negligible toxicity. The outcome of the study showed a high likelihood of identifying drug candidates from the crude extract of *B. discolor*, among other plants investigated. The organic leaf extract of *C. capensis* were unable to stimulate glucose utilization in at least one of the cell lines, whereas aqueous extract of *C. capensis* showed absence of *in vitro* toxicity. *M. balsamina* extracts were active in myocytes and stimulated glucose utilization in hepatocytes. However, *in vitro* toxicity results for *M. balsamina* and *V. major* extracts raised concerns for chronic use. Organic extracts of *M. balsamina* were active in hepatocytes, whereas all extracts (organic and aqueous) were active in myocytes.

The organic root extract of *S. birrea* were unable to stimulate glucose utilization in at least one of the cell lines. In another study, dichloromethane; methanol (1:1) extract of *S. birrea* bark engendered decreased blood glucose and increased plasma insulin levels in STZ-induced diabetic rats in vivo. Unfortunately, methanolic and aqueous bark extracts of *S. birrea* exhibited high LD₅₀ values. The total activity scores of all the plant extracts investigated ranged between 0 and +6, of which only the organic leaf extract of *V. major* scored the maximum of +6. Additionally, organic leaf extracts of *V. major* strongly stimulated glucose utilization in all three cell types but with high toxicity score probably due to its alkaloids content.

The organic root extract of *S. birrea* were unable to stimulate glucose utilization in at least one of the cell lines. In another study, dichloromethane; methanol (1:1) extract of *S. birrea* bark engendered decreased blood glucose and increased plasma insulin levels in STZ-induced diabetic rats in vivo. Unfortunately, methanolic and aqueous bark extracts of *S. birrea* exhibited high LD₅₀ values. The total activity scores of all the plant extracts investigated ranged between 0 and +6, of which only the organic leaf extract of *V. major* scored the maximum of +6. Additionally, organic leaf extracts of *V. major* strongly stimulated glucose utilization in all three cell types but with high toxicity score probably due to its alkaloids content.

Gongronema latifolium; Asclepiadaceae [51,64]

Ethanol leaf extract of *G. latifolium* has antihyperglycemic potency, which is thought to be mediated through the activation of hepatic hexokinase (HK), phosphofructokinase (PFK) and glucose-6-phosphate dehydrogenase (G6PDH) and inhibition of glucokinase (GK) activity in the liver. The findings of the study, as in the case of numerous indigenous Nigerian research exercises on anti-diabetic

Table 2: Nigerian indigenous anti-diabetic medicinal plants.

<table>
<thead>
<tr>
<th>Plant and family</th>
<th>Plant part used</th>
<th>Study design</th>
<th>Experimental findings</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aloe arborescens; Asphodelaceae</td>
<td>AE of leaf gel</td>
<td>Normal and alloxan-induced diabetic rats; 21 day treatment.</td>
<td>• Decrease FBG in diabetic rats. • Restore plasma insulin and TAG levels. • Increase glucokinase activity.</td>
<td>[56]</td>
</tr>
<tr>
<td>Brachylaena discolor; Asteraeae</td>
<td>DCM:MeOH (1:1) extracts of roots, leaves and stem</td>
<td>In vitro bioassay using cultured Chang liver, 3T3-L1 adipose and C2C12 muscle cells.</td>
<td>• Increase glucose utilization in 3T3-L1 adipocytes, Chang liver and muscle cells.</td>
<td>[55]</td>
</tr>
<tr>
<td>Cissampelos capensis; Menispermaceae</td>
<td>AE of leaves</td>
<td>In vitro bioassay using cultured Chang liver, 3T3-L1 adipose and C2C12 muscle cells.</td>
<td>• Decrease FBG level. • No toxic effects.</td>
<td>[55]</td>
</tr>
<tr>
<td>C. Anisata; (Wild) Hook; Rutaceae</td>
<td>Root extract. Normal and STZ rats.</td>
<td>• Decrease FBG levels. • Increase plasma insulin level.</td>
<td>[57]</td>
<td></td>
</tr>
<tr>
<td>Harpagophytum procumbens DC; Pedaliaceae</td>
<td>AE of roots Normal and STZ rats.</td>
<td>• Decrease FBG levels.</td>
<td>[58]</td>
<td></td>
</tr>
<tr>
<td>Hypoxis hemerocallidea(African Potato); Hypoxyphyle</td>
<td>MeOH extract of corn and AE of roots. Normal and STZ rats (AT).</td>
<td>• Cause dose dependent reduction in FBG levels. • Less effective than glibenclamide.</td>
<td>[59,60]</td>
<td></td>
</tr>
<tr>
<td>Momordica balsamina L.; Cucurbitaceae</td>
<td>AE of stem and flower. In vitro bioassay using cultured Chang liver, 3T3-L1 adipose and C2C12 muscle cells.</td>
<td>• Increase glucose utilization in 3T3-L1 adipocytes, Chang liver and muscle cells.</td>
<td>[55]</td>
<td></td>
</tr>
<tr>
<td>Securidaca langepeudunculat; Polygalaceae</td>
<td>Root extract. Normal and STZ rats.</td>
<td>• Decrease FBG levels in normal and STZ rats.</td>
<td>[52]</td>
<td></td>
</tr>
<tr>
<td>Vernonia amygdalina; Compositae</td>
<td>AE of stem Normal and STZ rats.</td>
<td>• Increase glucose uptake.</td>
<td>[58]</td>
<td></td>
</tr>
<tr>
<td>Vernonia amygdalina; Compositae</td>
<td>AE of leaves. Glucose uptake in rats fed with high fat diet for 8 weeks.</td>
<td>• Normalize insulin levels. • Increase glucose uptake in muscle and adipose tissue. • Decrease intestinal glucose uptake.</td>
<td>[62]</td>
<td></td>
</tr>
<tr>
<td>Gomphrena latifolium; Asclepiadaceae</td>
<td>AE of leaves. Normal and STZ rats (for 28 days treatment).</td>
<td>• Decrease FBG levels and increase hepatic glycogen.</td>
<td>[51,63]</td>
<td></td>
</tr>
<tr>
<td>Azadirachta indica; Meliaceae</td>
<td>AE of leaves. Normal and STZ rats (AT).</td>
<td>• Decrease FBG levels.</td>
<td>[64]</td>
<td></td>
</tr>
<tr>
<td>Vinca major L.; Apocynaceae</td>
<td>DCM:MeOH (1:1) extracts of roots and leaves. In vitro bioassay using cultured Chang liver, 3T3-L1 adipose and C2C12 muscle cells.</td>
<td>• Increase glucose utilization in liver and muscle. • Toxic to the hepatocytes.</td>
<td>[55]</td>
<td></td>
</tr>
<tr>
<td>AE = aqueous extract; FBG = fasting blood glucose; TAG = triacylglycerol; MeOH = methanol; CH₂Cl₂ = methylene chloride; STZ = streptozotocin; DCM = dichloromethane; AT = acute treatment</td>
<td>• Increase hepatic glycogen synthesis (AT). • Decrease plasma urea and creatinine levels. • Increase glomerular filtrate rate. • Decrease FBG levels. • Increase FBG levels and decrease hepatic glycogen. • Increase hepatic glycogen synthesis (AT). • Decrease FBG levels. • Decrease FBG levels. • Increase plasma insulin level. • Cause dose dependent reduction in FBG levels. • Less effective than glibenclamide. • Decrease FBG levels. • Decrease FBG levels. • Increase hepatic glycogen synthesis (AT). • Decrease FBG levels. • Increase glucokinase activity. • Increase FBG levels and increase hepatic glycogen. • Increase FBG levels and decrease hepatic glycogen.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
medicinal plants, fell short in establishing the molecular structure of the bioactive compound(s) and its/their mechanism of action.

Prospects of Nigerian medicinal plants/research experience

There has been an increasing demand for herbal medicine by consumers in both developed and developing countries, as well as renewed interest in prospecting for medicinal plants by multinational pharmaceutical companies. Interestingly, the outcomes of many of these research exercises on anti-diabetic properties of Nigerian indigenous medicinal plants (Table 2) portrayed these plants to be of immense therapeutic value and economic importance, which could extend beyond local boundaries of healthcare systems and national markets. Unfortunately, one major limitation in advancing the goals of most research exercises is the preponderance of inability or/and failure of research bodies to identify the hypoglycemic bioactive principles of the herbal matter and elucidate their therapeutic mechanism, as exemplified in the summary of research findings presented in Table 2. These impediments are largely due to the absence of state-of-the-art scientific infrastructure and poor research funding in most institutions.

In attempt to carry out research exercise within the limits of paucity of available funds, approaches to experimental design are often too simplistic and consideration to underlying critical issues are ignored and taken for granted. In most cases, experiments are stalled in their preliminary stage and other requisite experimentations, within the concept and scope of the research exercise, to achieve a rewarding research findings are abandoned. Additionally, these challenges are further compounded when most of the useful experimental results and findings are poorly publicized because they end up in scientific journals of low internet visibility and of low or no impact factor. This communication blackout further hinders the prospects of advancing the course of medicinal plant research by other interested researchers. These setbacks have continued to be the bane of efforts in advancing the frontiers herbal medicine research in Nigeria.

From our experience, scientific evaluations of anti-diabetic potentials of medicinal plants in most Nigerian Research Institutes and Universities appear to be carried out without collaborative agenda among concerned scientists and other stakeholders. In order to extend the frontiers of research into Nigerian indigenous anti-diabetic medicinal plants and to achieve a more rewarding outcome in this regard, incentivized research exercise involving inter-institutional collaborative work should be established.

Conclusion

Efforts should be geared toward research funding and deployment of Research and Development (R & D) policy framework into medicinal plants research endeavours so as to harness these natural resources and maximize the socioeconomic benefits derivable from Nigerian medicinal plants.

References

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:
- User friendly/feasible website-translation of your paper to 50 world's leading languages
- Audio Version of published paper
- Digital articles to share and explore

Special features:
- 400 Open Access Journals
- 30,000 editorial team
- 21 days rapid review process
- Quality and quick editorial review and publication processing
- Indexing in PubMed, (partial), Scopus, RBSTC, Index Copernicus and Google Scholar etc.
- Sharing Options: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: www.editorialmanager.com/acrgroup