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Preface

First Edition

This text is an introduction to algebra for undergraduates who are interested in

careers which require a strong background in mathematics. It will benefit stu-

dents studying computer science and physical sciences, who plan to teach math-

ematics in schools, or to work in industry or finance. The book assumes that

the reader has a solid background in linear algebra. For the first 12 chapters el-

ementary operations, elementary matrices, linear independence and rank are im-

portant. In the second half  of  the book abstract vector spaces are used. Students

will need to have experience proving results. Some acquaintance with Euclidean

geometry is also desirable. In fact I have found that a course in Euclidean geom-

etry fits together very well with the algebra in the first 12 chapters. But one can

avoid the geometry in the book by simply omitting chapter 7 and the geometric

parts of  chapters 9 and 18.

The material in the book is organized linearly. There are few excursions away

from the main path. The only significant parts which can be omitted are those

just mentioned, the section in chapter 12 on PSL(2,Fp), chapter 13 on abelian

groups and the section in chapter 14 on Berlekamp's algorithm.

The first chapter is meant as an introduction. It discusses congruences and

the integers modulon. Chapters 3 and 4 introduce permutation groups and linear

groups, preparing for the definition of  abstract groups in chapter 5. Chapters 8

and 9 are devoted to group actions. Lagrange's theorem comes in chapter 10 as

xi
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an application. The Sylow theorems in chapter 11 are proved following Wielandt

via group actions as well. In chapter 13, row and column reduction of  integer

matrices is used to prove the classification theorem for finitely generated abelian

groups. Chapter 14 collects all the results about polynomial rings in one variable

over a field that are needed for Galois theory. I have followed the standard Artin

- van der Waerden approach to Galois theory. But I have tried to show where

it comes from by introducing the Galois group of  a polynomial as its symmetry

group, that is the group of  permutations of  its roots which preserves algebraic

relations among them. Chapters 18, 19, 20 and 21 are applications of  Galois

theory. In chapter 20 I have chosen to prove only that the general equation

of  degree 5 or greater cannot be solved by taking roots. The correspondence

between radical extensions and solvable Galois groups I have found is often too

sophisticated for undergraduates.

This book also tries to show students how software can be used intelligently in

algebra. I feel that this is particularly important for the intended audience. There

is a delicate philosophical point. Does a software calculation prove anything?

This is not a simple question, and there does not seem to be a consensus among

mathematicians about it. There are a few places in the text where a calculation

does rely on software, for example, in calculating the Sylow 2-subgroups of S8.

The Mathematica notebooks corresponding to the software sections are available

at the book's web site, as are the equivalent Maple worksheets.

Some of  the exercises are referred to later in the text. These have been marked

with a bullet • . There are exercises where the software is useful but not essential,

and some where it is essential. However, I have deliberately not tried to indicate

which ones these are. Learning to decide when software is useful and when not,

seems to me to be an important part of  learning to use it.

I am grateful to many people for help with this book at various stages, in

particular to Edward Bierstone, Imtiaz Manji, David Milne, Kumar Murty, Joe

Repka and Paul Selick. In discussions over the years, Ragnar Buchweitz has made

many suggestions about teaching undergraduate algebra, for which I am most

thankful. The section on quartics and the associated pencil of  conics is one of



xiii

several topics in the book suggested by him. The software was originally written

with the help of  George Beck, Keldon Drudge and Petra Menz. The present

version is due to David Milne. The software which produced the pictures of  the

Platonic solids in chapter 7 was also written by George Beck.

John Scherk

Toronto

2000

Second Edition

The first edition was published with CRC Press. This edition is published on-

line under the Creative Commons Copyright. The intention is to make the book

freely accessible to as many students and other readers as possible. The changes

in this edition are small. Many mistakes have been corrected. Some exercises

have been added and there are minor additions and refinements to the text.

John Scherk

Toronto

2010





1
Congruences

This is an introductory chapter. The main topic is the arithmetic of  congruences,

sometimes called 'clock arithmetic'. It leads to the construction of  the integers

modulo n. These are among the simplest examples of  groups, as we shall see

in chapter 5. If n is a prime number, then the integers modulo n form a field.

In chapter 4, we will be looking at matrices with entries in these fields. As an

application of  congruences we also discuss divisibility tests. In order to be able to

solve linear congruences we review greatest common divisors and the Euclidean

algorithm.

1.1 Basic Properties

Definition 1.1. Fix a natural number n. The integers a and b are congruent

modulo n or mod n, written

a ≡ b (mod n) ,

if a− b is divisible by n.

For example,

23 ≡ 1 (mod 11)

23 ≡ 2 (mod 7)

23 ≡ −2 (mod 25)

1
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If  you measure time with a 12-hour clock, then you are calculating the hour mod-

ulo 12. For example, 5 hours after 9 o'clock is not 14 o'clock but 2 o'clock. We

keep track of  the days by reckoning modulo 7. If  today is a Wednesday, then 10

days from today will be a Saturday. January 19 was a Wednesday in the year 2000.

To determine what day of  the week it was in 1998, we can calculate

2 · 365 = 730 ≡ 2 (mod 7) .

Therefore January 19 was a Friday in 1998. Calculating modulo n is very similar

to calculating in the integers. First we note that congruence modulo n is an

equivalence relation.

Theorem 1.2. (i) a ≡ a (mod n) ;

(ii) if a ≡ b (mod n) then b ≡ a (mod n) ;

(iii) if a ≡ b (mod n) and b ≡ c (mod n) , then a ≡ c (mod n).

It is easy to see why this is true. Clearly a− a = 0 is divisible by n. If a− b

is divisible by n then so is b− a = −(a− b). And lastly, if a− b and b− c are

divisible by n, then so is a− c = (a− b) + (b− c).

Any integer a is congruent to a unique integer r , 0 ≤ r ≤ n − 1. Simply

divide a by n:

a = qn+ r, for some q and r , 0 ≤ r < n.

Then a ≡ r (mod n). From this you see that a is also congruent to a unique

integer between 1 andn, or between−57 andn−58. Addition and multiplication

make sense modulo n:

Theorem 1.3. (i) if a ≡ b (mod n) , and c ≡ d (mod n) then a+ c ≡ b+ d

(mod n);

(ii) if a ≡ b (mod n) , and c ≡ d (mod n) then ac ≡ bd (mod n);

Proof. Well, since b−a and d−c are divisible by n then so are (b+d)−(a+c) =

(b− a) + (d− c) and bd− ac = bd− bc+ bc− ac = b(d− c) + c(b− a).
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1.2 Divisibility Tests

With these simple properties we can establish some divisibility tests for natural

numbers. Let's begin by deducing the obvious tests for divisibility by 2 and 5

using congruences. Suppose a is a natural number given in decimal form by

a = ak · · · a1a0 , in other words

a = ak10
k + · · ·+ a110 + a0

with 0 ≤ aj < 10 for all j. Then since 10j ≡ 0 (mod 2) for any j,

a ≡ a0 (mod 2) .

So a is even if  and only if  its last digit a0 is even. Similarly 10j ≡ 0 (mod 5) so

that

a ≡ a0 (mod 5) .

Thus a is divisible by 5 if  and only if a0 is, which is the case precisely when a0 is

0 or 5. Next let's look at divisibility by 3 and 9.

Test 1.4. Divisibility by 3 or 9

(i) A natural number a is divisible by 3 if  and only if  the sum of  its digits is divisible

by 3.

(ii) A natural number a is divisible by 9 if  and only if  the sum of  its digits is divisible

by 9.

Proof. We have for k > 0,

xk − 1 = (x− 1)(xk−1 + · · ·+ x+ 1) .

Taking x = 10, we see that 10k − 1 is divisible by 9 and in particular by 3. So

10k ≡ 1 (mod 9) and 10k ≡ 1 (mod 3).

Therefore if

a = ak10
k + · · ·+ a110 + a0 ,
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then

a ≡ ak + · · ·+ a1 + a0 (mod 9) and a ≡ ak + · · ·+ a1 + a0 (mod 3) .

So a is divisible by 9, respectively 3, if  and only if  the sum of  its digits is divisible

by 9, respectively 3.

There is a test for divisibility by 11 which is similar. It is discussed in exercise

5. The tests for divisibility by 7 and 13 are more subtle. Here is the test for 7.

The test for 13 is in exercise 6.

Test 1.5. Divisibility by 7

Let a be a natural number. Write a = 10b + a0, where 0 ≤ a0 < 10. Then a is

divisible by 7 if  and only if b− 2a0 is divisible by 7.

Proof. We have

10b+ a0 ≡ 0 (mod 7)

if  and only if

10b+ a0 ≡ 21a0 (mod 7)

since 21a0 ≡ 0 (mod 7) . Equivalently,

10b− 20a0 ≡ 0 (mod 7) ,

i.e. 7 divides 10b − 20a0 = 10(b − 2a0) . Since 10 is not divisible by 7, this

holds if  and only if 7 divides b− 2a0. In other words,

b− 2a0 ≡ 0 (mod 7) .

For example,

426537183 ≡ 39 ≡ 0 (mod 3) , but 426537183 ≡ 39 ≡ 3 (mod 9) .

So 426537183 is divisible by 3 but not by 9. And

98 = 9 · 10 + 8 ≡ 0 (mod 7) since 9− 2 · 8 = −7 ≡ 0 (mod 7) .
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Here is a table summarizing all the tests mentioned for a natural number a. In

decimal form, a is given by ak10k + · · ·+ a110 + a0 = 10b+ a0 .

n test

2 a0 even
5 a0 = 0 or 5
3 ak + · · ·+ a1 + a0 divisible by 3
7 b− 2a0 divisible by 7
9 ak + · · ·+ a1 + a0 divisible by 9
11 ak − · · ·+ (−1)k−1a1 + (−1)ka0 divisible by 11
13 b+ 4a0 divisible by 13

There is another divisibility question with a pretty answer. When does a nat-

ural number n divide 10k−1 for some k > 0 ? Not surprisingly this is related to

the decimal expansion of 1/n. First remember that every rational number m/n

has a repeating decimal expansion (see [1], §6.1). This expansion is finite if  and

only the prime factors of  the denominator n are 2 and 5. Otherwise it is infinite.

If n divides 10k − 1, then the expansion of 1/n is of  a special form. Suppose

that

na = 10k − 1 , a ∈ N .

Write out the decimal expansion of a:

a = a110
k−1 + · · ·+ ak−110 + ak .

So

a110
k−1 + · · ·+ ak−110 + ak =

10k

n
− 1

n
.

Divide this equation by 10k:

0.a1 . . . ak−1ak =
1

n
− 10−k

n
.
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Divide again by 10k:

0. 0 . . . 0︸ ︷︷ ︸
k

a1 . . . ak =
10−k

n
− 10−2k

n
.

Continuing in this way, one gets

0. 0 . . . . . . 0︸ ︷︷ ︸
ik

a1 . . . ak =
10−ik

n
− 10−(i+1)k

n
,

for any i. Now sum over i:

0.a1 . . . aka1 . . . aka1 . . . =
∞∑
i=0

(
10−ik

n
− 10−(i+1)k

n

)
=

(
1

n
− 10−k

n

) ∞∑
i=0

10−ik .

The sums converge because the series on the right is a geometric series. The sum

in the middle telescopes, leaving 1/n, and the left hand side is a repeating decimal

fraction. So
1

n
= 0.a1 . . . aka1 . . . aka1 . . . . (1.1)

Conversely, it is easy to show that if 1/n has a decimal expansion of  this form,

then n divides 10k − 1. The shortest such sequence of  numbers a1, . . . , ak is

called the period of 1/n and k the length of  the period. If  we have any other

expansion for 1/n,
1

n
= 0.b1 . . . blb1 . . . blb1 . . . ,

for some b1, . . . , bl, then we see that l must be a multiple of  the period. So the

answer to our original question is:

Theorem 1.6.

10k − 1 ≡ 0 (mod n)

if  and only if 1/n has a decimal expansion of  the form (1.1) and k is a multiple of  the length

of  the period of 1/n.
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Taking n = 7, we can calculate that

1

7
= 0.142857142857 . . . .

So 1, 4, 2, 8, 5, 7 is the period of 1/7, which has length 6. Then 106−1 = 999999

is divisible by 7, and for no smaller k is 10k − 1 divisible by 7.

1.3 Common Divisors

Recall that d is a common divisor of  two integers a and b (not both 0) if d divides a

and d divides b. The greatest common divisor is the largest one and is written (a, b).

Every common divisor of a and b divides the greatest common divisor. We can

compute (a, b) by the Euclidean algorithm. We divide a by b with a remainder r.

Then we divide b by r with a remainder r1, and so on until we get a remainder 0.

a = qb+ r 0 ≤ r < b

b = q1r + r1 0 ≤ r1 < r

...
...

ri−1 = qi+1ri + ri+1 0 ≤ ri+1 < ri
...

...

rn−2 = qnrn−1 + rn 0 ≤ rn < rn−1

rn−1 = qn+1rn

In chapter 14 we shall see the same algorithm for polynomials.

The reason that this algorithm computes (a, b) is the following:

Lemma 1.7. Let u and v be integers, not both 0. Write

u = qv + r ,

for some integers q and r with 0 ≤ r < |v|. Then

(u, v) = (v, r) .
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Proof. If d is a common divisor of u and v, then d divides r = u − qv and is

therefore a common divisor of v and r. Conversely, if d is a common divisor of

v and r, then d divides u = qv + r and is therefore a common divisor of u and

v. So the greatest common divisor of  the two pairs must be the same.

Applying this to the list of  divisions above we obtain

(ri−1, ri) = (ri, ri+1)

for each i < n. Now the last equation says that rn | rn−1. This means that

(rn−1, rn) = rn .

Therefore arguing by induction,

(ri−1, ri) = rn

for all i, in particular

(a, b) = rn .

The proof  of  the lemma also shows that any common divisor of a and b divides

(a, b).

We can read more out of  the list of  equations. The first equation tells us that r

is a linear combination of a and b. The second one, that r1 is a linear combination

of b and r, and therefore of a and b. The third, that r2 is a linear combination of

r1 and r, and therefore of a and b. Continuing like this, we get that rn is a linear

combination of a and b. Thus there exist integers s and t such that

(a, b) = sa+ tb .

Example 1.8. Take a = 57 and b = 21. Then

57 = 2 · 21 + 15

21 = 15 + 6

15 = 2 · 6 + 3

6 = 2 · 3 .
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Therefore

3 = (57, 21) .

Furthermore

15 = 57− 2 · 21

6 = 21− 15 = −57 + 3 · 21

3 = 15− 2 · 6 = 3 · 57− 8 · 21 .

So we can take s = 3 and t = −8. △

Another way to look at the Euclidean algorithm is as an algorithm which

expresses the rational number a/b as a continued fraction. We have

a

b
= q +

r

b
= q +

1(
b

r

) .

But
b

r
= q1 +

r1
r
,

so
a

b
= q +

1

q1 +
r1

r

= q +
1

q1 +
1(
r

r1

) .

Continuing like this, our list of  equations gives us the continued fraction

a

b
= q +

1

q1 +
1

. . .

qn +
1

qn+1
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In our example, we find that

57

21
= 2 +

1

1 +
1

2 +
1

2

For more about the origins of  the Euclidean algorithm, and its connection with

the rational approximation of  real numbers, see [2]. To read more about contin-

ued fractions in number theory, see [1].

Returning to the greatest common divisor, we say that a and b are relatively

prime if (a, b) = 1, that is, if  they have no common divisors except ±1. Thus, if

a and b are relatively prime, there exist integers s and t such that

1 = sa+ tb .

For example, 16 and 35 are relatively prime and

1 = −5 · 35 + 11 · 16 .

Related to the greatest common divisor of  two integers is their least common

multiple. The least common multiple m of a, b ∈ Z is the smallest common

multiple of a and b, i.e. the smallest natural number which is divisible by both a

and b. We shall write

m = lcm(a, b) .

It is not hard to see that m divides every common multiple of a and b, and that

ab

(a, b)
= lcm(a, b).

In example 1.8 above,

lcm(57, 21) = 57 · 21/3 = 399 .
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1.4 Solving Congruences

It is very useful to be able to solve linear congruences, just the way you solve

linear equations.

Theorem 1.9. If (a, n) = 1, then the congruence

ax ≡ b (mod n)

has a solution which is unique modulo n.

Proof. Write 1 = as+ nt for some integers s and t. Then b = bas+ bnt. Thus

b ≡ abs (mod n)

and x = bs is a solution of  the congruence. If  we have two solutions x and y

then ax ≡ ay (mod n) i.e. n divides ax − ay = a(x − y). Since a and n are

relatively prime, this means that n divides x− y. Thus x ≡ y (mod n).

Example 1.10. Let's solve the congruence

24x ≡ 23 (mod 31) .

First we use the Euclidean algorithm to find integers s and t such that 24s+31t =

1. One such pair is s = −9 and t = 7. Then

23 = 24(23s) + 31(23t)

so that

24(23s) ≡ 23 (mod 31) .

Thus x = −207 ≡ 10 (mod 31) is a solution of  the congruence. We could

also just compute multiples of 24 modulo 31. △

In particular the congruence ax ≡ 1 (mod n) has a solution, unique modulo

n,

if (a, n) = 1. For example, if a = 7 and n = 36, then 5 · 7 ≡ −1 (mod 36).

So −5 ≡ 31 (mod 36) is a solution of 7x ≡ 1 (mod 36).
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Remark 1.11. If n is prime, then all a with a ̸≡ 0 (mod n) are relatively prime

to n and have ``multiplicative inverses'' mod n.

Notice however that

9x ≡ 1 (mod 36)

does not have a solution. For if  such an x did exist we could multiply the con-

gruence by 4 and get

0 ≡ 4 · 9x ≡ 4 (mod 36) .

But 0 − 4 is not divisible by 36. In fact it is true in general, that if a and n are

not relatively prime, then

ax ≡ 1 (mod n)

does not have a solution. For suppose that a = a′d and n = n′d with d > 1.

Then n′a = n′a′d ≡ 0 (mod n) so that

0 ≡ n′ax ≡ n′ ̸≡ 0 (mod n) .

Therefore no such x can exist.

In general we let φ(n) denote the number of  integers a, 0 < a ≤ n, which

are relatively prime to n. For example if p is prime then φ(p) = p− 1.

Later we will also need to solve simultaneous congruences. The result which

tells us that this is possible is called the Chinese Remainder Theorem.

Theorem 1.12. If n1 and n2 are relatively prime, then the two congruences

x ≡ b1 (mod n1) and x ≡ b2 (mod n2)

have a common solution which is unique modulo n1n2.

Proof. A solution of  the first congruence has the form b1 + sn1. For this to be a

solution of  the second congruence, we must have that

b1 + sn1 ≡ b2 (mod n2) or equivalently n1s ≡ b2 − b1 (mod n2) .
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Since (n1, n2) = 1, the previous theorem assures us that such an s exists. If x

and y are two solutions, then x ≡ y (mod n1) and x ≡ y (mod n2), i.e. x− y

is divisible by n1 and by n2. As n1 and n2 are relatively prime, x − y must be

divisible by n1n2. Thus x ≡ y (mod n1n2).

Example 1.13. Solve

x ≡ 14 (mod 24)

x ≡ 6 (mod 31)

.

Solutions of  the first congruence are of  the form 14+24s. So we must solve

14 + 24s ≡ 6 (mod 31)

or equivalently

24s ≡ 23 (mod 31) .

This is the congruence we solved in example 1.10. We saw that s = 10 is a

solution. Therefore x = 254 as a solution of  the two congruences we began

with. △

1.5 The Integers Modulo n

As pointed out in theorem 1.2, congruence modulo n is an equivalence relation.

The equivalence classes are called congruence classes. The congruence class of

an integer a is

ā := a+ nZ := {a+ sn | s ∈ Z}

The set of  all congruences classes is denoted by Z/nZ and called the set of integers

modulo n. Since every integer a is congruent to a unique r satisfying 0 ≤ r < n,

ā contains a unique r, 0 ≤ r < n. Thus there is a one-to-one correspondence
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between Z/nZ and {0, 1, . . . , n − 1}. For example, in Z/2Z there are two

congruence classes:

0 + 2Z = {2s | s ∈ Z},

the even integers, and

1 + 2Z = {1 + 2s | s ∈ Z},

the odd integers. We can define addition on Z/nZ by

ā+ b̄ = a+ b .

Because of  theorem 1.2 this makes sense. You can think of  this as adding two

natural numbers a and b in {0, 1, . . . , n − 1} modulo n, i.e., their sum is the

remainder after division of a+ b by n. This addition in Z/nZ is associative and

commutative:

(ā+ b̄) + c̄ = ā+ (b̄ + c̄)

ā+ b̄ = b̄+ ā .

And

ā+ 0̄ = 0̄

ā+ (−a) = 0̄ .

For example, in Z/10Z,

5̄ + 7̄ = 2̄ , 4̄ + 6̄ = 0̄ .

Multiplication can also be defined on Z/nZ:

ā · b̄ := ab .

As with addition we can think of  this as just multiplication modulo n for two

numbers from {0, 1, . . . , n − 1}. It too is associative and commutative, and 1̄

is the identity element. If (a, n) = 1 then as pointed out in remark 1.6, ā has a
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multiplicative inverse. For example, we checked that in Z/36Z the multiplicative

inverse of 7̄ is 31. We also saw that because 4̄ · 9̄ = 0̄ , 9̄ has no multiplicative

inverse.

We have seen thatZ/nZ, at least whenn is prime, has many formal properties

in common with the set of  real numbers R and complex numbers C. We can

collect these properties in a formal definition.

Definition 1.14. A field F is a set with two binary operations, called 'addition'

and 'multiplication', written + and · respectively, with the following properties (a

binary operation on F is just a mapping F × F → F ):

(i) Addition and multiplication are both associative and commutative;

(ii) For a, b, c ∈ F , a(b+ c) = ab+ ac ;

(iii) There exist distinct elements 0, 1 ∈ F such that for any a ∈ F ,

a+ 0 = a

a · 1 = a .

(iv) For any a ∈ F there exists a unique element, written −a, such that

a+ (−a) = 0,

and for any a ∈ F, a ̸= 0, there exists a unique element, written a−1, such

that

a · a−1 = 1.

These are the formal properties satisfied by addition and multiplication in R
and C, as well as in Z/pZ for p prime. We introduce the notation Fp for Z/pZ.

As pointed out above, if n is not prime, then not all non-zero elements in Z/nZ
have multiplicative inverses, so that in these cases Z/nZ is not a field.
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1.6 Introduction to Software

The main purpose of  this section is to give you a chance to practice using Math-

ematica. It has several functions which are relevant to this section. For making

computations in the integers modulo n there is a built-in function Mod. Thus

In[1]:= Mod[25+87,13]

Out[1]= 8

and

In[2]:= Mod[2^12,7]

Out[2]= 1

A more efficient way of  computing powers modn is to use the function PowerMod:

In[3]:= PowerMod[2,12,7]

Out[3]= 1

For any real number a the function N[a, m] will compute the first m digits

of a. For example,

In[4]:= N[1/7, 20]

Out[4]= 0.14285714285714285714

So we see that the period of 1/7 is 1, 4, 2, 8, 5, 7 , as discussed above. Similarly

In[5]:= N[1/19, 40]
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Out[5]= 0.0526315789473684210526315789473684210526

Thus the period of 1/19 is 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1 , which

has length 18. And

In[6]:= Mod[10^18 - 1, 19]

Out[6]= 0

but for smaller k, 10k − 1 ̸≡ 0 (mod 19). We can do these calculations for all

the primes less than 30 say, and tabulate the results. They confirm theorem 1.6.

prime 3 7 11 13 17 19 23 29

length of  period 2 6 2 6 16 18 22 28
smallest k 2 6 2 6 16 18 22 28

Interestingly

1001 = 103 + 1 = 7 · 11 · 13 ,

so that

103 + 1 ≡ 0 (mod 7) .

Similarly,

In[7]:= Mod[10^9+1, 19]

Out[7]= 0

What do you think is going on? Experiment a bit and try to make a conjecture.

Given a pair of  integers a and b, the function ExtendedGCD will compute

(a, b) and integers s and t such that (a, b) = as+ bt . For example,
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In[8]:= ExtendedGCD[57, 21]

Out[8]= {3,{3,-8}}

This means that 3 = 3 · 57− 8 · 21. If  we want to find the multiplicative inverse

of 105 in F197, we can enter

In[9]:= ExtendedGCD[105, 197]

Out[9]= {1,{-15,8}}

So 1 = −15 · 105+ 8 · 197 and −15 = 182 is the multiplicative inverse of 105.

There is a function called ChineseRemainder which will solve two such

congruences simultaneously. In fact it will solve a system:

x ≡ b1 (mod n1)

...

x ≡ br (mod nr)

Simply enter

In[10]:= ChineseRemainder[{b1, ... , br},{n1, ...
, nr}]

So in our example:

In[11]:= ChineseRemainder[{14, 6},{24, 31}]

Out[11]= 254
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1.7 Exercises

1. On what day of  the week will January 19 fall in the year 2003?

2. Solve the following congruences:

a) 5x ≡ 6 (mod 7)

b) 5x ≡ 6 (mod 8)

c) 3x ≡ 2 (mod 24)

d) 14x ≡ 5 (mod 45) .

3. Solve the following systems of  congruences:

a) 5x ≡ 6 (mod 7) and 5x ≡ 6 (mod 8)

b) 14x ≡ 5 (mod 45) and 4x ≡ 5 (mod 23) .

Check whether the Mathematica function ChineseRemainder gives the same

answers as you get by hand.

4. • For p prime, 0 < k < p, show that

a) (
p

k

)
≡ 0 (mod p) ;

b)

(x+ y)p ≡ xp + yp (mod p) .

5. Prove that a natural number a is divisible by 11 if  and only if  the alternating

sum of  its digits is divisible by 11.

6. Show that 10m + n, 0 ≤ n < 10, is divisible by 13 if  and only if m + 4n is

divisible by 13.
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7. Prove that a rational number m/n, where m and n are integers, n ̸= 0, has a

finite decimal expansion if  and only if  the prime factors of n are 2 and 5.

8. Let n be a natural number. Suppose that 1/n has a decimal expansion of  the

form 0.a1 . . . aka1 . . . aka1 . . . . Prove that n | (10k − 1).

9. For each prime p < 30, find the smallest k ∈ N such that

10k + 1 ≡ 0 (mod p) ,

and compare it with the length of  the period of 1/p.

10. Let p be a prime number, and let k be the length of  the period of 1/p. Suppose

that k = 2l is even. Prove that 10l + 1 is divisible by p, and that 10m + 1

is not divisible by p for any m < l.
(
Suggestion: write 102l − 1 = (10l −

1)(10l + 1).
)

Does this hold true if p is a composite number?

11. • Make a table of φ(n) for n ≤ 20. For p prime, r ≥ 1, calculate φ(pr).

12. Suppose that you have a bucket that holds 57 cups, and one that holds 21

cups. How could you use them to measure out 3 cups of  water?

13. Given integers a and b which are relatively prime, suppose that

sa− tb = 1 ,

for some integers s and t. Suppose that

s′a− t′b = 1 ,

as well, for some integers s′ and t′. Prove that there then exists an integer k

such that

s′ = s+ kb and t′ = t+ ka .

14. Let a and b be two non-zero integers.
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a) Show that lcm(a, b) divides every common multiple of a and b.

b) Suppose that (a, b) = 1. Prove that then lcm(a, b) = ab.

c) Prove that in general

lcm(a, b) =
ab

(a, b)
.

15. Write out addition and multiplication tables for Z/6Z. Which elements have

multiplicative inverses?

16. Write out the multiplication table for Z/7Z. Make a list of  the multiplicative

inverses of  the non-zero elements.

17. How many elements of Z/7Z and Z/11Z are squares? How many elements

of Z/pZ, where p is prime, are squares? Make a conjecture and then try to

prove it.

18. Suppose that n ∈ N is a composite number.

a) Show that there exist a, b ∈ Z with ā, b̄ ̸= 0 ∈ Z/nZ , but āb̄ = 0.

b) Prove that Z/nZ is not a field.

19. • Let

Q(
√
2) = {a+ b

√
2 | a, b ∈ Q} ⊂ R.

Verify that Q(
√
2) is a field.

20. Let

C =

{(
a b
−b a

) ∣∣∣∣ a, b ∈ R
}

Show that C is a field under the operations of  matrix addition and multiplica-

tion.
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21. • Let

Fp2 =

{(
a b
br a

) ∣∣∣∣ a, b ∈ Fp
}

where r ∈ Fp is not a square. Show that under the operations of  matrix

addition and matrix multiplication, Fp2 is a field with p2 elements. Suggestion:

to prove that a non-zero matrix has a multiplicative inverse, use the fact that

the congruence x2 − r ≡ 0 (mod p) has no solution. What happens if r is a

square in Fp?



2
Permutations

2.1 Permutations as Mappings

In the next chapter, we will begin looking at groups by studying permutation

groups. To do this we must first establish the properties of  permutations that we

shall need there. A permutation of  a set X is a rearrangement of  the elements of

X . More precisely

Definition 2.1. A permutation of  a set X is a bijective mapping of X to itself.

A bijective mapping is a mapping that is one-to-one and onto. We are mainly

interested in permutations of  finite sets, in particular of  the sets {1, 2, . . . , n}
where n is a natural number. A convenient way of  writing such a permutation α

is the following. Write down the numbers 1, 2, . . . , n in a row and write down

their images under α in a row beneath:(
1 2 . . . n

α(1) α(2) . . . α(n)

)
.

For example, the permutation α of {1, 2, 3, 4, 5} with α(1) = 3, α(2) =

1, α(3) = 5, α(4) = 2, and α(5) = 4 is written

α =

(
1 2 3 4 5
3 1 5 2 4

)
.

This notation is usually called mapping notation.

23
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We denote by SX the set of  all permutations of  a set X , and by Sn the set of

permutations of {1, 2, . . . , n}. It is easy to count the number of  permutations

in Sn. A permutation can map 1 to any of 1, 2, . . . , n. Having chosen the image

of 1, 2 can be mapped to any of  the remaining n − 1 numbers. Having chosen

the images of 1 and 2, 3 can be mapped to any of  the remaining n− 2 numbers.

And so on, until the images of 1, . . . , n − 1 have been chosen. The remaining

number must be the image of n. So there are n(n − 1)(n − 2) · · · 1 choices.

Thus Sn has n! elements.

If  we are given two permutations α and β of  a set X then the composition

α ◦ β is also one-to-one and onto. So it too is a permutation of  the elements of

X . For example, if α is the element of S5 above, and

β =

(
1 2 3 4 5
2 3 5 1 4

)
,

then

α ◦ β =

(
1 2 3 4 5
1 5 4 3 2

)
.

The entries in the second row are just (α ◦ β)(1), . . . , (α ◦ β)(5). Notice that

β ◦ α =

(
1 2 3 4 5
5 2 4 3 1

)
̸= α ◦ β .

The order in which you compose permutations matters.

Since a permutation is bijective, it has an inverse which is also a bijective

mapping. The inverse of  the element β ∈ S5 above is

β−1 =

(
1 2 3 4 5
4 1 2 5 3

)
.

To compute the entries in the second row, find the number which β maps to 1,

to 2, etc. You can quickly check that

β−1 ◦ β = β ◦ β−1 =

(
1 2 3 4 5
1 2 3 4 5

)
,

which is the identity permutation.
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From now on, for convenience, we are going to write the composition of  two

permutations α and β as a ``product'':

αβ := α ◦ β .

So to calculate (αβ)(i), we first apply β to i and then apply α to the result. In

other words, we read products ``from right to left''.

2.2 Cycles

Let

α =

(
1 2 3 4 5
3 2 4 1 5

)
∈ S5.

So α(1) = 3, α(3) = 4, α(4) = 1 and α fixes 2 and 5. We say that α permutes 1,

3, and 4 cyclically and that α is a cycle or more precisely, a 3-cycle. In general, an

element α ∈ Sn is an r-cycle, where r ≤ n, if  there is a sequence i1, i2, . . . , ir ∈
{1, . . . , n} of  distinct numbers, such that

α(i1) = i2, α(i2) = i3, . . . , α(ir−1) = ir, α(ir) = i1,

and α fixes all other elements of {1, . . . , n}.

Cycles are particularly simple. We shall show that any permutation can be

written as a product of  cycles, in fact there is even a simple algorithm which does

this. Let's first carry it out in an example. Take

α =

(
1 2 3 4 5 6 7 8
2 4 5 1 3 8 6 7

)
.

We begin by looking at α(1), α2(1), . . . . We have

α(1) = 2, α(2) = 4, α(4) = 1.

As our first cycle α1 then, we take the 3-cycle

α1 =

(
1 2 3 4 5 6 7 8
2 4 3 1 5 6 7 8

)
.
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The smallest number which does not occur in this cycle is 3. We see that

α(3) = 5, α(5) = 3.

So take as our second cycle, the 2-cycle

α2 =

(
1 2 3 4 5 6 7 8
1 2 5 4 3 6 7 8

)
.

The smallest number which is left fixed by α1 and α2 is 6. Now

α(6) = 8, α(8) = 7, α(7) = 6.

So let

α3 =

(
1 2 3 4 5 6 7 8
1 2 3 4 5 8 6 7

)
,

The numbers {1, 2, . . . , 8} are all accounted for now, and we see that

α = α3α2α1 .

The cycles are even disjoint, that is, no two have a number in common. This

works in general:

Theorem 2.2. Any permutation is a product of  disjoint cycles.

To see this, let α ∈ Sn. Consider α(1), α2(1), . . . . At some point this

sequence will begin to repeat itself. Suppose that αt(1) = αs(1) where s < t.

Then αt−s(1) = 1. Pick the smallest r1 > 0 such that αr1(1) = 1. Let α1 be

the r1-cycle given by the sequence

1, α(1), α2(1), . . . , αr1−1(1)

Now pick the smallest number i2 ̸= αi(1) for any i. Considerα(i2), α2(i2), . . ..

Again pick the smallest r2 such that αr2(i2) = i2 and let α2 be the r2-cycle given

by the sequence

i2, α(i2), α
2(i2), . . . , α

r2−1(i2).
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Continuing this way we find cycles α1, α2, . . . , αk such that

α = αk · · ·α2α1 .

And these cycles are disjoint from one another.

At this point it is convenient to introduce cycle notation. If α ∈ Sn is an r-cycle

then there exist i1, . . . , ir ∈ {1, . . . , n} distinct from one another such that

α(ik) = ik+1 , for 1 ≤ k < r , α(ir) = i1 , α(j) = j otherwise .

Then we write

α = (i1 i2 · · · ir) .

So in the example above,

α1 = (1 2 4) , α2 = (3 5) , α3 = (6 8 7) .

And in cycle notation, we write

α = (1 2 4)(3 5)(6 8 7) .

We do not write out 1-cycles, except with the identity permutation, which is writ-

ten (1) .

The order in which you write the cycles in a product of  disjoint cycles does

not matter for the following reason:

Theorem 2.3. Disjoint cycles commute with each other.

To see this, suppose that α, β,∈ Sn are disjoint cycles given by

α = (i1 · · · ir) , β = (j1 · · · js) .

Then 
α(β(j)) = j = β(α(j)), for j /∈ {i1, . . . , ir, j1, . . . , js},
α(β(ik)) = ik+1 = β(α(ik)), for 1 ≤ k ≤ r,

α(β(jk)) = jk+1 = β(α(jk)), for 1 ≤ k ≤ s.
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It is understood that ir+1 := i1 and js+1 := j1.

A 2-cycle is called a transposition. Any cycle can be written as a product of

transpositions. For example,

(1 2 3 4) = (1 4)(1 3)(1 2) .

or equally well,

(1 2 3 4) = (1 2)(2 4)(2 3) .

In general, if (i1 i2 · · · ir) ∈ Sn, then

(i1 i2 · · · ir) = (i1 ir) · · · (i1 i3)(i1 i2) .

Combining this with the theorem above, we see that

Theorem 2.4. Any permutation can be written as a product of  transpositions.

For example(
1 2 3 4 5 6 7 8
2 4 5 1 3 8 6 7

)
= (1 2 4)(3 5)(6 8 7) = (1 4)(1 2)(3 5)(6 7)(6 8) .

Actually this theorem is intuitively obvious. If  you want to reorder a set of

objects, you naturally do it by switching pairs of  them.

2.3 Sign of  a Permutation

In writing a permutation as a product of  transpositions, the number of  transpo-

sitions is not well-defined. For example,

(2 3)(1 2 3) = (2 3)(1 3)(1 2)

and

(2 3)(1 2 3) = (1 3) .
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However the parity of  this number does turn out to be well-defined: the permu-

tation can be written as the product of  an even number or an odd number of

transpositions, but not both.

To see this, let A be a real n × n matrix and α ∈ Sn. Let Aα denote the

matrix obtained from A by permuting the rows according to α. So the first row

of Aα is the α(1)th row of A, the second row of Aα is the α(2)th row of A, and

so on. This is sometimes called a row operation on A. Recall that

Aα = IαA ,

where I is the identity matrix. In particular, taking A = Iβ ,

(Iβ)α = IαIβ .

Now (Iβ)α = Iαβ (because we are reading products from right to left). So

Iαβ = IαIβ ,

and therefore

det(Iαβ) = det(Iα) det(Iβ) .

If α is a transposition, then

det(Iα) = −1 .

(Interchanging two rows of  a determinant changes its sign.) So if α is the product

of r transpositions, then

det(Iα) = (−1)r .

The left hand side depends only on α and the right hand side only depends on

the parity of r.

We define the sign of α, written sgnα by

sgnα := det(Iα) .

A permutation α is even if sgnα is 1, i.e. if α can be written as a product of  an

even number of  transpositions, and odd if sgnα is −1. Thus the product of  two

even permutations is even, of  two odd ones even, and of  an even one and an odd

one odd.
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2.4 Exercises

1. For the permutation

α =

(
1 2 3 4 5
3 1 5 2 4

)
,

compute α2 and α3. What is the smallest power of α which is the identity?

2. • In S3, let

α =

(
1 2 3
2 3 1

)
, β =

(
1 2 3
2 1 3

)
.

Compute α2, α3, β2, αβ, α2β. Check that these together with α and β are

the six elements of S3. Verify that

α2 = α−1 , β = β−1 , α2β = βα.

3. • Suppose that α and β are permutations. Show that (αβ)−1 = β−1α−1

4. How many 3-cycles are there in S4? Write them out.

5. How many 3-cycles are there in Sn for any n? How many r-cycles are there

in Sn for an arbitrary r ≤ n?

6. Prove that if α is an r-cycle, then αr is the identity permutation.

7. Two permutations α and β are said to be disjoint if α(i) ̸= i implies that

β(i) = i and β(j) ̸= j implies that α(j) = j. Prove that disjoint permuta-

tions commute with one another.

8. Write the following permutations as products of  cycles:
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a) (
1 2 3 4 5 6 7 8 9
4 6 7 1 5 2 8 3 9

)
b) (

1 2 3 4 5 6 7 8 9
6 1 7 5 4 2 8 9 3

)

9. Write the two permutations in the previous exercise as products of  transposi-

tions.

10. Show that the inverse of  an even permutation is even, of  an odd permutation

odd.





3
Permutation Groups

3.1 Definition

Suppose you have a square and number its vertices.

.

.1.2

.3 .4

Each symmetry of  the square permutes the vertices, and thus give you an element

of S4. We can make a table showing the 8 symmetries of  the square and the

corresponding permutations:

Symmetry Permutation

rotation counterclockwise through π/2 (1 2 3 4)
rotation counterclockwise through π (1 3)(2 4)
rotation counterclockwise through 3π/2 (1 4 3 2)
identity map (1)
reflection in diagonal through 1 and 3 (2 4)
reflection in diagonal through 2 and 4 (1 3)
reflection in vertical axis (1 2)(3 4)
reflection in horizontal axis (1 4)(2 3)

33



34 CHAPTER 3. PERMUTATION GROUPS

Let D4 ⊂ S4 denote the set of  permutations in the right-hand column,

D4 = {(1 2 3 4), (1 3)(2 4), (1 4 3 2), (1), (2 4), (1 3), (1 2)(3 4), (1 4)(2 3)} .

Now the set of  all symmetries of  the square has the following two properties:

(i) the composition of  two symmetries is a symmetry;

(ii) the inverse of  a symmetry is a symmetry.

And it is easy to see that under the correspondence above, products map to

products. So the set D4 will have the same properties. You can also check this

directly. Sets of  permutations with these algebraic properties are called permuta-

tion groups. As we shall see they arise in many contexts.

Definition 3.1. A non-empty set of  permutations G ⊂ Sn is called a permutation

group (of  degree n) if  for all α, β ∈ G

(i) αβ ∈ G

(ii) α−1 ∈ G .

Sn itself  is a permutation group, called the full permutation group (of  degree n)

or symmetric group (of  degree n). Another example is

V ′ = {(1 2), (3 4), (1 2)(3 4), (1)} ⊂ S4 .

We see that

(1 2)(3 4) · (1 2) = (1 2) · (1 2)(3 4) = (3 4)

(1 2)(3 4) · (3 4) = (3 4) · (1 2)(3 4) = (1 2)

(3 4) · (1 2) = (1 2) · (3 4) = (1 2)(3 4)

(1 2)2 = (3 4)2 =
(
(1 2)(3 4)

)2
= (1)(

(1 2)(3 4)
)−1

= (1 2)(3 4) , (1 2)−1 = (1 2) , (3 4)−1 = (3 4) .
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So V ′ is a permutation group. With appropriate software it is easy to check

whether a set of  permutations is a permutation group. This will be explained

below.

Let An ⊂ Sn denote the set of  all even permutations. In chapter 2, it was

pointed out that the product of  two even permutations is even and that the inverse

of  an even permutation is also even. ThereforeAn is a permutation group, called

the alternating group (of  degree n). Of  the 6 elements of S3, 3 are even: the two

3-cycles and the identity. Thus

A3 = {(1), (1 2 3), (1 3 2)}.

The number of  elements in a permutation group G is called the order of G,

written |G|. Thus |Sn| = n!, |A3| = 3 and |V ′| = 4.

3.2 Cyclic Groups

There is a very simple class of  permutation groups. You construct them in the fol-

lowing way. Take any α ∈ Sn, for some n. Consider the powers of α: α, α2, . . ..

Since Sn is finite, at some point an element in this list will be repeated. Suppose

that

αt = αs, for some s < t.

Then multiplying both sides by α−s, we see that

αt−s = (1) .

Let r be the smallest natural number such that

αr = (1) .

Set

G = {(1), α, . . . , αr−1} ⊂ Sn.

Now check that G is a permutation group: we have

(αi)−1 = α−i = αr−i for any i, 1 ≤ i < r.
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and

αiαj = αi+j = αk, where i+ j ≡ k (mod r), 0 ≤ k < r .

G is called the cyclic permutation group generated by α and will be denoted by

⟨α⟩. It has order r. As you can imagine there is a connection between a cyclic

permutation group of  order r and the integers mod r. This will be made clear in

theorem 6.2.

Examples 3.2.

(i) Take α = (1 2). Since (1 2)2 = (1), {(1), (1 2)} is a cyclic permutation

group of  order 2.

(ii) Take α = (1 2 3). Since (1 2 3)3 = (1) , and (1 2 3)2 = (1 3 2),

{(1), (1 2 3), (1 3 2)} is a cyclic permutation group of  order 3. In fact this

group is the alternating group of  degree 3, A3.

These examples suggest that the cyclic permutation group generated by an

r-cycle should have order r. Indeed, if

α = (i1 i2 · · · ir),

then αr = (1), but for j < r, αj(i1) = ij ̸= i1, so that αj ̸= (1). Therefore

the cyclic permutation group generated by α does have order r.

Definition 3.3. The order of  a permutation α, written |α|, is the order of  the

cyclic permutation group ⟨α⟩ generated by α, or equivalently, the smallest r ∈ N
such that αr = (1)

Remark 3.4. Suppose thatαs = 1, for some s ∈ N. Let r = |α|. Write s = qr+t,

for some q, t ∈ Z where 0 ≤ t < r. Then

(1) = αs = αqr+t = αt.

But then by the definition of |α| we must have t = 0. So r divides s.
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Example 3.5. Suppose we write α as a product of  disjoint cycles,

α = α1α2 · · ·αk

where αi is an ri-cycle. Suppose αs = 1, for some s. Since α1, α2, . . . , αk are

disjoint cycles, this implies that

αsi = (1)

for all i, 1 ≤ i ≤ k. (Check this!) But then by the remark above, ri divides s for

all i. So s is a common multiple of  these orders. And therefore the order of α is

the least common multiple of r1, r2, . . . , rk. △

3.3 Generators

The group V ′ above is not cyclic. Each of  its elements has order 2 except for the

identity. There is no element of  order 4. However our calculation showed that if

we begin with (1 2) and (3 4) say, we can express the remaining two elements of

V ′ in terms of  them. Similarly, in exercise 2.2 we saw that every element of S3

can be written in terms of (1 2) and (1 2 3). We say that V ′ or S3 is generated by

{(1 2)(3 4), (1 3)(2 4)}, respectively {(1 2), (1 2 3)}. In general a permutation

group G is said to be generated by a subset g ⊂ G if  every element in G can be

written as a product of  elements of g.

Theorem 2.4 tells us that the set of  all transpositions generates Sn. This is

a relatively large set: there are
(
n
2

)
transpositions in Sn. In fact the set of n − 1

transpositions

g = {(1 2), (2 3), · · · , (n− 1 n)}

will do. To see this we just need to convince ourselves that any transposition can

be expressed in terms of  transpositions in g. Because every permutation can be

written in terms of  transpositions, it follows then that every permutation can be
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written in terms of  elements of g. Well, take a transposition (i j), where i < j.

We have

(i j) = (j − 1 j)(j − 2 j − 1) · · · (i i+ 1) · · · (j − 2 j − 1)(j − 1 j) .

But we can do even better than that. Just as in the case of S3, we can generate

Sn using just one transposition and one n-cycle. Let

α = (1 2) , β = (1 2 · · · n) .

Then for 1 < i < n,

(i i+ 1) = βi−1αβ−i+1 = βi−1αβn−i+1 .

So every transposition in g and therefore every permutation can be written in

terms of α and β and thus {α, β} generates Sn.

In practice, it is very clumsy to describe a permutation group by listing all

its elements. In fact for a permutation group of  any moderately large size it is

impossible -- try writing out all the elements of S10! A more convenient way is

to give a set of  generators for it. So suppose we begin with a set of  permutations

g ⊂ Sn for some n. What do we mean by the permutation group G generated by g ?

In some sense G is the set of  all permutations which can be expressed in terms

of  elements of g. The following theorem makes this more precise.

Theorem 3.6. Let G be the smallest permutation group containing g. Then

G =
∞∪
i=0

gi

The set gi is the set of  all products of i elements of g, i.e.

gi = {α1α2 · · ·αi | α1, α2, . . . , αi ∈ g} .

Proof. Let H denote the right hand side. If G is a permutation group containing

g, then gi ⊂ G for all i. So H is contained in any such G. We just need to
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convince ourselves that H is a permutation group. Well, the product of  any two

elements in H lies in H . And if α ∈ g, then as we saw in the previous section,

α−1 ∈ gi for some i. But for any α1, . . . , αi ∈ g, (α1 · · ·αi)−1 = α−1
i · · ·α−1

1

(cf. exercise 2.3). So the inverse of  any element in H also lies in H . Thus H is a

permutation group and therefore G = H .

Now we can make our definition:

Definition 3.7. The permutation group generated by a set of  permutations g is

the smallest permutation group containing g or equivalently, the set of  products

G =
∞∪
i=0

gi .

For computational purposes this description is very inefficient. A simple

algorithm which allows one to compute the elements of  the permutation group

generated by g, provided that the degree of g is small, is given in the exercises.

Example 3.8. Let's look at more permutation groups of  degree 4. First there

are the cyclic permutation groups. In S4 there are five different types of  per-

mutations: the identity, 2-cycles, 3-cycles, 4-cycles and products of  two disjoint

2-cycles. The last have order 2. Non-cyclic groups that have already been men-

tioned are S4 itself  and A4. There are also four copies of S3: take the full group

of  permutations of  any three of 1, 2, 3, 4. As well there is the permutation group

V ′ mentioned at the beginning of  the chapter. Another permutation group of

order 4, which looks similar to V ′, is

V = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} .

All non-trivial elements have order 2 and any two of  them generate V . Notice

that V ⊂ A4. There is also a permutation group of  order 8 called D4, generated

by {(1 2 3 4), (1 2)(3 4)}. This is in fact the permutation group corresponding

to the symmetries of  a square, mentioned at the beginning of  the chapter. There

are actually several copies of  this permutation group, depending on the choice of

4-cycle you make. △
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3.4 Software and Calculations

The package ``Groups.m'' can be used to make useful calculations in permutation

groups. To start, you must load it:

In[1]:= << Groups.m;

Next you have to know how our notation for permutations is implemented. In

this package, a permutation (in mapping notation) is given by the list of  its images

with the header, M. For example(
1 2 3 4 5 6
2 4 1 6 3 5

)
is represented by

M[2,4,1,6,3,5]

You can name this permutation:

In[2]:= a = M[2,4,1,6,3,5]

Out[2]=
(
1 2 3 4 5 6
2 4 1 6 3 5

)
If  b is another permutation then the product ab is given by

a.b

For example if

In[3]:= b = M[4,2,3,6,1,5]

Out[3]=
(
1 2 3 4 5 6
4 2 3 6 1 5

)



3.4. SOFTWARE AND CALCULATIONS 41

then entering

In[4]:= a.b

Out[4]=
(
1 2 3 4 5 6
6 4 1 5 2 3

)

To find the inverse of  a, enter

In[5]:= Inverse[a]

Out[5]=
(
1 2 3 4 5 6
3 1 5 2 6 4

)
A permutation in cycle notation is written as the list of  its cycles, which are in

turn lists, and is preceded by the header P. For example (1 2)(3 4 5) is represented

by

P[{1,2},{3,4,5}]

You can take products and inverses using cycle notation just as with mapping

notation:

In[6]:= P[{1,2},{3,4,5}].P[{1,2,3,4,5}]

Out[6]= (2 4 3 5)

In[7]:= Inverse[ P[{1,2},{3,4,5}] ]

Out[7]= (1 2)(3 5 4)
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Output is in standard mathematical cycle notation.

You can apply these functions to lists of  permutations. When you take the

product of  two lists of  permutations, the product of  every permutation in the

first list with every one in the second will be computed: for example

In[8]:= {a,b}.{a,b}

Out[8]=
{ (

1 2 3 4 5 6
2 6 4 5 3 1

)
,
(
1 2 3 4 5 6
4 6 2 5 1 3

)
,
(
1 2 3 4 5 6
6 2 3 5 4 1

)
,(

1 2 3 4 5 6
6 4 1 5 2 3

) }
These functions are useful for checking whether a set of  permutations form a

group. For example let

In[9]:= G = {M[2,3,1,5,4], M[4,1,2,5,3], M[1,3,5,2,4],
M[2,1,3,4,5], M[1,2,3,4,5]}

Out[9]=
{ (

1 2 3 4 5
2 3 1 5 4

)
,
(
1 2 3 4 5
4 1 2 5 3

)
,
(
1 2 3 4 5
1 3 5 2 4

)
,(

1 2 3 4 5
2 1 3 4 5

)
,
(
1 2 3 4 5
1 2 3 4 5

) }

In[10]:= Inverse[G]

Out[10]=
{ (

1 2 3 4 5
3 1 2 5 4

)
,
(
1 2 3 4 5
2 3 5 1 4

)
,
(
1 2 3 4 5
1 4 2 5 3

)
,(

1 2 3 4 5
2 1 3 4 5

)
,
(
1 2 3 4 5
1 2 3 4 5

) }
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So (
1 2 3 4 5
2 3 1 5 4

)−1

=

(
1 2 3 4 5
3 1 2 5 4

)
is not in the set G and therefore G is not a permutation group.

The function Group calculates the permutation group generated by a given

set of  permutations. All computations take place in Sn where n is the largest

number occurring in the cycles in the input. The algorithm used is the one given

in exercise 3.8. For example, the permutation groupG = ⟨(1 2 3 4 5), (1 2)(3 5)⟩
is given by

In[11]:= G = Group[ P[{1, 2, 3, 4, 5}] , P[{1,2},{3,5}]
]

Out[11]= ⟨ (1 2 3 4 5), (1 2)(3 5) ⟩

To see a list of  the elements in G, you use the function Elements:

In[12]:= Elements[G]

Out[12]= {(1), (1 2 3 4 5), (1 3 5 2 4), (1 4 2 5
3), (1 5 4 3 2),
(1 2)(3 5), (1 3)(4 5), (1 4)(2 3), (1
5)(2 4),
(2 5)(3 4)}

The function Generators will print out the generators of G again:

In[13]:= Generators[G]

Out[13]= {(1 2 3 4 5), (1 2)(3 5)}

The order of  the permutation group is given by the function Order:
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In[14]:= Order[G]

Out[14]= 10

We can verify by computation that (1 2) and (1 2 3 4 5 6) generate S6:

In[15]:= Order[ Group[ P[1,2], P[1,2,3,4,5,6] ] ]

Out[15]= 720

Since 6! = 720, they do generate S6.

Let's look for generators of A4, which is also not cyclic. We know that the

even permutations of  degree 4 are the 3-cycles, the products of  two disjoint trans-

positions and the identity. We first try two 3-cycles:

In[16]:= Order[ Group[ P[{1,2,3}], P[{2,3,4}] ] ]

Out[16]= 12

It is not hard to show that the order ofAn is n!/2 (see exercise 11). Therefore the

two 3-cycles do generate A4. How about a 3-cycle and a product of  two disjoint

transpositions?

In[17]:= Order [ Group[ P[{1,2,3}], P[{1,2},{3,4}]
] ]

Out[17]= 12

These two appear to generateA4 as well. Let's see how these calculations extend

to A5. We could use two 3-cycles again. But that would not work in A6. So we

shall try with a 5-cycle and a 3-cycle:
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In[18]:= Order [ Group[ P[{1,2,3,4,5}], P[{1,2,3}]
] ]

Out[18]= 60

And 60 is the order of A5. We now try a 5-cycle and a product of  two disjoint

transpositions:

In[19]:= Order[ Group[ P[{1,2,3,4,5}], P[{1,2},{3,4}]
] ]

Out[19]= 60

This works too. Do these calculations extend to A6? Do they generalize to An ,

for arbitrary n?

3.5 Exercises

1. Does the set of  all odd permutations form a permutation group?

2. Verify the identity

α−i = αr−i for any i, 1 ≤ i < r.

for a permutation α of  order r.

3. Verify the identity

(i j) = (j − 1 j)(j − 2 j − 1) · · · (i i+ 1) · · · (j − 2 j − 1)(j − 1 j) .

for i < j.
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4. Show that the set of n− 1 transpositions

{(1 2), (1 3), · · · , (1n)}

generates Sn.

5. We have mentioned permutation groups of  degree 3, of  order 1, 2, 3, and 6.

Do any exist of  order 4 or 5?

6. Show that the permutation group generated by a set of  permutations g ⊂ Sn

is the smallest set G ⊂ Sn containing g such that gG ⊂ G.

7. Apply the algorithm in the exercise below to the set

g = {(1 2 3), (2 3 4)} .

List the values of h and G at each stage.

8. Prove that the following algorithm terminates with G the permutation group

generated by g (cf.[3], exercise 3.3.13).

a) Set G = {(1)} and h = {(1)}.

b) Set h = hg \G .

c) If h = ∅ , stop.

d) Set G = G ∪ h and go to step (b).

9. Check whether the following sets of  permutations form permutation groups.

a) A={M[2,3,1,5,4],M[4,1,2,5,3],M[1,3,5,2,4],M[2,1,3,4,5],M[1,2,3,4,5]}

b) B={M[1,2,3,4],M[2,1,4,3],M[3,4,1,2],M[4,3,2,1]}

c) G={M[1, 2, 3, 4, 5], M[1, 5, 4, 3, 2], M[2, 1, 5, 4, 3], M[2, 3, 4, 5, 1],

M[3, 2, 1, 5, 4], M[3, 4, 5, 1, 2], M[4, 3, 2, 1, 5], M[4, 5, 1, 2, 3],

M[5, 1, 2, 3, 4], M[5, 4, 3, 2, 1]}
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10. a) Find as many different types of  permutation groups of  degree 5 as you

can. Describe them in terms of  generators rather then listing all the

elements.

b) Make a list of  the orders of  all the permutation groups you found in (a).

What do these integers have in common?

11. What is the order of An?

12. • Verify that the set of 3-cycles generates A4, A5 and A6. Can you prove that

this is true for any n ≥ 3?

13. a) Find two permutations which generateA6. Find two which generateA7.

b) Do your results generalize to An for any n? Make a conjecture and try

to prove it.





4
Linear Groups

4.1 Definitions and Examples

Think of  the set of  all rotations about the origin in the Euclidean plane. Let α(t)

denote the rotation through the angle t counterclockwise. It can be represented

by the matrix (
cos t − sin t
sin t cos t

)
.

If  we multiply two such rotations together we get another rotation, and the in-

verse of  a rotation is also a rotation. In fact,

α(t)α(t′) = α(t+ t′) α(t)−1 = α(−t) .

So if  we set

G = {α(t) | t ∈ R} ,

we get a collection of  real 2×2 matrices which has the same algebraic properties

as a permutation group. Such sets of  square matrices are called linear groups. We

want to allow matrices with coefficients in an arbitrary field.

An m× n matrix defined over a field F is a rectangular array
a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn



49



50 CHAPTER 4. LINEAR GROUPS

where aij ∈ F for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Matrix multiplication and addition

can be defined just as in the case F = R. And they have the same formal

properties. We denote by M(m,n, F ) the set of  all m × n matrices over F ,

by M(n, F ) the set of  all n × n matrices, and by GL(n, F ) the subset of  all

invertible matrices in M(n, F ).

Definition 4.1. A linear group G is a non-empty set of  matrices in GL(n, F )

such that

(i) if α, β ∈ G, then αβ ∈ G;

(ii) if α ∈ G, then α−1 ∈ G .

ThusGL(n, F ) itself  is a linear group, called the general linear group (of  degree

n over F ). Another simple example is the special linear group which is defined by

SL(n, F ) := {α ∈ GL(n, F ) | detα = 1}.

The determinant of  a matrix α ∈M(n, F ) is defined just as for F = R and has

the same basic properties. Now for α, β ∈ SL(n, F ),

det(αβ) = detα det β = 1

det(α−1) = (detα)−1 = 1

Thus SL(n, F ) is also a linear group.

We are particularly interested in linear groups over the finite fields Fp. If

a linear group G is finite then the order of G, written |G|, is defined to be the

number of  elements of G. If G is infinite, we write |G| = ∞.

Examples 4.2. (i) For any field F let

T =

{(
1 b
0 1

) ∣∣∣∣ b ∈ F

}
⊂ GL(2, F ) .

There is a one-to-one correspondence between F itself  and T . Under this

correspondence addition in F corresponds to matrix multiplication in T .

It follows that T is a linear group.
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(ii) Let N(p) be the set of  upper triangular matrices in GL(2,Fp),

N(p) =

{(
a b
0 d

) ∣∣∣∣ a, b, d ∈ Fp, ad ̸= 0

}
⊂ GL(2,Fp) .

It is easy to see that N(p) is a linear group of  order p(p− 1)2.

(iii) Let

G(p) =

{(
a b
br a

) ∣∣∣∣ a, b ∈ Fp, a2 − b2r ̸= 0

}
⊂ GL(2,Fp)

where r ∈ Fp is not a square. It is easy to check that the product of  two

matrices in G(p) lies in G(p), as does the inverse of  any matrix in G(p).

So G(p) is a linear group.

To compute its order we have to know precisely which matrices have non-

zero determinant. Now the determinant of  such a matrix is a2 − b2r. So

first we solve the congruence

a2 − b2r ≡ 0 (mod p) .

If b ̸≡ 0 (mod p) then multiplying by b−2 we get

(ab−1)2 − r ≡ 0 (mod p) .

But then x = ab−1 would be a solution of

x2 ≡ r (mod p)

This has no solutions since r is not a square mod p. Thus we must have

b ≡ 0 (mod p), which means that a2 ≡ 0 (mod p) and hence a ≡ 0

(mod p). Therefore the only solution of  our original quadratic congruence

is the trivial one, a = b = 0. It follows that

G(p) =

{(
a b
br a

) ∣∣∣∣ a, b ∈ Fp, a ̸= 0 or b ̸= 0

}
This tells us that

|G| = p2 − 1 .
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(iv) Let's compute the order ofGL(2,Fp). The number of  matrices inM(2,Fp)
is p4. One of  these is in GL(2,Fp) if  and only if  it has rank 2. We need to

determine how many matrices have rank less than 2. A matrix has rank less

than 2 if  and only if  its column vectors are linearly dependent, i.e. if  and

only if  one is a multiple of  the other. Now for the first column there are

p2 possible choices. For each of  these, except (0, 0), there are p distinct

multiples, i.e. possibilities for the second column. This gives (p2 − 1)p

possible matrices in all. If  the first column is (0, 0), then the second col-

umn can be any vector. This gives another p2 possibilities. So in all there

are

(p2 − 1)p+ p2 = p3 + p2 − p

matrices of  rank less than 2. Therefore the order of GL(2,Fp) is

p4 − p3 − p2 + p = (p− 1)2p(p+ 1) .

4.2 Generators

As for permutations, we can define the order |α| of  an element α of  a linear

group to be the smallest n ∈ N such that αn = 1. If  there is no such n, then we

say that α has infinite order, and write |α| = ∞. In example (i), let

α =

(
1 1
0 1

)
.

Then

αb =

(
1 b
0 1

)
.

for any b ∈ Z. If F = Fp, then

|α| = p .
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But if F = Q, then

|α| = ∞ .

Two more examples: for any field F ,(
0 1
1 0

)
∈ GL(2, F )

has order 2. In GL(2,F5), (
1 0
0 2

)
has order 4 because 24 = 1 in F5, but 22, 23 ̸= 1.

If  the order of  a matrix α is infinite, then α−1 is not a positive power of α.

So in defining a cyclic linear group, we must include powers of α−1.

Definition 4.3. Let α ∈ GL(n, F ) for some field F . The cyclic linear group

generated by α is the linear group ⟨α⟩ := {αb | b ∈ Z}.

As in permutation groups, we see that the order of  an element α is the order

of ⟨α⟩. In general we say that a linear groupG is generated by a set g ⊂ G if  every

element of G can be written as a product of  elements of g and their inverses.

Example 4.4. Using row and column operations we can find generators for

GL(2, F ). These operations work over an arbitrary field F in exactly the same

way as over R. We begin with a matrix(
a b
c d

)
, a, b, c, d ∈ F, ad− bc ̸= 0 .

By interchanging the rows or the columns we can ensure that a ̸= 0. This means

we multiply on the left or on the right by the matrix(
0 1
1 0

)
.

Next, we add a multiple of  the first row to the second to eliminate the entry c.

This means multiplying on the left by a matrix of  the form(
1 0
x 1

)
, x ∈ F .
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We now have a matrix which looks like(
a b
0 d

)
, ad ̸= 0 .

The next step is to eliminate the entry b. To do this, we add a multiple of  the first

column to the second. This means multiplying on the right by a matrix(
1 y
0 1

)
, y ∈ F .

We are left with a diagonal matrix which looks like(
a 0
0 d

)
=

(
a 0
0 1

)(
1 0
0 d

)
, a, d ∈ F \ {0} .

So any matrix in GL(2, F ) can be written as a product of  matrices(
a 0
0 1

)
,

(
1 0
0 d

)
,

(
1 0
c 1

)
,

(
1 b
0 1

)
,

(
0 1
1 0

)
, a, d ∈ F\{0} , b, c ∈ F .

But we can do better:(
0 1
1 0

)(
1 c
0 1

)(
0 1
1 0

)
=

(
1 0
c 1

)
and (

0 1
1 0

)(
d 0
0 1

)(
0 1
1 0

)
=

(
1 0
0 d

)
.

So all we need are matrices(
a 0
0 1

)
,

(
1 b
0 1

)
,

(
0 1
1 0

)
, a ∈ F \ {0} , b ∈ F .

This is our set of  generators of GL(2, F ), for any field F . If F = Fp, then we

can reduce the number of  generators further. As we mentioned before(
1 b
0 1

)
=

(
1 1
0 1

)b
for b ∈ Z. Thus{(

1 1
0 1

)
,

(
0 1
1 0

)
,

(
a 0
0 1

) ∣∣∣∣ a ∈ Fp \ {0}
}
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generates GL(2,Fp). It can be shown that{(
a 0
0 1

) ∣∣∣∣ a ∈ F \ {0}
}

is a cyclic linear group (see chapter 14). So in fact you can find a set of 3 matrices

which generates GL(2,Fp). For example, take p = 5. In F5 we have 22 =

4, 23 = 3, 24 = 1. Thus every non-zero element of F5 is a power of 2. So every

matrix of  the form (
a 0
0 1

)
=

(
2 0
0 1

)i
for some i. Therefore {(

1 1
0 1

)
,

(
0 1
1 0

)
,

(
2 0
0 1

)}
(4.1)

generates GL(2,F5). △

This discussion has actually given us an algorithm for expressing a matrix in

GL(2, F ) in terms of  these generators. Let's apply it to the matrix(
0 2
3 1

)
∈ GL(2,F5) .

To begin we must have a non-zero entry in the upper left-hand corner. So we

will interchange columns, or equivalently, multiply the given matrix on the right

by (
0 1
1 0

)
.

This gives us (
0 2
3 1

)(
0 1
1 0

)
=

(
2 0
1 3

)
.

Next we add 2(row 1) to row 2 to eliminate the first entry:(
1 0
2 1

)(
2 0
1 3

)
=

(
2 0
0 3

)
.

So (
1 0
2 1

)(
0 2
3 1

)(
0 1
1 0

)
=

(
2 0
0 3

)
,
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or (
0 2
3 1

)
=

(
1 0
2 1

)−1(
2 0
0 3

)(
0 1
1 0

)−1

=

(
1 0
3 1

)(
2 0
0 3

)(
0 1
1 0

)
. (4.2)

Now (
1 0
3 1

)
=

(
0 1
1 0

)(
1 3
0 1

)(
0 1
1 0

)
=

(
0 1
1 0

)(
1 1
0 1

)3(
0 1
1 0

)
.

And (
2 0
0 3

)
=

(
2 0
0 1

)(
1 0
0 3

)
=

(
2 0
0 1

)(
0 1
1 0

)(
3 0
0 1

)(
0 1
1 0

)
=

(
2 0
0 1

)(
0 1
1 0

)(
2 0
0 1

)3(
0 1
1 0

)
.

Finally, we can substitute the last two calculations into equation (4.2):(
0 2
3 1

)
=

(
0 1
1 0

)(
1 1
0 1

)3(
0 1
1 0

)(
2 0
0 1

)(
0 1
1 0

)(
2 0
0 1

)3

.

So we have now written the given matrix in terms of  the generators (4.1).

Given g ⊂ GL(n, F ), for some field F and some natural number n, the

linear group generated by g, written ⟨g⟩, is the smallest linear group containing

g. If F is finite then definition 3.7 and the remarks with it apply, as does the

algorithm for computing ⟨g⟩.

4.3 Software and Calculations

The package 'Groups.m' also allows you to make calculations with linear groups

over a field Fp. After loading the package, you must first choose a prime with

the function ChoosePrime . For example
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In[1]:= << Groups.m;

In[2]:= ChoosePrime[11]

Out[2]= 11

All your calculations will then be modulo this prime. You can change it at any

time, but if  you do not make a choice none of  the functions will evaluate. Matrices

are usually represented in Mathematica as lists of  lists. In this package, however,

such a representation is wrapped with L[] in order to give a mechanism for

reducing modulo the chosen prime at each step in the calculations. (As well it

avoids confusion with permutations in cycle notation which are also represented

in Mathematica as lists of  lists). For example, the general 2× 2 matrix(
a b
c d

)
which is usually represented in Mathematica as

{{a, b}, {c, d}} ,

is represented in this package as

L[{a, b}, {c, d}] .

The same functions you used with permutation groups are defined for linear

groups. For example if

In[3]:= a = L[{1,2},{3,4}]

Out[3]=
(
1 2
3 4

)

In[4]:= b = L[{6,3},{7,5}]
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Out[4]=
(
6 3
7 5

)
then

In[5]:= Inverse[a]

Out[5]=
(
9 1
7 5

)

In[6]:= a.b

Out[6]=
(
9 2
2 7

)
Now suppose

In[7]:= ChoosePrime[7]

Out[7]= 7

and

In[8]:= G = { L[{1,1},{1,2}], L[{2,3},{4,1}],
L[{2,6},{6,1}], L[{1,0},{0,1}],
L[{2,1},{6,4}] }

Out[8]=
{ (

1 1
1 2

)
,
(
2 3
4 1

)
,
(
2 6
6 1

)
,
(
1 0
0 1

)
,(

2 1
6 4

) }
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Then

In[9]:= Inverse[G]

Out[9]=
{ (

2 6
6 1

)
,
(
2 1
6 4

)
,
(
1 1
1 2

)
,
(
1 0
0 1

)
,(

2 3
4 1

) }
So G is closed under taking inverses. Let's check whether it is closed under

products:

In[10]:= G.G

Out[10]=
{ (

0 5
2 5

)
,
(
1 0
0 1

)
,
(
1 1
0 4

)
,
(
1 1
1 2

)
,
(
1 5
0 2

)
,(

2 1
6 4

)
,
(
2 2
5 6

)
,
(
2 3
3 5

)
,
(
2 3
4 1

)
,
(
2 6
6 1

)
,(

3 4
3 0

)
,
(
3 6
1 1

)
,
(
3 6
1 5

)
,
(
5 1
5 6

)
,
(
5 4
4 2

)
,(

5 5
4 3

)
,
(
6 4
3 5

) }
You see immediately that the product of L[{1,1},{1,2}] with itself  is not in

G. So G is not a linear group.

We can verify that GL(2,F5) is generated by the three matrices given in the

previous section. First we change the chosen prime to 5.

In[11]:= ChoosePrime[5]

Out[11]= 5
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Let

In[12]:= H = Group[ L[{{2,0},{0,1}}], L[{{0,1},{1,0}}],
L[{{1,1},{0,1}}] ]

Out[12]=
⟨(

2 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
0 1

)⟩
Now we check:

In[13]:= Order[H]

Out[13]= 480

This is indeed 42 · 5 · 6. Can you find three matrices which generate GL(2,F7)?

GL(2,F11)?

4.4 Exercises

1. Verify that G(p) is a linear group.

2. Show that for any fieldF the setN of  invertible 2×2 upper triangular matrices

forms a linear group. Verify that if F = Fp then |N(p)| = p(p− 1)2.

3. Show that in T(
1 b
0 1

)(
1 b′

0 1

)
=

(
1 b+ b′

0 1

)
and

(
1 b
0 1

)−1

=

(
1 −b
0 1

)
for any b, b′ ∈ F .
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4. • Let

Fp(p−1) =

{(
a b
0 1

) ∣∣∣∣a, b ∈ Fp, a ̸= 0

}
⊂ GL(2,Fp) .

Check that F(p−1)p is a linear group (called the Frobenius group). What is its

order? Verify that {(
1 1
0 1

)
,

(
2 0
0 1

)}
⊂ GL(2,F5)

generates F20

5. • In SL(2,C) let

Q =

{
±
(
1 0
0 1

)
,±
(
i 0
0 −i

)
,±
(

0 1
−1 0

)
,±
(
0 i
i 0

)}
.

Verify that Q is a linear group. What are the orders of  its 8 elements? Q is

called the quaternion group.

6. Write the matrix (
1 2
3 4

)
∈ GL(2,F5)

in terms of  the generators above.

7. Find three matrices which generate GL(2,F7). Check your answer with the

software functions.

8. • Prove that for any field F , SL(2, F ) is generated by{(
a 0
0 a−1

)
,

(
1 b
0 1

)
,

(
0 1
−1 0

) ∣∣∣∣ a ∈ F \ {0} , b ∈ F

}
.

9. Find three matrices which generate SL(2,F11).

10. Compute |SL(2,F7)| and |SL(2,F11)|. Can you give a formula for |SL(2,Fp)|
in general?

11. •Find an element of  order 3 inSL(2,F5). Find a linear groupG ⊂ SL(2,F5)

of  order 24.





5
Groups

In chapters 3 and 4 we discussed permutation groups and linear groups in a way

that brought out the formal similarities between them. These similarities lead

to the definition of  an abstract group. First we must make clear what ``multi-

plication'' means in a general context and then what its basic properties should

be.

5.1 Basic Properties and More Examples

Definition 5.1. A binary operation on a set G is a mapping: G×G→ G.

We write such an operation as a ``multiplication'', keeping in mind that it can

mean such different operations as matrix multiplication or composition of  per-

mutations or addition of  real numbers. The basic properties that our operation

should have are those which it has in our two examples.

Definition 5.2. A setG with a binary operation on it is called a group if  it has the

following properties:

(i) the operation is associative, i.e. for any α, β, γ ∈ G

(αβ)γ = α(βγ) ;

(ii) there is an identity element, written 1 ∈ G, i.e. for any α ∈ G

α · 1 = 1 · α = α ;

63
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(iii) every element in G has an inverse, i.e. for every α ∈ G there exists an

element written α−1 ∈ G such that

α · α−1 = α−1 · α = 1 .

The binary operation on G is called the group operation.

Examples 5.3. (i) Take G to be a permutation group with composition as

the group operation, as explained in chapter 3. By the definition of  a per-

mutation group this is an operation in the above sense. It is certainly as-

sociative. The identity element is the identity permutation (1). And the

inverse of  a permutation is the inverse permutation, which belongs to G

again by definition.

(ii) TakeG to be a linear group, with matrix multiplication as the group opera-

tion. The definition of  a linear group ensures that this is a binary operation.

It is associative. The identity element is the identity matrix I . And every

matrix in G has an inverse in G by definition.

(iii) Let G = Z (or Q, or R or C) with the operation addition. Addition is

associative, the identity element is 0, and the inverse of  any a ∈ Z is −a.

In fact any field F is a group under addition, as is Z/nZ for any n ∈ N.

(iv) Let

F× := {a ∈ F | a ̸= 0}

with the operation multiplication. It is associative, with identity element

1 ∈ F , and the inverse of  any a ∈ F is a−1.

(v) The non-zero integers do not form a group under multiplication because

no integer except ±1 has a multiplicative inverse.
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(vi) For m ∈ N, let

(Z/mZ)× = {ā ∈ Z/mZ | (a,m) = 1} .

If (a,m) = 1 and (b,m) = 1 then (ab,m) = 1. Furthermore, if (a,m) =

1 then as we saw in theorem 1.9, there exists an integer x such that ax ≡ 1

(mod m). For this congruence to hold, x must be relatively prime to m.

Therefore (Z/mZ)× is a group under multiplication mod m, called the

multiplicative group of Z/mZ. In the particular case where m is a prime

p, we get F×
p .

(vii) Let G = Rn with operation vector addition. It is associative, the vector

(0, 0, . . . , 0) is the identity element, and the inverse of  a vector

(a1, a2, . . . , an) is (−a1,−a2, . . . ,−an).

(viii) The space of  matrices M(m,n, F ) under matrix addition is a group.

(ix) Let

S = {a ∈ C | |a| = 1} .

Under multiplication S is a group.

(x) Let GL(n,Z) be the set of  all invertible n × n matrices with integer

entries whose inverses also have integer entries. Under matrix multipli-

cation GL(n,Z) is a group, just like GL(n, F ) for a field F . If α ∈
GL(n,Z) then det(α) and det(α−1) = det(α)−1 are integers. Since

det(α) det(α−1) = 1 , they must both be ±1.

(xi) A mappingα : Rn → Rn is a rigid motion or isometry if  it preserves distances,

in other words,

∥α(v)− α(w)∥ = ∥v − w∥

for all v, w ∈ Rn, where ∥v∥ denotes the length of v (cf. [4]). The com-

position of  two isometries is again one. It is easy to see that an isometry
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is injective. One can also show that it is surjective. Thus any isometry has

an inverse, which is also an isometry. Let Iso(n) denote the set of  isome-

tries. Composition is a binary operation on Iso(n) which is associative.

The identity mapping is an isometry. So Iso(n) is a group.

(xii) The trivial group is the group with only 1 element, the identity element:

{1}.

(xiii) And now for something completely different: the braid group. Imagine that

we have two parallel lines. On the first one, on the right, we have n points

labelled 1, 2, . . . , n. On the second, on the left, we also have n points

1, 2, . . . , n which are just the translates of  the corresponding points on

the first. We join each point on the first line to one on the second line with

a thread, going from right to left, in such a way that no two points on the

first are joined to the same point on the second. This is called a braid .

1

2

3

4

5

1

2

3

4

5

We consider two such constructions to be the same braid if  we can get one

from the other by moving about the strands without changing their end

points. So what matter are the end points and the way the strands cross

each other. We can combine two braids by placing them end to end to get

a new braid.
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1

2

3

4

5

1

2

3

4

5

The trivial braid, in which 1 is joined to 1, 2 to 2, and so on, without any

crossovers, is the identity element for this operation.

1

2

3

4

5

1

2

3

4

5

The inverse of  a braid is just the braid obtained by running along the

strands from their end points to their starting points. The braid below

is the inverse of  the braid we started with. And the composition shown

above is just the inverse composed with the original braid. You can see

that by moving the strands, you will get the trivial braid.
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1

2

3

4

5

1

2

3

4

5

With this operation the set of  braids, denoted by Bn, forms a group. It's a

good idea to make a model with string of  braids with 2 strands.

In examples (iii), (iv), (vi), (vii), and (ix) the multiplication is commutative, i.e.

αβ = βα for all α, β ∈ G .

In examples (i) and (ii), as we have seen, it is generally not. A group is called

commutative or abelian if  the group operation is commutative. Group elements can

be manipulated formally in the ways you expect:

Theorem 5.4. Let G be a group.

(i) The identity element is unique.

(ii) The inverse of  an element α is unique.

(iii) For any α ∈ G,
(
(α)−1

)−1
= α.

(iv) For any α, β ∈ G, (αβ)−1 = β−1α−1 .

(v) Cancellation rules: For any α, β, γ ∈ G,

a) if αβ = αγ, then β = γ;

b) if βα = γα, then β = γ.
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Proof. (i) Suppose ϵ ∈ G is another identity element, i.e.

ϵα = αϵ = α, for all α ∈ G.

Take α = 1. Thus ϵ · 1 = 1. But since 1 is also an identity element ϵ · 1 = ϵ.

Therefore ϵ = 1.

(ii) Let α′ be another inverse for α. So

1 = αα′ = α′α .

Multiply the first equation on the left by α−1 and use associativity:

α−1 = α−1(αα′) = (α−1α)α′ = 1 · α′ = α′ .

Thus α−1 = α′.

(iii) The inverse of α−1 is characterized by the property(
(α)−1

)−1
α−1 = 1 = α−1

(
(α)−1

)−1

But comparing with property (iii) in the definition of  a group, we see that α also

satisfies these equations. Since there is a unique inverse for α−1, we must have(
(α)−1

)−1
= α.

(iv) We have

(β−1α−1)(αβ) = β−1(α−1α)β = (β−1 · 1)β = β−1β = 1 .

Similarly

(αβ)(β−1α−1) = 1 .

Therefore β−1α−1 is the inverse of αβ.

(v) Suppose

αβ = αγ.

Multiply on the left by α−1:

α−1(αβ) = α−1(αγ).
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By associativity,

(α−1α)β = (α−1α)γ

which gives

1 · β = 1 · γ or β = γ.

The proof  of  (b) is analogous.

If  a group G is finite, then the number of  elements in G is the order of G,

written |G|. If G is infinite, we write |G| = ∞. Suppose α ∈ G and there exists

n ∈ N so that αn = 1. Then the order of α, written |α|, is the smallest such n.

If  no such n exists, we say that α has infinite order, |α| = ∞. As in chapters 3

and 4, we can consider ⟨α⟩ = {αn | n ∈ Z}. It is easy to see that ⟨α⟩ with the

operation inherited from G is a group. And

|⟨α⟩| = |α| .

Of  course these definitions just generalize the definitions we made for permuta-

tion groups and linear groups.

Example 5.5. The order of (Z/mZ)× is φ(m) (see page 12). If (10,m) = 1,

then 1̄0 ∈ (Z/mZ)×. And by theorem 1.6 the order of 1̄0 is the length of  the

period of 1/m. In particular, this implies that if p is prime, then the length of  the

period of 1/p divides p− 1.

5.2 Homomorphisms

In example (xii) there is a natural mapping from Bn to Sn. Each braid ζ defines

a permutation αζ with

αζ(j) = endpoint of  strand starting at j .
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For any α ∈ Sn there are many braids ζ ∈ Bn with αζ = α. So this mapping is

surjective but not injective. It is well-behaved with respect to the multiplications

in Bn and Sn: from the diagrams we see that

αζ2ζ1 = αζ2αζ1

for any ζ1, ζ2 ∈ Bn. Since we know a bit about Sn, the mapping tells us some-

thing about what the group Bn looks like. Such a mapping from one group to

another is called a homomorphism.

Definition 5.6. Let G and H be groups. A mapping f : G → H is called a

(group) homomorphism if  for any α, β ∈ G,

f(αβ) = f(α)f(β) .

Examples 5.7. We have already seen several other mappings between groups

which are homomorphisms. At the end of  chapter 2 we defined the permutation

matrix Iα ∈ GL(n,R) belonging to a permutation α ∈ Sn. Recall that the jth

row of Iα is just the α(j)th row of  the identity matrix. We saw that

Iαβ = IαIβ

for any α, β ∈ Sn. Thus the mapping p : Sn → GL(n,R) given by

p : α 7→ Iα

is a homomorphism. We also know that for any field F , the determinant

det : GL(n, F ) → F×

satisfies

det(αβ) = det(α) det(β)

for any α, β ∈ GL(n, F ). So det is also a homomorphism. A final example:

addition in Z/nZ was defined so that the canonical mapping Z → Z/nZ given

by a 7→ ā is a homomorphism.
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Homomorphisms have the formal properties that you would expect.

Theorem 5.8. Let f : G→ H be a group homomorphism. Then

(i) f(1G) = 1H ;

(ii) f(α−1) = f(α)−1 for any α ∈ G ;

(iii) if f is bijective, then f−1 : H → G is also a homomorphism.

Proof. We have

f(1G) = f(1G1G) = f(1G)
2 .

Multiply on the left by f(1G)−1:

1H = f(1G)
−1f(1G) = f(1G)

−1f(1G)
2 = f(1G) .

It follows that for any α ∈ G,

1H = f(1G) = f(αα−1) = f(α)f(α−1) .

Therefore f(α−1) = f(α)−1. Lastly suppose that f is bijective. For any

σ, τ ∈ H , we have

f
(
f−1(στ)

)
= στ

On the other hand,

f
(
f−1(σ)f−1(τ)

)
= f

(
f−1(σ)

)
f
(
f−1(τ)

)
= στ

as well. Since f is injective, it follows that

f−1(στ) = f−1(σ)f−1(τ) .

A homomorphism which is bijective is called an isomorphism. Two groups G

and H are said to be isomorphic, written G ∼= H , if  there exists an isomorphism

f : G→ H .
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Example 5.9. Let R+ denote the positive real numbers. Under multiplication

R+ is an abelian group. Let

f : R → R+

be the exponential mapping

f : x 7→ ex .

Since ex+y = exey , f is a homomorphism. It has an inverse, the logarithm:

log : R+ → R

So the exponential is an isomorphism of  groups. The formula log(zw) = log(z)+

log(w) just says that log is a homomorphism.

△

Given two groups G and H we define their direct product to be the set G×H

with the operation: (
(α1, β1), (α2, β2)

)
7→ (α1α2, β1β2)

where α1, α2 ∈ G and β1, β2 ∈ H . It is not hard to see that this operation makes

G × H into a group (see exercise 16). For example, R2 with vector addition is

the direct product of R with itself. The two projections:

p1 : G×H → G

p1 : (α, β) 7→ α

and

p2 : G×H → H

p2 : (α, β) 7→ β ,

for α ∈ G, β ∈ H , are homomorphisms.
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Example 5.10. (i) Let's show that GL(3,R) is isomorphic to SL(3,R) ×
R×. We define a mapping

f : SL(3,R)× R× → GL(3,R)

by

f : (α, a) 7→ aα

for α ∈ SL(3,R) and a ∈ R×. We see immediately that f is a homomor-

phism. To define an inverse to f , first notice that the mapping

h : R× → R×

given by

h(a) = a3

is an isomorphism. And if α ∈ GL(3,R), then (detα)−1/3α has deter-

minant 1. Therefore, since det is a homomorphism, the mapping

g : α 7→ ((detα)−1/3α, (detα)1/3)

is a homomorphism fromGL(3,R) to SL(3,R)×R×. It is clearly inverse

to f .

(ii) Suppose that m,n ∈ N and (m,n) = 1. For any a ∈ Z, let ā denote its

residue class mod mn, ā1 denote its residue class mod m and ā2 denote

its residue class mod n. Define a mapping

g : Z/mnZ → (Z/mZ)× (Z/nZ)

by

g(ā) := (ā1, ā2) .

This mapping is well-defined because for any k ∈ Z ,

a+ kmn ≡ a (mod m) and a+ kmn ≡ a (mod m) .
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We have

g(ā+ b̄) = (ā1 + b̄1, ā2 + b̄2) = (ā1, ā2) + (b̄1, b̄2) = g(ā) + g(b̄) .

So g is a homomorphism. Now the Chinese remainder theorem (theorem

1.12) says precisely that g is an isomorphism. Why is this? Well, what does

it mean for g to be surjective? Given integers a and b, we must show that

there exists an integer c such that

c ≡ a (mod m) and c ≡ b (mod n) .

And to say that g is injective is to say that such an integer c is unique mod

mn.

△

5.3 Exercises

1. Which of  the following groups are abelian: the permutation group V , the

linear groups T , F (p) or G(p)?

2. Let G be a group. For α ∈ G let αn be the n-fold product of α with itself,

for n > 0, and the n-fold product of α−1 with itself, for n < 0. Show that

αmαn = αm+n

(αm)n = αmn

for any m,n ∈ Z.

3. What is the order of (Z/16Z)×? (Z/24Z)×? For each group make a table

which gives the order of  the elements in the group.

4. What is the order of  any element in the additive group of Fp? What are the

orders of  the elements in the multiplicative group F×
11?
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5. Let α be an element of  order n in a group G. Suppose that αr = 1. Show

that n | r.

6. • Suppose that α is an element of  order n in a group G. For any m ∈ N,

prove that

|αm| = n/(m,n) .

7. • Let α and β be elements of  prime order in a group G, with |α| ≠ |β|.
Suppose that αβ = βα. Prove that

|αβ| = |α||β| .

8. • Let α and β be elements of  finite order in a group G, with (|α|, |β|) = 1.

Suppose that αβ = βα. Prove that

|αβ| = |α||β| .

9. Determine the structure of  the braid group B2.

10. Show that an isometry is injective.

11. • Let exp : R → S be the exponential mapping

exp(x) = e2πix .

Verify that exp is a homomorphism. Is exp injective? Surjective?

12. Show that the mapping

h : R× → R×

given by

h(a) = a3

is an isomorphism.
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13. Check that the mapping in example 4.2(i) is a homomorphism.

14. Given a natural number n, prove that if G is an abelian group, then the map-

ping f : G→ G, where

f : α 7→ αn ,

is a homomorphism.

15. Prove that the permutation groups V and V ′ are isomorphic.

16. Verify that the direct product of  two groups with the operation given is a

group.

17. Give an example of  two finite groups of  the same order which are not iso-

morphic.

18. a) Show that

(Z/16Z)× ∼= (Z/2Z)× (Z/4Z) .

b) Show that

(Z/24Z)× ∼= (Z/2Z)3 .

19. Let f : G → H be a homomorphism of  groups and let g ⊂ G be a set of

generators of G. Suppose that

h := {f(α) | α ∈ g}

generates H . Prove that f is surjective.

20. • Suppose that G and H are finite groups with the same order. Let f : G→
H be a homomorphism. Show that

a) if f is surjective, then it is injective;

b) if f is injective, then it is surjective.
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21. • SupposeG is a group. An isomorphism f : G→ G is called an automorphism

. Let Aut(G) denote the set of  automorphisms of G. Prove that G is a group

under composition of  mappings.

22. Prove that Aut(Z/nZ) ∼= (Z/nZ)×.

23. Suppose that m,n ∈ N and (m,n) = 1. Define a mapping

h : (Z/mZ)× (Z/nZ) → Z/mnZ

by

h : (ā, b̄) 7→ na+mb .

Show that h is well-defined and is a homomorphism. Prove that h is an iso-

morphism.

24. • Recall that the order of (Z/mZ)× is φ(m) (see page 12).

a) Suppose that (m,n) = 1. Prove that

g : (Z/mnZ)×
∼=−−−→ (Z/mZ)× × (Z/nZ)× ,

where g is the mapping defined in example 5.10(ii).

b) Show that φ(mn) = φ(m)φ(n).

c) Suppose that

n = pj11 · · · pjrr ,

where p1, . . . , pr are distinct primes and j1, . . . , jr > 0. Show that

φ(n) = (pj11 − pj1−1
1 ) · · · (pjrr − pjr−1

r ) = n(1− 1/p1) · · · (1− 1/pr)

(see exercise 1.11).



6
Subgroups

6.1 Definition

Subgroups are subsets of  groups which are groups themselves under the oper-

ation inherited from the group. Of  course for this to be possible, the product

of  two elements of  the subgroup must lie in it, and so must the inverse of  every

element. It turns out that this is in fact enough.

Definition 6.1. Let G be a group. A non-empty subset H ⊆ G is a subgroup

of G, written H < G, if  for all α, β ∈ H

αβ ∈ H (i)

α−1 ∈ H . (ii)

Condition (i) ensures that the group operation onG gives us an operation on

H . It is associative because the operation on G is. Since H is non-empty, there

exists an element α ∈ H . By (ii), α−1 ∈ H as well. Therefore 1 = αα−1 ∈ H

by (i). And by (ii) again, the inverse of  every element in H lies in H . So H with

the operation inherited from G is a group.

Looking back at chapters 3 and 4 we see that permutation groups were de-

fined as subgroups of Sn and linear groups as subgroups of GL(n, F ). Looking

at the list of  examples in chapter 5, we see that in example 3

Z < Q < R < C .

79
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6.2 Orthogonal Groups

There are some further examples of  linear groups which are going to be of  in-

terest to us. These are the orthogonal groups, which consist of  those isometries

which are linear mappings. Recall that a real n× n matrix α is orthogonal if

∥αv∥ = ∥v∥

for all v ∈ Rn. If  we denote by O(n) the set of  orthogonal matrices, then

O(n) = GL(n,R) ∩ Iso(n) .

Thus O(n) is a subgroup of Iso(n) and of GL(n,R). The special orthogonal

group, SO(n), is given by

SO(n) = O(n) ∩ SL(n,R) .

So it is a subgroup ofO(n) andSL(n,R) (as well as of Iso(n) and ofGL(n,R)).
It is not hard to describe the elements of SO(2). A matrix ( a bc d ) ∈ SO(2)

if  and only if

a2 + c2 = 1

b2 + d2 = 1

ab+ cd = 0

ad− bc = 1 .

The first equation tells us that there exists t ∈ R such that (a, c) = (cos t, sin t).

The third equation implies that (b, d) = r(− sin t, cos t) for some r ∈ R. From

the second, we can conclude that r = ±1, and from the fourth, that r = 1. Thus(
a b
c d

)
=

(
cos t − sin t
sin t cos t

)
.

So the elements of SO(2) are just the rotations about the origin and t is the

angle of  rotation. Multiplying two matrices corresponds to adding the angles of

rotation.
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We can also say what elements of O(2) whose determinant is −1 look like.

Set

ρ =

(
−1 0
0 1

)
.

If α ∈ O(2) and detα = −1, then det ρα = 1. So ρα is of  the form(
cos t − sin t
sin t cos t

)
.

for some t, and therefore α can be written

α =

(
− cos t sin t

sin t cos t

)
.

Viewed geometrically ρ is a reflection in the line x = 0. It is easy to say what

a reflection is in general, in any dimension. Let v ∈ Rn be a unit vector, and set

W = v⊥. Define ρv ∈ O(n) by

ρv(v) = −v , ρv |W = IW .

Then ρv is a reflection in the hyperplane W . For an arbitrary vector w ∈ Rn we

have

ρv(w) = w − 2(w · v)v

If  we pick an orthonormal basis {v2, . . . , vn} ofW , the matrix of ρv with respect

to {v, v2, . . . , vn} is 
−1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 .

Thus det ρv = −1.

Lastly let's describe what an element α ∈ SO(3) looks like. First we check

that 1 is an eigenvalue: since detα = 1,

det(α− I) = det(αt − I) = detα det(αt − I)

= det(ααt − α) = det(I − α)

= − det(α− I) .
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Therefore det(α−I) = 0. Let v then be an eigenvector with eigenvalue 1. Since

α is orthogonal the plane W := v⊥ is invariant under α and it is easy to see that

detα|W = detα = 1 .

So α|W ∈ SO(2). Now let {w1, w2} be an orthonormal basis of W . Then with

respect to the orthonormal basis {v, w1, w2} of R3, a matrix of α has the form1 0 0
0 cos t − sin t
0 sin t cos t

 .

In other wordsα is a rotation about the line through v through the angle t. Notice

that

trα = 2 cos t .

6.3 Cyclic Subgroups and Generators

IfG is a group and α ∈ G then ⟨α⟩ = {αn | n ∈ Z} is called the cyclic subgroup

generated by α. If ⟨α⟩ = G, then G is a cyclic group.

Theorem 6.2. An infinite cyclic group is isomorphic to Z. A cyclic group of  order n is

isomorphic to Z/nZ.

Proof. Let G be a cyclic group with generator α. Define a mapping f : Z → G

by

f : m 7→ αm

for m ∈ Z. Since

f(m1 +m2) = αm1+m2 = αm1αm2 = f(m1)f(m2) ,

f is a homomorphism. Since G = ⟨α⟩, f is surjective.
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Now there are two possibilities. First suppose that |G| = ∞. Then αm ̸= 1

for all m ̸= 0. If αm1 = αm2 for some m1,m2, then αm1−m2 = 1. But then

m1 −m2 = 0. So f is injective and therefore is an isomorphism.

The second possibility is that |G| = n, for some n ∈ N, i.e. |α| = n. Now

f(m+ sn) = αm+sn = αm = f(m) for any s. So f defines a mapping

f̄ : Z/nZ → G

which is also a surjective homomorphism. Since both groups have order n, ex-

ercise 5.20 implies that f is also injective and therefore an isomorphism.

Thus any two cyclic groups of  the same order are isomorphic. It is not true

in general that two groups of  the same order are isomorphic. For example, the

group V which has order 4 is not isomorphic to a cyclic group of  order 4, because

it has no element of  order 4.

More generally, if g ⊂ G then the subgroup generated by g, written ⟨g⟩, is

the subgroup consisting of  all elements of G that can be expressed in terms of

the elements of g and their inverses. We have to make this more precise. If G is

finite, then we have

⟨g⟩ =
∞∪
i=0

gi

as in chapter 3. Otherwise the description is more complicated. We must include

expressions of  the form

αe11 α
e2
2 · · ·αekk

where ei = ±1 for all i and αi ∈ g. Such expressions are called words in g.

Theorem 6.3. Let

H = {αe11 αe22 · · ·αekk | k > 0, ei = ±1, αi ∈ g, 1 ≤ i ≤ k} .

Then H is the smallest subgroup of G containing g and is the intersection of  all the subgroups

of G containing g.
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Proof. CertainlyH ⊃ g and is thus non-empty. The product of  any two words in

g is another word in g. And the inverse of  a word is as well. So H is a subgroup.

Clearly H is contained in any subgroup of G which contains g. Therefore H is

the smallest such subgroup. To see thatH is the intersection of  all the subgroups

containing g we need only show:

Lemma 6.4. The intersection K of  a collection C of  subgroups of G is again a subgroup.

Well, K ̸= ∅ since 1 ∈ K . If α, β ∈ K , then for any L ∈ C we have

α, β ∈ L and therefore αβ ∈ L and α−1 ∈ L. It follows that αβ, α−1 ∈ K .

And thus K is a subgroup of G.

Example 6.5. In the group GL(n,Z) we have the subgroup

SL(n,Z) := {α ∈ GL(n,Z) | detα = 1} .

The purpose of  this example is to find a pair of  generators forSL(2,Z). Suppose

α =

(
a b
c d

)
∈ SL(2,Z) .

By applying the Euclidean algorithm to a and b, we are going to find an expression

for α in terms of

σ =

(
1 1
0 1

)
and τ =

(
1 0
1 1

)
.

In particular, this will prove that

SL(2,Z) =

⟨(
1 1
0 1

)
,

(
1 0
1 1

)⟩
.
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Now applying the Euclidean algorithm to a and b gives us a list of  equations:

a = qb+ r 0 ≤ r < b

b = q1r + r1 0 ≤ r1 < r

...
...

ri−1 = qi+1ri + ri+1 0 ≤ ri+1 < ri
...

...

rn−2 = qnrn−1 + rn 0 ≤ rn < rn−1

rn−1 = qn+1rn

Since ad− bc = 1, it follows that (a, b) = 1 and therefore rn = 1. We begin by

multiplying α on the right by τ−q:(
a b
c d

)(
1 0
−q 1

)
=

(
a− bq b

∗ ∗

)
=

(
r b
∗ ∗

)
where the entries * denote integers which are not important to us, and the result-

ing matrix has determinant 1. Next we multiply it by σ−q1 :(
r b
∗ ∗

)(
1 −q1
0 1

)
=

(
r b− q1r
∗ ∗

)
=

(
r r1
∗ ∗

)
Again the resulting matrix has determinant 1. In general we will have a matrix in

SL(2,Z) of  the form (
ri−1 ri
∗ ∗

)
or

(
ri ri−1

∗ ∗

)
,

depending upon whether i is odd or even. We multiply it by τ−qi+1 , respectively

σ−qi+1 : (
ri−1 ri
∗ ∗

)(
1 0

−qi+1 1

)
=

(
ri+1 ri
∗ ∗

)
(
ri ri−1

∗ ∗

)(
1 −qi+1

0 1

)
=

(
ri ri+1

∗ ∗

)
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At the end we are left with(
rn 0
∗ ∗

)
or

(
0 rn
∗ ∗

)
.

Now rn = 1 and the matrices have determinant 1. So in the first case we have a

matrix of  the form (
1 0
k 1

)
= τ k ,

for some integer k. In the second case we have a matrix of  the form(
0 1
−1 k

)
for some k ∈ Z. And(

0 1
−1 k

)
=

(
1 0
k 1

)(
0 1
−1 0

)
=

(
1 0
k 1

)(
1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)
= τ kστ−1σ .

So we have shown that

ατ−qσ−q1 · · · = τ k or τ kστ−1σ ,

which means that

α = τ k · · ·σq1τ q or τ kστ−1σ · · ·σq1τ q .

Let's do a numerical example. Take

α =

(
19 7
27 10

)
.

Applying the Euclidean algorithm gives us

19 = 2 · 7 + 5

7 = 5 + 2

5 = 2 · 2 + 1

2 = 2 · 1 .
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So we first multiply α by τ−2:(
19 7
27 10

)(
1 0
−2 1

)
=

(
5 7
7 10

)
Then we multiply the result by σ−1:(

5 7
7 10

)(
1 −1
0 1

)
=

(
5 2
7 3

)
Next we multiply again by τ−2:(

5 2
7 3

)(
1 0
−2 1

)
=

(
1 2
1 3

)
.

Lastly we multiply by σ−2:(
1 2
1 3

)(
1 −2
0 1

)
=

(
1 0
1 1

)
.

Thus

ατ−2σ−1τ−2σ−2 = τ ,

or

α = τσ2τ 2στ 2 .

△

Example 6.6. It is not hard to describe a set of  generators of  the braid group

Bn. For 1 < i < n, let ζi be the following braid: if j ̸= i, i + 1, the jth strand

joins point j on the first line to point j on the second without crossing any other

strand. The ith strand joins point i on the first line to point i+1 on the second,

crossing under the (i+ 1)st strand, which joins point i+ 1 on the first to point

i on the second.

1

2

3

4

5

1

2

3

4

5
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To see that {ζ1, . . . , ζn−1} generatesBn, take any braid ζ , and perturb the strands

so that no two crossovers occur at the same level. Draw lines parallel to the two

lines through endpoints, which subdivide the region between them into slices

each containing only one crossover. Then in each slice, the braid is one of  the

ζ±1
i .

1

2

3

4

5

1

2

3

4

5

For example, the braid above can be written:

ζ−1
1 ζ−1

2 ζ3ζ
−1
1 ζ3ζ4 .

If  we let

ρ = ζ1ζ2 · · · ζn−1 ,

then one can show that {ρ, ζ1} also generates Bn. △

6.4 Kernel and Image of  a Homomorphism

Suppose G and H are groups and f : G → H is a homomorphism. The kernel

of f , written ker(f), is defined by

ker(f) := {α ∈ G | f(α) = 1H} ⊂ G .

It measures how close f is to being injective, as we shall see below. The image of

f , written im(f), is the set of  images of  the elements of G in H , i.e.

im(f) := {f(α) | α ∈ G} ⊂ H .
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Theorem 6.7. The kernel of  a homomorphism f is a subgroup of G, and the image a

subgroup of H . A homomorphism is injective if  and only if  its kernel is trivial.

We just need to verify that ker(f) and im(f) fulfill the definition of  a sub-

group. Well, suppose α, β ∈ G and f(α) = 1 and f(β) = 1. Then

f(αβ) = f(α)f(β) = 1

and

f(α−1) = f(α)−1 = 1 .

Therefore ker(f) is a subgroup of G. And for any α, β ∈ G, f(α)f(β) =

f(αβ) ∈ im(f), and f(α)−1 = f(α−1) ∈ im(f). Thus im(f) is a subgroup of

H .

Lastly, suppose f is injective. Then in particular, if f(α) = 1 for some

α ∈ G, since f(1) = 1, we have α = 1. Thus ker(f) = {1}. On the other

hand, assume ker(f) = {1}. Now if f(α) = f(β) for some α, β ∈ G, we have

1 = f(α)f(β)−1 = f(α)f(β−1) = f(αβ−1) .

So αβ−1 ∈ ker(f), and therefore αβ−1 = 1, i.e. α = β. Thus f is injective.

Examples 6.8. (i) Recall that det : GL(n, F ) → F× is a homomorphism

for any field F . By the definition of SL(n, F )

ker(det) = SL(n, F ) .

(ii) The kernel of  the canonical map: Z → Z/nZ is the subgroup nZ ⊂ Z.

(iii) Let f : S → S be given by f(z) := zn, for some n ∈ N. The kernel of f

is

{z ∈ C | zn = 1} .

A complex number z satisfying this equation is called an nth root of  unity.

We shall denote the group of nth roots of  unity by µn.
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(iv) IfG andH are two groups, then the kernel of  the projection p1 : G×H →
G is H .

(v) In chapter 5, we saw that there is a natural homomorphism

br : Bn → Sn , where br(ζ) = αζ .

The permutation αζ maps i to the endpoint of  the i th strand of ζ . So

αζi = (i i+ 1)

Since

{(1 2), (2 3), . . . , (n− 1 n)}

generates Sn, the homomorphism br is surjective.

6.5 Exercises

1. What are the elements of  finite order in SO(2)?

2. • Show that µn is a cyclic subgroup of S. Notice that every element of  finite

order of S is an nth root of  unity for some n.

3. In example 6.5, verify that τ 2 = −I and that τ has order 4.

4. Use the algorithm in example 6.5 to write
(
7 31
2 9

)
as a word in σ and τ .

5. Write a Mathematica function which expresses an element of SL(2,Z) as a

word in σ and τ .

6. Let a, b ∈ Z be relatively prime. The Euclidean algorithm produces integers

s and t such that

sa− tb = 1 .
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Set

α =

(
a b
t s

)
.

Prove that if  one applies the algorithm in example 6.5 to α then the integer k

there is 0 (cf. exercise 1.13).

7. Show that F×
5 , F×

7 and F×
11 are cyclic groups.

8. Let G be a finite group and suppose that H ⊂ G, H ̸= ∅ and for all α, β ∈
H ,

αβ ∈ H .

Prove that H is a subgroup of G. Suppose that |G| = ∞. Does this still

hold? If  not give a counter-example.

9. Find all generators of Z/60Z.

10. • Let p be prime. Suppose that a subgroup H ⊂ Sp contains a transposition

and an element of  order p. Prove that H = Sp.

11. • Show that every subgroup H of Z is either trivial or of  the form nZ, where

n is the least positive integer in H .

12. Suppose that H and K are subgroups of  a group G. Show that H ∪K is a

subgroup if  and only if H ⊂ K or K ⊂ H .

13. Let G be a group and let

H = {(α, α) ∈ G×G | α ∈ G} .

Verify that H is a subgroup of G×G and that H ∼= G.

14. Can you find two matrices which generate SL(2,F3)? SL(2,F5)? (You may

use that |SL(2,Fp)| = (p− 1)p(p+ 1), cf. example 10(ii). )
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15. Prove that O(3) is isomorphic to SO(3)× {±1}.

16. • Let G be a subgroup of O(3). Suppose that −I ∈ G. Prove that G is

isomorphic to G+ × {±1}, where G+ = G ∩ SO(3).

17. Show that det : GL(n, F ) → F× is surjective.

18. Let

sgn : Sn → {±1}

be given by the sign of  a permutation. Show that sgn is a homomorphism. Is

it surjective? What is its kernel?

19. Let the homomorphism

f : (Z/27Z)× → (Z/3Z)×

be reduction modulo 3. Write down the elements of  the kernel of f . Show

that it is cyclic.

20. • Let F be a field and let f : F× → F× be the map

f : a 7→ a2 ,

for a ∈ F×. Verify that f is a homomorphism and determine its kernel.

21. Show that in Bn,

a) for j ̸= i± 1, ζiζj = ζjζi ;

b) for 1 < i < n, ζiζi+1ζi = ζi+1ζiζi+1 .

22. Prove that in Bn,

a) ζi+1 = ρζiρ
−1 ,
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b) ζi+1 = ρiζ1ρ
−i ,

and that therefore {ζ1, ρ} generates Bn.

23. Show that the image of Sn under the homomorphism p in example 5.7 lies

in O(n), and that the image of An lies in SO(n). Show that the image of  a

transposition is a reflection.





7
Symmetry Groups

Intuitively we know when an object has symmetry and when not. Symmetry is

closely related to our sense of  what is beautiful. A rose window in a cathedral with

its rotational symmetry is beautiful, as is a face with strong bilateral symmetry (see

[5]). The octagon on the left below has no symmetry, while the one on the right

is highly symmetric.

We would like a mathematically precise definition of  symmetry which fits with

our intuitive sense. The regular octagon above can be reflected in the dotted line.

We can also rotate it about its centre through an angle of π/4. The rotation and

reflection are both isometries of  the Euclidean plane. This suggests a general

definition.

Suppose X is an object in Euclidean n-space. A symmetry of X is an isom-

etry which maps X to itself. We denote by Sym(X) the set of  all symmetries of

X . Not surprisingly, Sym(X) is a subgroup of Iso(n). For the identity map is

95
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always a symmetry of X so that Sym(X) is not empty. The inverse of  a sym-

metry is again a symmetry and so is the product of  two symmetries. To say that

X is highly symmetric is to say that Sym(X) is large. If X has no symmetry at

all, then Sym(X) is the trivial group As references for Euclidean geometry, [6],

[4], and [7] are recommended.

7.1 Symmetries of  Regular Polygons

Let's begin by looking at the symmetry groups of  regular polygons in the plane.

We will place the centre of  the polygon at the origin, so that the symmetries are

all elements of  the orthogonal group (see [4], p.11).

.

.1

.2.3

Figure 7.1: Symmetries of  an equilateral triangle

First we consider an equilateral triangle P3. We can rotate P3 about its centre

through 2π/3, 4π/3, and 2π. (All angles are measured counterclockwise.) And

we can reflect P3 in the line joining a vertex to the midpoint of  the opposite side.

Thus Sym(P3) has 6 elements, 3 rotations and 3 reflections. Notice that if  we

label the vertices 1, 2, 3 (counterclockwise), then the symmetries permute the 3

vertices. The rotations correspond to (1 2 3), (1 3 2), and (1) respectively. The
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.

.1

.2

.3

.4

Figure 7.2: Symmetries of  a square

reflections leave a vertex fixed and switch the other two. So they each correspond

to a transposition. This mapping

Sym(P3) → S3

is in fact an isomorphism of  groups since it maps the product of  two symmetries

to the product of  the corresponding permutations.

Next look at a square P4 (see introduction of  chapter 3). We can rotate P4

about its centre through π/2, π, 3π/2, and 2π. There are two types of  reflections:

reflections in the diagonals, and reflections in the lines joining the midpoints of

opposite sides. Of  each type there are two. So in all, Sym(P4) consists of 4

rotations and 4 reflections. Again we can label the vertices of P4: 1, 2, 3, 4. Each

symmetry gives a permutation of  the vertices and the mapping

Sym(P4) → S4

defined this way is a homomorphism: the product of  two symmetries is mapped

to the product of  the corresponding permutations. The rotations correspond to

(1 2 3 4), (1 3)(2 4), (1 4 3 2) and (1) respectively. Reflections about a diagonal

correspond to the transpositions (1 3) and (2 4). The other two reflections
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correspond to (1 2)(3 4) and (1 4)(2 3). As we saw in chapter 3, these are just

the elements of  the permutation group D4. So we have an isomorphism

Sym(P4)
∼=−−−→ D4 .

These examples generalize. Let Pn be a regular n-gon, n ≥ 3. We can rotate

Pn about its centre through angles 2π/n, 4π/n, . . . , (2n − 2)π/n, 2π . The

reflectional symmetry of Pn depends on whether n is even or odd.

Figure 7.3: Symmetries of  a regular n-gon

First suppose n is odd. Pn is symmetric about the line joining a vertex to

the midpoint of  the opposite side. There are n reflections of  this type. Now

suppose n is even. Then there are two types of  reflections: those in a line joining

the midpoints of  opposite sides, and those in a diagonal joining opposite vertices.

There are n/2 reflections of  each type. In either case, Sym(Pn) has n rotations

and n reflections. It is called the dihedral group of  order 2n We shall denote it

by Dn. As in the cases n = 3, 4, we can label the vertices 1, 2, . . . , n. The

symmetries of Pn permute the vertices and thus each correspond to an element

of Sn. The rotations correspond to the powers of (1 2 · · · n). Since each

symmetry is determined by its action on the vertices of Pn, this mapping from

Dn into Sn is injective and gives us an isomorphism of Dn with a permutation

group of  degree n.
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There is another way of  looking at dihedral groups, independent of  whether

n is even or odd. Let σ ∈ Dn be a rotation through 2π/n counterclockwise, and

let τ ∈ Dn be any reflection. The n rotations are σj, 1 ≤ j ≤ n. And the n

reflections are σjτ, 1 ≤ j ≤ n -- this is best checked geometrically. One can

also see στ = τσ−1. We say that σ, τ generate Dn subject to the relations

σn = 1 τ 2 = 1 στ = τσ−1 . (7.1)

because they describe multiplication inDn completely. Ifn is even, then τ, σ2τ, . . .

will be the reflections of  one type, and στ, σ3τ, . . . of  the other.

7.2 Symmetries of  Platonic Solids

What about the symmetry groups of  the Platonic solids? We shall only look at

the proper symmetries (see exercise 9 for the full symmetry group). This means

that we first place the centre of  the solid at the origin so that the isometry group

will be a subgroup of O(3). And then we restrict our attention to Sym+(X) :=

Sym(X) ∩ SO(3).
Let's begin with X the regular tetrahedron. There are two types of  rotations

which are symmetries of X . First, we can rotate about the line through a vertex

and the centre of  the opposite face. In the diagram below, the gray line is such

an axis. There are two rotations, through angles 2π/3 and 4π/3. Since there are

4 vertices, there are 8 such rotations in all. Secondly, we can rotate about a line

like the black one, through the midpoints of  opposite edges, by an angle of π.

There are 6 edges. So this gives us 3 more rotations. Together with the identity,

the symmetry group therefore has 12 elements. As with the regular polygons, we

can regard these symmetries as permutations of  the vertices ofX , which we label

1, 2, 3, 4. Then the first type of  rotation corresponds to a 3-cycle, and the second

one to a product of  two disjoint transpositions. But these, with the identity, are

just the 12 even permutations in S4. This mapping is a homomorphism, and

therefore the group of  proper symmetries of  the regular tetrahedron, which we

denote by T, is isomorphic to A4.



100 CHAPTER 7. SYMMETRY GROUPS

Figure 7.4: Symmetries of  a tetrahedron

Next we look at the proper symmetries of  the cube. This is the same as the

proper symmetry group of  the regular octahedron, because it is just the dual of

the cube. First there are the rotations about an axis like the black one below,

through the centres of  a pair of  opposite faces, through angles π/4, π/2, and

3π/4. Since there are 3 such pairs of  faces, this gives 9 rotations in all. Secondly,

we can rotate the cube through angles 2π/3 and 4π/3 about a diagonal, like

the light gray one, joining a pair of  opposite vertices. There are 8 vertices and

therefore 8 of  these rotations. Thirdly, we can rotate through an angle of π about

an axis like the dark gray one, through the midpoints of  a pair of  antipodal edges.

The cube has 12 edges and thus 6 of  these rotations. Together with the identity,

this gives us 24 proper symmetries. We denote this group by O.

If  we simply regard these symmetries as permutations of  the 8 vertices, we get

a homomorphism of O into S8 which is certainly injective. Now,

|S8| = 40320. So the image is a relatively small subgroup, and this homomor-

phism does not tell us much about O. However there is a more enlightening way
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Figure 7.5: Symmetries of  a cube: axes of  rotations

of  identifying O with a permutation group. Instead of  the 8 vertices, take the 4

diagonals shown below as the objects being permuted. Let's convince ourselves

that this mapping into S4 is injective. Since |S4| = 24, our homomorphism is

then again an isomorphism. Suppose that a proper symmetry fixes all 4 diago-

nals. Rotations of  the first type do not fix any diagonals. Those of  the second

type fix only the diagonal which is their axis and no other. And the third type of

symmetry fixes no diagonal. So one which fixes all 4 must be the identity. Thus

the kernel of  our homomorphism is trivial and therefore it is injective.

Finally we consider the proper symmetries of  the regular dodecahedron or its

dual, the regular icosahedron. The regular dodecahedron has 12 faces, 30 edges,

and 20 vertices. The faces are regular pentagons and 3 edges meet at each vertex.

There are three types of  rotational symmetries. First we can rotate through angles

of 2π/3 and 4π/3 about an axis passing through a pair of  opposite vertices, like

the one in light gray. There are 20 such rotations. Secondly, we can rotate through

an angle of π about a line like the dark gray one passing through the midpoints of  a

pair of  antipodal edges. We have 15 of  these rotations. And lastly, we can rotate
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Figure 7.6: Symmetries of  a cube: diagonals

about a line like the black one through the centres of  a pair of  opposite faces,

through angles 2π/5, 4π/5, 6π/5, and 8π/5. This gives a further 24 rotations.

In all we have 60 proper symmetries. Let I denote the proper symmetry group

of  the regular dodecahedron or icosahedron.

Again we can realize these symmetries as permutations. What should we

take as the objects permuted? Well, the 30 edges can be grouped into 15 pairs of

antipodal edges. The 15 lines through the midpoints of  these pairs form 5 sets of

mutually orthogonal triples or trihedra. In the picture below, the edges belonging

to each trihedron all have the same colour. One trihedron is shown. These 5

trihedra are permuted by the symmetries of  the icosahedron. Thus we have a

homomorphism of  the proper symmetry group into S5. The rotations of  order

3 correspond to 3-cycles. Those of  order 2, to products of  disjoint transpositions.

And those of  order 5, to 5-cycles. Notice that all these permutations are even,

and that in fact all 60 elements ofA5 are realized in this way. Thus I is isomorphic
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Figure 7.7: Symmetries of  a dodecahedron: axes of  rotations

to A5. At the book's web site you will find all the drawings of  the polyhedra in

colour.

7.3 Improper Symmetries

We have computed the groups of  proper symmetries of  the Platonic solids. But

they obviously have reflectional symmetry as well. In general, an element α ∈
Sym(X) with detα = −1 is called an improper symmetry. Examples are re-

flections in a plane and the antipodal map −I ∈ O(3). It is easy to see that

−I ∈ Sym(X) for all five Platonic solids. Therefore by exercise 6.16,

Sym(X) ∼= Sym+(X)× {±I} .

The improper symmetries are the set −I · Sym+(X) = −Sym(X).

Let's look at them in the case of  the cube. Since |O| = 24, there are also 24

improper symmetries. First of  all there are reflections. The mirrors are planes
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Figure 7.8: Symmetries of  a dodecahedron: trihedra

bisecting pairs of  opposite faces. As the pictures below show, there are two types.

The first type gives 3 reflections, the second 6 reflections, for a total of 9.

Figure 7.9: Reflections of  a cube
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This leaves 15 improper symmetries. They are rotatory reflections. A rotatory

reflection is a rotation followed by a reflection in the plane perpendicular to the

axis of  the rotation (see [4], p.16 or [6], 7.4). An example is a rotation through

π/2 about the vertical line followed by a reflection in the horizontal plane. The

antipodal map is just a rotation through π about the same line followed by the

reflection.

Figure 7.10: Rotatory reflection of  a cube

7.4 Symmetries of  Equations

Symmetry also plays an important role in the study of  algebraic equations. Sup-

pose we have a polynomial equation p(x) = 0 with rational coefficients:

p(x) = xn + a1x
n−1 + · · ·+ an−1x+ an = 0

where a1, . . . , an ∈ Q. We assume that p is irreducible, i.e. does not factor into

polynomials of  lower degree with rational coefficients. In the complex numbers,

p = 0 has n roots, z1, . . . , zn, which we will assume are distinct. We are in-

terested in permutations of  these roots which preserve any algebraic relations
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among them. These form a permutation group of  degree n which reflects the

symmetries among the roots. For a generic polynomial p there will only be "triv-

ial" relations and the group will simply be Sn. However, for special polynomials

there will be non-trivial relations and the symmetry group will not be the full

permutation group.

Let's look at the equation

0 = x4 + x3 + x2 + x+ 1 = (x5 − 1)/(x− 1)

The roots are

z1 = e2πi/5 , z2 = e4πi/5 , z3 = e6πi/5 , z4 = e8πi/5 .

In the picture below, they are shown on the unit circle in C.

.

.e2πi/5

.e4πi/5

.e6πi/5

.e8πi/5

We have

z2 = z21 , z3 = z31 , z4 = z41 .

We are looking for permutations of  the 4 roots which preserve these relations. If

α is such a permutation, then α(z2), α(z3), and α(z4) are determined by α(z1),

which can be z1, z2, z3, or z4.

(i) α(z1) = z1: then

α(z2) = α(z1)
2 = z2 α(z3) = α(z1)

3 = z3 α(z4) = α(z1)
4 = z4 .

So α = (1).
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(ii) α(z1) = z2: then

α(z2) = α(z1)
2 = z22 = z4 α(z3) = z32 = z1 α(z4) = z42 = z3 .

Therefore α = (1 2 4 3).

(iii) α(z1) = z3: then

α(z2) = z23 = z1 α(z3) = z33 = z4 α(z4) = z43 = z2 .

Thus α = (1 3 4 2).

(iv) α(z1) = z4: then

α(z2) = z3 α(z3) = z2 α(z4) = z1 .

So α = (1 4)(2 3).

Therefore the symmetry group of  the equation is the cyclic group ⟨(1 2 4 3)⟩.

As a second example, consider the equation

x4 − 10x2 + 1 = 0.

Its roots are

z1 =
√
2+

√
3 , z2 = −

√
2+

√
3 , z3 =

√
2−

√
3 , z4 = −

√
2−

√
3 .

They satisfy the relations

z1 + z4 = 0 (i)

z2 + z3 = 0 (ii)

(z1 + z2)
2 = 12 (iii)

(z1 + z3)
2 = 8 (iv)

(z2 + z4)
2 = 8 (v)

(z3 + z4)
2 = 12 . (vi)
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We are interested in permutations of z1, z2, z3, z4 which preserve these rela-

tions. Well, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3) and (1) do. No other permutations

do. To see this we check one transposition, one 3-cycle and one 4-cycle. The oth-

ers are similar. Now (1 2) takes relation (i) to

z2 + z4 = 0 .

But this contradicts relation (v). The 3-cycle (1 2 3) does the same. The 4-cycle

(1 2 3 4) takes (i) to

z2 + z1 = 0 ,

contradicting relation (iii). Thus the symmetry group of  this polynomial is the

group

V = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1)} .

The symmetry group of  a polynomial equation is usually called its Galois group.

We shall study Galois groups more extensively in later chapters.

7.5 Exercises

1. Look at some flowers and decide what their symmetry groups are.

2. What is the symmetry group of  a rectangle which is not a square?

3. List the permutations in S5, respectively S6, corresponding to the elements

of D5, respectively D6.

4. Let α ∈ Dn be a rotation through 2π/n counterclockwise, and let β ∈ Dn

be any reflection.

a) Prove that the n reflections in Dn are αjβ, 1 ≤ j ≤ n.

b) Show that αβ = βα−1.

c) Show that αjβ = βα−j .
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5. Under the given isomorphism between the group of  proper symmetries of  the

cube and S4, to which types of  permutations do the three types of  rotations

correspond?

6. Verify that

a) elements ofA5 are either 5-cycles, 3-cycles, products of 2 disjoint trans-

positions, or the identity;

b) there are 20 3-cycles, 24 5-cycles, and 15 products of 2 disjoint transpo-

sitions.

7. In the picture below, a regular tetrahedron is inscribed in a cube. Which proper

symmetries of  the cube map the tetrahedron to itself ?

8. The figure below shows a cube inscribed in a regular dodecahedron. Which

proper symmetries of  the dodecahedron map the cube to itself ?
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9. Describe the reflections which are symmetries of  a regular tetrahedron and of

a regular dodecahedron.

10. Describe the 12 rotatory reflections in the symmetry group of  the cube.

11. Show that the symmetry group of x4 + 1 = 0 is V . Suggestion: express the

roots as in the first example.

12. • Show that the symmetry group of x4 − 2x2 − 2 = 0 is D4.
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Group Actions

8.1 Examples

In the previous chapter, we looked at how the symmetry group of  a regular poly-

gon permutes its vertices, and how the symmetry group of  a cube permutes the

4 diagonals. Realizing these groups as permutation groups of  a set of  objects

told us a lot about them. In this chapter, we are going to pursue this point of

view. In general one says that a group G acts on a set X (usually finite) if  one is

given a homomorphism G→ SX . A more convenient way to express this is the

following.

Definition 8.1. We say that a group G acts on a set X if  we have a mapping

G×X → X , whereby (α, x) 7→ α · x ∈ X , such that

(αβ) · x = α · (β · x)

1 · x = x

for all α, β ∈ G and x ∈ X .

Where there is no possibility of  confusion, we shall just write αx instead of α ·x.

For example, if G = O and X = {d1, d2, d3, d4}, the set of  4 diagonals of  a

cube, then the mapping O → X is given by

(α, di) 7→ α(di) ,

where α ∈ O and 1 ≤ i ≤ 4. Here are two further examples which will interest

us greatly.

111
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Examples 8.2. (i) A group G acts on itself  by multiplication on the left: for

ξ ∈ G and α ∈ G we set

α · ξ := αξ .

Then (i) is satisfied because the group operation is associative: for β ∈ G,

(αβ) · ξ = (αβ)ξ = α(βξ) = α · (β · ξ)

and (ii) because 1 is the identity for the group operation:

1 · ξ = 1ξ = ξ .

(ii) A group G acts on itself  by conjugation: for ξ ∈ G and α ∈ G we set

α · ξ := αξα−1.

Then for β ∈ G,

(αβ) · ξ = (αβ)ξ(αβ)−1 = α(βξβ−1)α−1 = α · (β · ξ)

and

1 · ξ = 1ξ1−1 = ξ .

It is not hard to see that this definition does give you a homomorphismG→
SX . For each α ∈ G we can define a permutation σα of X :

σα(x) := α · x .

This map σα is bijective because it has an inverse, namely σα−1 :

σα−1σα(x) = α−1(αx) = (α−1α)x = x

and therefore σα−1σα = 1. Similarly, σασα−1 = 1. Furthermore, the mapping

σ : G→ SX , given by

σ : α 7→ σα

is a homomorphism. For

σαβ(x) = (αβ) · x = α (β x) = α · σβ(x) = σα
(
σβ(x)

)
.

and hence σαβ = σασβ .
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8.2 Orbits and Stabilizers

If  the group G acts on the set X , the orbit of  a point x ∈ X is the set

Ox := {αx | α ∈ G} ⊂ X .

The stabilizer of x is the subgroup

Gx := {α ∈ G | αx = x} .

Example 8.3. If  we take

X = {1, 2, 3, 4}

and

G = V ′ = {(1), (12), (34), (12)(34)} ⊂ S4 ,

then

O1 = O2 = {1, 2}, O3 = O4 = {3, 4}

and

V ′
1 = V ′

2 = ⟨(34)⟩, V ′
3 = V ′

4 = ⟨(12)⟩ .

The group

V = {(1), (12)(34), (13)(24), (14)(23)}

also acts on this set. However

O1 = O2 = O3 = O4 = X, V1 = V2 = V3 = V4 = {(1)} .

In chapter 3 we looked at the decomposition of  a permutation α ∈ Sn into

a product of  cycles. The cycles we found correspond to the orbits of  the permu-

tation group ⟨α⟩ acting on the set {1, 2, . . . , n}. The orbit of 1 is

O1 = {1, α(1), α2(1), . . . , αr1−1(1)} ,

which gives us the first cycle. We then pick the smallest number i2 which does

not occur in O1 and compute its orbit:

Oi2 = {i2, α(i2), α2(i2), . . . , α
r2−1(i2)} .
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This gives us the second cycle, and so on.

In general if  a groupG acting on a setX has only one orbit, we say thatG acts

transitively on X . If G is a permutation group of  degree n which acts transitively

on {1, 2, . . . , n} we say that G is transitive.

Remark 8.4. In general, Ox = Oy , for x, y ∈ X , if  and only if  there exists an

α ∈ G such thatαx = y. Why is this so? Suppose thatαx = y. If z = βy ∈ Oy ,

then βαx = βy = z so that z ∈ Ox. Thus

Oy ⊂ Ox .

By writing α−1y = x, we can reverse the roles of x and y and see that

Ox ⊂ Oy .

Therefore Ox = Oy . Conversely, if Ox = Oy , then y ∈ Ox and therefore there

exists α ∈ G such that αx = y. If  there is only one orbit, then for all x and y,

we have Ox = Oy or equivalently, for all x and y there exists α ∈ G such that

αx = y.

Many of  the permutation groups that we have seen act transitively on the set

{1, 2, . . . , n}. However the stabilizers may not be trivial. For example, taking

G = Sn, we see that any permutation which fixes 1 can permute {2, . . . , n}
quite arbitrarily. So (Sn)1 is the group of  all permutations of {2, . . . , n}, which

is isomorphic to Sn−1.

The group of  proper symmetries of  a Platonic solid acts transitively on the set

of  vertices, the set of  edges, and the set of  faces. What do the stabilizers look like?

Let's look at the regular tetrahedron. First pick a vertex. The rotations whose axis

passes through the vertex and the centre of  the opposite face leave it fixed. No

other rotations of  order 3 do so. A rotation of  order 2 whose axis passes through

the centres of  a pair of  opposite edges, does not fix any vertex. So the stabilizer

of  a vertex is the cyclic group of  order 3 consisting of  the rotations about the line

through the vertex and the centre of  the opposite side. The only rotation which

fixes a given edge is the half-turn about the line joining its midpoint and that of
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the opposite edge. So its stabilizer is the cyclic group of  order 2 generated by this

half-turn. And the stabilizer of  a face is just the stabilizer of  the opposite vertex.

In example (i) above G acts transitively on itself. Why? Take ν, ξ ∈ G. Let

α = ξν−1. Then

αν = (ξν−1)ν = ξ.

The stabilizer of  any element ξ is trivial, because αξ = ξ implies that α = 1.

The action of G on itself  by conjugation (example (ii)) is more interesting:

first some terminology. The orbit of  an element ξ ∈ G under conjugation is

called its conjugacy class and will be denoted by Cξ . So

Cξ := {αξα−1 | α ∈ G} .

An element αξα−1 is called a conjugate of ξ. The stabilizer of ξ is called its

centralizer , denoted by Zξ(G) or just Zξ :

Zξ := {α ∈ G | αξα−1 = ξ} = {α | αξ = ξα} .

Thus the centralizer of ξ is the set of  all elements which commute with ξ. The

centre of G, written Z(G), is

Z(G) = {α | αβ = βα, for all β ∈ G}

So

Z(G) = ∩ξZξ(G) .

If G is abelian then of  course Z(G) = G.

Let's compute the conjugacy classes of Sn.

Lemma 8.5. Suppose ν = (i1, . . . , ir) ∈ Sn is an r-cycle. Then ανα−1 is the r-cycle(
α(i1), . . . , α(ir)

)
.

Proof. We have

α(ij)
α−1

−−−→ ij
ν−−−→ ij+1

α−−−→ α(ij+1) ,
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where as usual, ir+1 := i1. (Remember that we are reading from right to left.) If

i ̸∈ {α(i1), . . . , α(ir)}, then α−1(i) ̸∈ {i1, . . . , ir}, so that

i
α−1

−−−→ α−1(i)
ν−−−→ α−1(i)

α−−−→ i .

Thus

ανα−1 =
(
α(i1), . . . , α(ir)

)
.

It also follows from this lemma that if  we are given a second r-cycle ξ, there

exists an α ∈ G such that ξ = ανα−1. Namely, if ξ = (j1, . . . , jr), then define

α(i1) = j1, . . . , α(ir) = jr ,

and extend α to the rest of {1, 2, . . . , n} in any way you like as long as α is

bijective. Then by the lemma, ξ = ανα−1. Thus the set of  all r-cycles is a

conjugacy class.

Now suppose that ν = ν1 · · · νs where ν1, . . . , νs are disjoint cycles of  length

r1, . . . , rs respectively. We say that ν is of cycle type {r1, . . . , rs}. Then for any

α ∈ G, we have

ξ := ανα−1 = αν1α
−1 · · ·ανsα−1 .

Therefore ξ too is of  cycle type {r1, . . . , rs}. On the other hand, given any two

elements ν and ξ of  the same cycle type, we can refine the argument just given

to see that there exists an α such that ξ = ανα−1. This proves the following

theorem:

Theorem 8.6. A conjugacy class in Sn consists of  all permutations of  a given cycle type.

For example, the possible cycle types in S5 are

{1} {2} {3} {2, 2} {4} {2, 3} {5} .

And to each of  these there corresponds a conjugacy class in S5. Notice that a

cycle type is given by any set {r1, . . . , rs} ⊂ N, where r1 + · · ·+ rs = n. Such
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a set is called a partition of n. The list above can also be regarded as the possible

partitions of 5. As with cycle decompositions, we write {3} instead of {3, 1, 1}
and so on.

8.3 Fractional Linear Transformations

In this section we will look at an action ofGL(2, F ) on the projective line. More

will be said about it in example 10.13(iii) and it will be important in chapter 12.

You may well be familiar with fractional linear transformations over the complex num-

bers. Given a matrix

α =

(
a b
c d

)
∈ GL(2,C) ,

one defines

sα(z) =
az + b

cz + d

which takes on complex values for z ∈ C, except at z = −d/c. To deal with

this value, one extends sα to the extended complex line (or Riemann sphere),

P (C) = C ∪ {∞}, by setting

sα(−d/c) = ∞, sα(∞) = a/c .

The reason for the latter formula is, that if  you write

sα(z) =
a+ b/z

c+ d/z
,

and then set 1/z = 0, you obtain a/c.

This works perfectly well for any field F , not just C. The extended affine

line, or projective line, over F can be defined formally by

P (F ) := F ∪ {∞} .

Then for

α =

(
a b
c d

)
∈ GL(2, F ) ,
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we set

sα(x) :=
ax+ b

cx+ d
, x ∈ F , x ̸= −d/c ,

and

sα(−d/c) = ∞, sα(∞) = a/c .

It is easy to check that we have defined an action of GL(2, F ) on P (F ). This

action is transitive because we can see that O0 = P (F ): take any b ∈ F , then

sα(0) = b for α =

(
1 b
0 1

)
and

sα(0) = ∞ for α =

(
0 1
1 0

)
.

The action is particularly interesting when F = Fp, for some prime p. We can

write P (Fp) as

P (Fp) = {0, 1, . . . , p− 1,∞}

and can regard each sα as a permutation of  this set of p+1 elements. In this way

the action gives us a homomorphism fp : GL(2,Fp) → Sp+1, with fp(α) := sα.

Theorem 8.7.

ker fp = F×
p · I = Z

(
GL(2,Fp)

)
Proof. Clearly, F×

p · I ⊂ ker fp. Suppose that α ∈ ker(fp). Then sα(x) = x for

all x ∈ P (Fp). In particular this holds for x = 0, 1,∞. This means that α lies

in the stabilizers of 0, 1, and ∞. Let's compute the stabilizer of 0: we have

0 = sα(0) =
a · 0 + b

c · 0 + d
=
b

d

if  and only if b = 0. So the stabilizer of 0 is{(
a 0
c d

)
∈ GL(2,Fp)

}
.
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Similarly,

∞ = sα(∞) =
a

c

if  and only if c = 0. Thus the stabilizer of ∞ is{(
a b
0 d

)
∈ GL(2,Fp)

}
.

So if α fixes both 0 and ∞, then

α =

(
a 0
0 d

)
,

for some a, d ∈ F×
p . If  in addition, α fixes 1, then

1 = α(1) = a/d ,

and therefore a = d. Thus α = aI for some a ∈ Fp, and

ker(fp) = {aI | a ∈ F×
p } .

In exercise 11 it is shown that this is the centre ofGL(2, F ), for any field F .

Let's look at this map for p = 2. If  we take

α =

(
1 1
0 1

)
, we have sα(x) = x+ 1 .

Thus

sα(0) = 1, sα(1) = 0, sα(∞) = ∞ .

So

f2(α) = (0 1) .

For

β =

(
0 1
1 0

)
, we have sβ(x) =

1

x
.

Thus

sβ(0) = ∞, sβ(1) = 1, sβ(∞) = 0 .
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So

f2(β) = (0 ∞) .

As we saw in chapter 3, these two transpositions generate S3. So the image of f2
must be all of S3. Since

ker(f2) = {aI | a ∈ F×
2 } = {I} ,

f2 is injective as well, and therefore an isomorphism.

Now let's consider f3. We know that

|GL(2,F3)| = 48 and |S4| = 24 ,

and

ker(f2) = {I, 2I} .

So f3 is not an isomorphism. However it is surjective. We can again find matrices

mapping onto three transpositions which generate S4. Take

α =

(
2 1
0 1

)
β =

(
2 2
0 1

)
γ =

(
0 1
1 0

)
Then

sα(x) = 2x+ 1 sβ(x) = 2x+ 2 sγ(x) =
1

x

and

f3(α) = (0 1) f3(β) = (0 2) f3(γ) = (0 ∞) .

The action of GL(2, F ) on P (F ) is more than just transitive. In fact given

two triples of  distinct points in P (F ), there exists an α ∈ GL(2, F ) such that sα
maps one triple to the other. To see this we shall show that given three distinct

elements u, v, w ∈ P (F ), we can find an α such that

sα(0) = u sα(1) = v sα(∞) = w .
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Let

α =

(
a b
c d

)
.

Then the three equations above are

sα(0) = b/d = u sα(1) = (a+ b)/(c+ d) = v sα(∞) = a/c = w .

Substituting the first and third into the second, we get

(cw + du)/(c+ d) = v

which has the solution

c = d(v − u)/(w − v) ,

for d ∈ F×. Thus we have a solution α, unique up to multiplication by a non-

zero scalar, in other words by a matrix in the centre of GL(2, F ). This means

that sα is uniquely determined.

If  a groupG acts on a setX and maps any distinct triple of  points inX to any

other, then we say that the action is triply transitive . If  it maps any distinct pair

of  points to any other, it is called doubly transitive. So the action of GL(2, F )

on P (F ) is triply transitive and you can check that the action of SL(2, F ) on

P (F ) is doubly transitive (see exercise 25).

Remark 8.8. The upper half  plane, H = {z ∈ C||z| > 0} ∪ {0} with the

Poincaré metric is a model for the hyperbolic plane (see [9], chap. 7). The action

of SL(2,R) on P (C) preserves H. In fact SL(2,R)/{±I} is the group of

proper isometries of H.

8.4 Cayley's Theorem

As we saw in the first section, defining an action of  a group G on a set X , is the

same as giving a homomorphism

σ : G→ SX .
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The kernel of σ is

{α ∈ G | αx = x for all x ∈ X} ,

in other words, those elements of G which act trivially on X . It is sometimes

called the kernel of  the action.

Now suppose thatG is a finite group, and letG act on itself  by multiplication

on the left. Then the mapping σ is a homomorphism from G→ SG. And

ker(σ) = {α ∈ G | αξ = ξ for all ξ ∈ G}

But taking ξ = 1, we see that such an α must be 1. So σ is injective. This gives

us a result known as Cayley's Theorem:

Theorem 8.9. Let G be a finite group of  order n. Then G is isomorphic to a permutation

group of  degree n, more precisely to a subgroup of  the group of  permutations of G itself.

8.5 Software and Calculations

The function Orbit[G,x] will compute the orbit of x under the permutation

group G. Here x is a positive natural number or a vector. For example,

In[1]:= A5 = Group[ P[{1,2,3}], P[{3,4,5}] ]

Out[1]= ⟨ (1, 2, 3), (3, 4, 5) ⟩

So the orbit of  2 under A5 can be computed by

In[2]:= Orbit[A5, 2]

Out[2]= {1, 2, 3, 4, 5}

Similarly, if  you set
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In[3]:= ChoosePrime[5]

Out[3]= 5

then

In[4]:= F20 = Group[ L[{1,1},{0,1}], L[{2,0},{0,3}]
]

Out[4]=
⟨ (

1 1
0 1

)
,

(
2 0
0 3

) ⟩

and the orbit of  the vector (2, 3) is

In[5]:= Orbit[F20, {2,3}]

Out[5]=
{(

2
3

)
,

(
0
3

)
,

(
4
4

)
,

(
0
4

)
,

(
3
2

)
,

(
3
3

)
,

(
3
4

)
,(

0
2

)
,

(
1
1

)
,

(
1
2

)
,

(
1
3

)
,

(
1
4

)
,

(
2
4

)
,

(
0
1

)
,(

2
1

)
,

(
2
2

)
,

(
4
2

)
,

(
4
3

)
,

(
3
1

)
,

(
4
1

)}
(see exercise 4.4).

Stabilizer[G,x] will compute the stabilizer of x in the group G. So for

example

In[6]:= Stabilizer[A5, 3]

Out[6]= ⟨ (1 2 4), (2 4 5) ⟩
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The conjugacy class of  an element can be calculated with the function

ConjugacyClass. Let's use it to compute the conjugacy classes inA5. To begin

with, we know that the conjugacy classes in S5 correspond to the cycle types of

permutations of  degree 5. The even cycle types are

{1}, {3}, {5}, {2, 2} .

The function CycleTypes computes the number of  permutations in each cycle

type:

In[7]:= CycleTypes[A5]

Out[7]=

1 3 5 22
1 20 24 15
0.017 0.33 0.4 0.25


(The last row in the output is the density of  each cycle type, i.e. the ratio of  the

number of  permutations of  the given cycle type to the order of A5). Now two

elements in A5 may be conjugate by an element in S5 but not by an element in

A5. So a conjugacy class of S5 may break up into more than one conjugacy class

in A5. We begin with a 3 -cycle:

In[8]:= ConjugacyClass[ A5, P[{1,2,3}] ]

Out[8]= { (1 2 3), (1 2 4), (2 3 4), (1 4 3),
(2 4 5), (3 4 5), (2 5 3), (1 2 5),
(2 3 5), (2 4 3), (1 3 4), (1 4 2),
(2 5 4), (3 5 4), (1 3 5), (1 4 5),
(1 5 2), (1 3 2), (1 5 3), (1 5 4) }

These are all 20 3-cycles. Next we look at the conjugacy class of  a 5-cycle:
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In[9]:= ConjugacyClass[ A5, P[{1,2,3,4,5}] ]

Out[9]= { (1 2 3 4 5), (1 2 4 5 3), (1 2 5 3 4),
(1 4 5 2 3), (1 4 2 3 5), (1 5 2 4 3),
(1 3 2 5 4), (1 3 5 4 2), (1 4 3 5 2),
(1 5 4 3 2), (1 5 3 2 4), (1 3 4 2 5) }

This is only half  of  the 5-cycles! One that is missing is (1 2 3 5 4) . So let's

compute its conjugacy class:

In[10]:= ConjugacyClass[ A5, P[{1,2,3,5,4}] ]

Out[10]= { (1 2 3 5 4), (1 2 4 3 5), (1 2 5 4 3),
(1 5 4 2 3), (1 3 5 2 4), (1 4 3 2 5),
(1 5 3 4 2), (1 3 4 5 2), (1 4 5 3 2),
(1 3 2 4 5), (1 4 2 5 3), (1 5 2 3 4) }

These are the remaining 5-cycles. Lastly we look at the conjugacy class of  a

product of  two transpositions:

In[11]:= ConjugacyClass[ A5, P[{1,2},{3,4}] ]

Out[11]= { (1 2)(3 4), (1 4)(2 3), (1 3)(2 4),
(1 2)(4 5), (2 3)(4 5), (2 4)(3 5),
(2 5)(3 4), (1 2)(3 5), (1 3)(4 5),
(1 4)(3 5), (1 4)(2 5), (1 5)(3 4),
(1 5)(2 3), (1 3)(2 5), (1 5)(2 4) }

These are all 15 permutations of  type {2, 2}. So these four sets together with

{(1)} are the conjugacy classes of A5.

The centre of  a group can be computed with the function Centre. For

example,
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In[12]:= D4 = Group[ P[{1, 2, 3, 4}], P[{1, 3}] ]

Out[12]= ⟨ (1, 2, 3, 4), (1, 3) ⟩

And

In[13]:= Centre[D4]

Out[13]= ⟨ (1, 3)(2, 4) ⟩

For a matrix α in GL(2,Fp) the corresponding fractional linear transfor-

mation sα is computed by the function LFTPermutation . Let's repeat the

calculation of f3 : GL(2,F3) → S4 using this function:

In[14]:= ChoosePrime[3]

Out[14]= 3

In[15]:= a = L[{{2,1},{0,1}}]

Out[15]=
(
2 1
0 1

)

In[16]:= b = L[{{2,2},{0,1}}]

Out[16]=
(
2 2
0 1

)

In[17]:= c = L[{{0,1},{1,0}}]
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Out[17]=
(
0 1
1 0

)

In[18]:= LFTPermutation[a]

Out[18]= (0, 1)

In[19]:= LFTPermutation[b]

Out[19]= (0, 2)

In[20]:= LFTPermutation[c]

Out[20]= (∞, 0)

8.6 Exercises

1. What is the stabilizer in Dn of  the vertex of  a regular n-gon?

2. What are the stabilizers of  a vertex, an edge, and a face of  a cube in the octa-

hedral group? Of  a regular dodecahedron in the icosahedral group?

3. Describe the conjugacy classes of S6.

4. Compute the conjugacy classes of A6.

5. What are the conjugacy classes of D5 ?

6. Determine the conjugacy classes in SL(2,F5).
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7. Prove that the conjugacy class of  an element α ̸= 1 in SO(3) is uniquely

determined by

a) a unit vector v ∈ R3 such that the axis of  rotation ofα is the line through

v, and

b) an angle of  rotation t ∈ (0, π],

whereby the conjugacy class corresponding to (v, π) is the same as the one

corresponding to (−v, π).

8. What is the centralizer of  an r-cycle in Sn ?

9. • A group G acts on a set X . Suppose that x, y ∈ X and y = αx for some

α ∈ G. Prove that

Gy = αGxα
−1 := {αβα−1 | β ∈ Gx} .

10. Verify that (α, x) 7→ sα(x), α ∈ GL(2, F ), x ∈ P (F ) defines an action of

GL(2, F ) on P (F ).

11. Prove that the centre of GL(2, F ) is {aI | a ∈ F}.

12. • Find the centre of Dn, n ≥ 3.

13. Let G be a group. For any α ∈ G, define

cα : G→ G

by

cα(β) = αβα−1 .

Prove that cα is an automorphism of G (see exercise 5.21). Thus the conju-

gate of  a product is the product of  the conjugates, and the conjugate of  an
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inverse is the inverse of  the conjugate. Such an automorphism is called an

inner automorphism.

14. Define a map

c : G→ Aut(G)

by

c(α) = cα .

Check that c is a homomorphism. What is its kernel?

15. • Let

H =


1 a b
0 1 c
0 0 1

∣∣∣∣∣ a, b, c ∈ R

 .

Verify that H is a linear group (H is called the Heisenberg group). Compute

its centre.

16. •LetG72 be the permutation group generated by g = {(1 2 3), (1 4)(2 5)(3 6),
(1 5 2 4)(3 6)}. It has order 72. Verify that G72 is transitive. Determine the

stabilizer of 1. Show that it is isomorphic to Z/2Z× S3.

17. • Find the transitive subgroups of S4. Suggestion: first check the subgroups

generated by at most 2 elements.

18. • Let p be prime and let G < Sp be a transitive subgroup which contains a

transposition.

a) For j ∈ {1, . . . , p}, set

Cj = {k | (j k) ∈ G} .

Show that any two setsCj are either disjoint or coincide. Show that they

all have the same cardinality.

b) Prove that G = Sp.
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19. Is f5 surjective? If fp surjective for any primes p > 5 ?

20. • Show that f5 is injective on F20 (see exercise 4.4) and that its image lies in

the stabilizer of ∞. Thus it can be identified with a permutation group of

degree 5. Verify that in S5 it can be generated by {(1 2 3 4 5), (1 2 4 3)}.

21. Are two elements inF20 which are conjugate in S5 also conjugate inF20 itself ?

22. Show that SL(2,Z) acts transitively on P (Q). Does it act doubly transitively?

23. • Let the Frobenius group Fp(p−1) (see exercise 4.4) act by fractional linear

transformations on P (Fp).

a) Verify that for a ∈ F×
p and b ∈ Fp, the matrix(

a b
0 1

)
acts by the mapping fa,b:

fa,b(x) = ax+ b , x ∈ Fp .

Check that Fp(p−1) fixes ∞.

b) Show that

fa,b ◦ fc,d = fac,ad+b .

c) Show that Fp(p−1) acts transitively on P (Fp) \ {∞}. Does it act doubly

transitively?

24. Suppose that G acts transitively on X . Show that G acts doubly transitively if

and only if Gx acts transitively on X \ {x} for some x ∈ X .

25. • Show that SL(2, F ) acts doubly transitively on P (F ) for any field F .
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Counting Formulas

9.1 The Class Equation

If  a group G acts on a set X , then X breaks up into the disjoint union of  the

various orbits ofG. WhenX andG are finite we can obtain formulas relating the

number of  elements in the orbits and stabilizers and in X , and for the number

of  fixed points of  the elements of G. These formulas are useful in studying

the structure of  abstract finite groups and of  symmetry groups. They also have

applications to combinatorial problems. For any finite set Y , we shall denote the

number of  elements in Y by |Y |.
Recall that in example 8.3 we looked at the actions of V ′ and V on X =

{1, 2, 3, 4}, and determined the orbits and stabilizers. For V ′ we found that

|V ′
x| = 2 and |Ox| = 2 ,

and for V

|Vx| = 1 and |Ox| = 4 ,

for any x ∈ X . So in both cases |Gx||Ox| = |G| . This relation holds in general.

Suppose we have a groupG acting on a setX . Fix a point x ∈ X , and define

a map

e : G→ Ox

by

e(α) = α · x ,

131
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for α ∈ G. This map is surjective by the definition of  the orbit of x. When do

two elements α, β ∈ G have the same image y under e? Well, αx = βx = y

means that α−1βx = x or equivalently, that

γ := α−1β ∈ Gx .

On the other hand, if γ ∈ Gx, then

(αγ)x = αx = y .

Thus

e−1(y) = αGx := {αγ | γ ∈ Gx}

where αx = y.

.
.αGx .Gx

.G

.Ox

.y .x

.α

Now suppose that |G| is finite. We have a bijection

Gx ↔ e−1(y)

given by γ ↔ αγ , so that

|e−1(y)| = |Gx| .
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Since

G =
⊔
y∈Ox

e−1(y) ,

it follows that

|G| =
∑
y∈Ox

|e−1(y)| =
∑
y∈Ox

|Gx| = |Ox||Gx| .

This gives us our formula.

Formula 9.1. |G| = |Ox||Gx| .

Typically one uses this to compute |Gx|. For example in exercise 8.16, the

group G = G72 acts transitively on {1, 2, 3, 4, 5, 6}. Therefore |G1| = 72/6 =

12. Or if  we let X be the set of  vertices of  a cube, and G = O, then G acts

transitively, so that the order of  any stabilizer is 24/8 = 3. Notice that this

equation says that |Ox| always divides |G|.
Next we look at a formula for |X| in terms of  data about the orbits. There

is an equivalence relation hiding in any group action. Define

x ∼ y if Ox = Oy .

This relation is reflexive, symmetric and transitive, and therefore is an equivalence

relation. By remark 8.3,

x ∼ y if  and only if αx = y ,

for some α ∈ G. The equivalence class of  an element x is its orbit Ox. Since

distinct equivalence classes are disjoint, it follows that distinct orbits are disjoint.

IfX too is finite, then we can obtain a count of  the elements ofX . Let x1, . . . , xr
be representatives of  the orbits of G. Then

X =
r⊔
i=1

Oxi .

Combining this with (9.1), we have
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Formula 9.2. |X| =
∑r

i=1|Ox| =
∑r

i=1|G|/|Gxi| .

Let's consider this formula in the case where G acts on itself  by conjugation.

So the orbits are the conjugacy classes. If  an element α ∈ Z(G) then its conju-

gacy class is just {α} because α commutes with every element ofG. Conversely,

any element whose conjugacy class has only one element in it must commute

with all elements of G and therefore lies in Z(G). Let α1, . . . , αr be representa-

tives of  the other, non-trivial conjugacy classes. Then equation (9.2) gives us the

following result:

Theorem 9.3 (The Class Equation).

|G| = |Z(G)|+
r∑
j=1

|Cαj
| = |Z(G)|+

r∑
j=1

|G|/|Zαj
| .

Examples 9.4. (i) Take G = S4. We know that the conjugacy classes are

given by the cycle types. The possible cycle types are

{1} {2} {3} {4} {2, 2}

The number of  elements in the corresponding conjugacy classes are 1, 6,

8, 6, and 3 respectively. So the class equation is

24 = 1 + 6 + 8 + 6 + 3 .

(ii) In the last section of  the previous chapter we computed the conjugacy

classes of A5 directly. We now want to make this calculation in a different

way. As pointed out there the possible cycle types are

{1} {3} {5} {2, 2} .

These correspond to conjugacy classes in S5. We must decide whether two

permutations which are conjugate in S5 are also conjugate in A5. For this

we need the following observation.
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Remark 9.5. If  a groupG acts on a setX andH < G, thenHx = Gx∩H
for any x ∈ X .

Recall that |S5| = 120 and |A5| = 60. First we check whether the set of 3-

cycles is a conjugacy class in A5. The number of 3-cycles is 20. Therefore

the centralizer of  a 3-cycle, say ξ = (123), in S5 has order 120/20 = 6

by (9.1). Now (4 5) commutes with (1 2 3) and so does (1 2 3) itself. But

⟨(1 2 3), (4 5)⟩ has order 6. So

Zξ = ⟨(1 2 3), (4 5)⟩ .

The intersection

Zξ ∩ A5 = ⟨(1 2 3)⟩ ,

which has order 3. Therefore the order of  the conjugacy class of ξ in A5

is 60/3 = 20. So the set of 3-cycles is a single conjugacy class in A5 too.

Next, let's look at the set of 5-cycles. There are 24 of  them, which means

that the centralizer of  one of  them in S5 has order 120/24 = 5. So this

centralizer is just the cyclic subgroup generated by the 5-cycle itself. This

subgroup lies in A5. Therefore the order of  the conjugacy class of  the

5-cycle in A5 is 60/5 = 12. So the set of 5-cycles breaks up into two

conjugacy classes in A5.

Lastly we make the calculation for the set of  all products of  two disjoint

2-cycles. There are 15 of  them, so that the order of  the centralizer of

one of  them in S5 is 8. Again, we pick one, say ξ = (1 2)(3 4). Now

(1 3 2 4) commutes with it since (1 3 2 4)2 = (1 2)(3 4). So do (1 3)(2 4)

and (1 4)(2 3). This gives us a subgroup of  order 8 which must be the

centralizer of ξ in S5:

Zξ = ⟨(1 4)(2 3), (1 3 2 4)⟩ .

Now

Zξ ∩ A5 = ⟨(1 4)(2 3), (1 2)(3 4)⟩ ∼= V .
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Therefore the conjugacy class of (1 2)(3 4) in A5 has order 60/4 = 15 as

well, and is the set of  all products of  two disjoint transpositions. So the

class equation is

60 = 1 + 20 + 12 + 12 + 15 .

(iii) Take G = Dn. In chapter 7 we saw that

Dn = {1, σ, . . . , σn−1, τ, στ, . . . , σn−1τ} ,

where σ is a rotation and τ is a reflection which satisfy the relations

σn = 1 τ 2 = 1 στ = τσ−1 .

It follows that

σ(σjτ)σ−1 = σj+2τ ,

where the index j is taken modulo n, and

τσjτ = σn−j .

Using this let's work out what the conjugacy classes are for n = 4 and

n = 5. For n = 4 this tells us that Z(D4) = {1, σ2} and that the other

conjugacy classes are

{τ, σ2τ} {στ, σ3τ} {σ, σ3} .

So the class equation is

8 = 2 + 2 + 2 + 2 .

For n = 5, the centre is trivial. The conjugacy class of τ is

{τ, σ2τ, σ4τ, στ, σ3τ} .

Since the order of  every conjugacy class must divide 10, the remaining

classes must each have order 2. So they are

{σ, σ4}, {σ2, σ3} .
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The class equation is

10 = 1 + 5 + 2 + 2 .

We see that in the case n = 4 the two different types of  reflections each

form a conjugacy class. When n = 5 there is only one type of  reflection

and only one conjugacy class. It is not hard to generalize this calculation

to arbitrary n (see exercise 2).

9.2 A First Application

Our first application is a result which is useful in classifying groups whose order

is a prime power.

Definition 9.6. A p-group is a group of  order ps for some s > 0.

For example, D4 and Q are 2-groups, and Z/3Z× Z/3Z is a 3-group.

Theorem 9.7. SupposeG is a p-group for some prime p. Then the centre ofG is not trivial.

Proof. According to the class equation

|G| = |Z(G)|+
r∑
j=1

|Cαj
|

where α1, . . . , αs are representatives of  the non-trivial conjugacy classes of G.

Since the order of  each non-trivial conjugacy class divides |G| they must each be

a power of p. Therefore their sum is a multiple of p. Hence p divides |Z(G)| as

well.

For example, as was shown in the previous section, and in exercise 8.12, the

centre of D4 has order 2 and is thus not trivial. This theorem will allow us to

classify groups of  order p2.
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9.3 Burnside's Counting Lemma

Our second application is a formula for the number of  orbits of  a finite group

acting on a finite set. It is useful in combinatorial problems with symmetry. First

we need a definition. If H is a subgroup of  a group G, the conjugate of H by

α ∈ G is the subgroup

αHα−1 := {αβα−1 | β ∈ H} .

Two subgroups H and K are conjugate to one another if  there exists an α ∈ G

such that

K = αHα−1 .

In exercise 8.9 you saw that if G acts on X and two points x, y ∈ X lie in the

same orbit, then their stabilizers Gx and Gy are conjugate to one another.

Theorem 9.8 (Burnside's Lemma). Let G be a finite group acting on a finite set X .

Denote by mα, the number of  fixed points of α ∈ G and by s, the number of  orbits of G in

X . Then

s =
1

|G|
∑
α∈G

mα .

Proof. First suppose that G acts transitively. So s = 1, and we want to show that

|G| =
∑
α∈G

mα .

Set

Y = {(α, x) ∈ G×X | αx = x} .

Now we count |Y | in two different ways. If  we pick an x ∈ X , then (α, x) ∈ Y

if  and only if α ∈ Gx. So the number of  such pairs is |Gx|. For any y ∈ X , Gy

is conjugate to Gx and therefore |Gy| = |Gx|. Hence, summing over y, we have

|Y | =
∑
y∈X

|Gy| =
∑
y∈X

|Gx| = |X||Gx| = |G| ,
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by (9.1). On the other hand, if  we choose an α ∈ G, then the x ∈ X such that

(α, x) ∈ Y are just the fixed points of α. So summing over α, we get

|Y | =
∑
α∈G

mα .

We can now do the general case. Since G acts transitively on each orbit, the

formula we have just proved applies to each orbit. The total number of  fixed

points an element α has, is the sum of  the number of  fixed points in each orbit.

Therefore

s|G| =
∑
α∈G

mα .

In example 8.3 the group V ′ acts on {1, 2, 3, 4}. There are 2 orbits. Let's

count the fixed points. For α = (1), we have mα = 4. For α a transposition,

mα = 2. And for α = (1 2)(3 4), mα = 0. So Burnside's formula is

2 =
1

4
(4 + 2 + 2 + 0) .

Example 9.9. Suppose we want to count the number of  ways of  colouring the

vertices of  a regular pentagon black or white. Since there 5 vertices, and 2 ways

to colour each one, the simplest answer is:

25 = 32.

But suppose we are making a necklace with 5 beads, each coloured black or white.

Then we do not want to distinguish between two patterns which can be trans-

formed into one another by a symmetry of  the pentagon, for example
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To count these, let X be the set of 32 patterns. The symmetry group of  the

pentagon, D5, acts on X . We want to know how many orbits there are. The

Burnside formula will tell us, once we have computed the number of  fixed points

of  each symmetry. There are 3 different types of  symmetry to consider. First,

α = 1. Then mα = 32. Secondly, α could be one of  the 4 non-trivial rotations.

The only patterns which a rotation leaves invariant are the 2 which are all black

or all white. So in this case, mα = 2. Lastly, α could be one of  the 5 reflections.

Recall that these reflect the pentagon in a line passing through a vertex and the

midpoint of  the opposite side. So one vertex is fixed and the other four are

interchanged in pairs. There are 2 ways of  colouring each pair and of  colouring

the fixed vertex. So mα = 23 = 8. Substituting these numbers into the formula,

we have

10s = 32 + 4 · 2 + 5 · 8 = 80 ,

where s is the number of  orbits. Therefore s = 8. Here are 8 patterns which

represent the 8 orbits.

9.4 Finite Subgroups of SO(3)

Our second application of  formula (9.1) is to find the finite subgroups of SO(3).

We already know the subgroups T,O, I. The dihedral groups also can be realized
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as groups of  rotations of  geometric objects. Take a regular n-gon in the plane.

Construct a pyramid above it and one of  the same height below it. A rotation

of  the n-gon in the plane can be extended to a rotation of  the solid about the

line joining the peaks of  the two pyramids. A reflection can be extended to a

rotation through an angle of π about the axis of  the reflection. Thus Dn can be

embedded in SO(3) as a group of  symmetries of  this solid. Since Dn contains

a cyclic subgroup of  order n, it too is a subgroup of SO(3). We shall see that

these are essentially all the finite subgroups. The way we shall demonstrate this

is to consider the fixed points of  a group of  rotations acting on the unit sphere

S2,

S2 := {v ∈ R3 | ∥v∥ = 1} .

Remark 9.10. If α ∈ O(3) then for any v ∈ R3, ∥αv∥ = ∥v∥, in particular if

∥v∥ = 1, then ∥αv∥ = 1. So O(3) acts on S2. Any subgroup of O(3), for

example T, also acts on S2.

Definition 9.11. If  a group G acts on a set X , the set of fixed points of G is

{x | αx = x for some α ̸= 1} = {x | Gx ̸= {1}} .

For example, take G = T, acting on S2. Each non-trivial element in T is a

rotation about an axis. The axis meets S2 in a pair of  antipodal points, which are

fixed by the rotation. These two points belong to the set of  fixed points. The

rotations about a line through a vertex and the centre of  the opposite face give

4 pairs of  fixed points. The rotations about an axis joining the midpoints of  a

pair of  opposite edges give another 3 pairs. In the picture below the arcs on the

sphere are the edges of  an inscribed tetrahedron projected onto the sphere. The

centre of  one face is shown.
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Theorem 9.12. Let G < SO(3) be a finite subgroup. Then G is conjugate to a cyclic

group, to Dn, n ≥ 2, to T, to O, or to I.

Proof. As a subgroup of SO(3), G acts on S2. Each non-trivial rotation in G

fixes the two points where its axis meets the sphere. The set of  all such pairs

of  antipodal points is the set of  fixed points of G, which we shall denote by X .

Now suppose x ∈ X is fixed by α ∈ G. Take any β ∈ G. Then βx is fixed by

βαβ−1. So βx ∈ X . Thus G acts on X .

Let O1, . . . , Os be the orbits of G in X . The stabilizer of  a point in an orbit

Oj has order

nj := |G|/|Oj| , (9.1)

for 1 ≤ j ≤ s, by equation (9.1). Since all the points in X have non-trivial

stabilizers, nj ≥ 2.

We now count fixed points as in the proof  of  Burnside's lemma. Let

Y = {(α, x) | αx = x, α ∈ G \ {1}, x ∈ X} .

For fixed x, (α, x) ∈ Y if  and only if α ∈ Gx \{1}. If x ∈ Oj , then the number

of  such elements α is nj − 1. So the points x ∈ Oj contribute |Oj|(nj − 1)
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elements α. Summing over j, we then get

|Y | =
s∑
j=1

|Oj|(nj − 1) .

On the other hand, if  we fix α ∈ G \ {1}, then (α, x) ∈ Y if  and only if x is

a fixed point of α. As we already noted, each rotation α has 2 fixed points. So

summing over α ∈ G \ {1}, we obtain

|Y | =
∑

α∈G\{1}

2 = 2(|G| − 1) .

Thus

2(|G| − 1) =
s∑
j=1

(nj − 1)|Oj| .

Substitute the value of |Oj| from equation (9.1):

2(|G| − 1) =
s∑
j=1

nj − 1

nj
|G| = |G|s− |G|

s∑
j=1

1

nj
.

Now divide through by |G| and rearrange terms:

s∑
j=1

1

nj
= s− 2 +

2

|G|
. (9.2)

This is the equation we must analyze. First, notice that since all nj ≥ 2, each

term on the left is at most 1/2. So we have the inequality

s

2
≥ s− 2 +

2

|G|
> s− 2 ,

which implies that

2 >
s

2
.

Thus s ≤ 3. This leaves us with three cases to discuss.

(i) s = 1.
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Equation (9.2) becomes:

1

n1

=
2

|G|
− 1 ≤ 0 ,

since |G| ≥ 2. Then n1 ≤ 0 which is impossible.

(ii) s = 2.

Equation (9.2) becomes:

1

n1

+
1

n2

=
2

|G|
.

Multiplying by |G|, and inserting (9.1), we have

|O1|+ |O2| = 2 .

Therefore |O1| = |O2| = 1 and n1 = n2 = |G|. Now if G has only 2

fixed points, they must be antipodal. And the line passing through them

must be the axis of  rotation of  the elements of G. These are then rota-

tions in the plane perpendicular to this axis. So G can be regarded as a

subgroup of SO(2). We saw earlier that finite subgroups of SO(2) are

cyclic. Therefore G is cyclic.

(iii) s = 3.

Equation (9.2) becomes:

1

n1

+
1

n2

+
1

n2

= 1 +
2

|G|
. (9.3)

In particular
1

n1

+
1

n2

+
1

n3

> 1 .

Lemma 9.13. The solutions of  this inequality, with the constraints n1, n2, n3 ≥ 2 are
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n1 n2 n3 |G|

2 2 n 2n
2 3 3 12
2 3 4 24
2 3 5 60

Proof  of  lemma. If n1, n2, n3 ≥ 3, then

1

n1

+
1

n2

+
1

n3

≤ 1 .

So at least one is 2, say n1 = 2. If n2, n3 ≥ 4, then

1

2
+

1

n2

+
1

n3

≤ 1 .

Therefore we can assume thatn2 < 4. The first possible solution isn1 = 2, n2 =

2, n3 = n, where n ≥ 2 is arbitrary. Now suppose n2 = 3. Then the inequality

becomes
1

2
+

1

3
+

1

n3

> 1 .

Thus we must have that n3 < 6. This gives the other three solutions in the table.

To compute |G| substitute the values of n1, n2 and n3 in equation (9.3).

We return to the proof  of  the theorem. The entries in the table correspond

to Dn, T, O and I respectively. The four cases are similar. We will do the second

one.

So suppose that n1 = 2, n2 = 3, n3 = 3, and |G| = 12. Then |O1| = 6,

|O2| = 4 and |O3| = 4. We want to convince ourselves that these orbits are

the set of  midpoints of  the edges of  a regular tetrahedron, the set of  its vertices

and the set of  centres of  its faces. Begin with a point in P1 ∈ O2. Let l1 be the

line through P1 and the origin. It is the axis of  the rotations in GP1 , which have

angles of  rotation 2π/3 and 4π/3. Pick a point P2 ∈ O2 different from P1. Its

orbit under GP1 is {P2, P3, P4}. They all lie in a plane perpendicular to l1 and

are the vertices of  an equilateral triangle in this plane.
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.

.P1

.P2

.P3

.P4

.l1

.l2

Take the line joining any of  these to the origin, say the line l2 joining P2 to

the origin. It is the axis for the rotations of GP2 which permute {P1, P3, P4}.

So these all lie in a plane perpendicular to l2 and form an equilateral triangle.

Thus the 4 points in O2 are equidistant from one another and are the vertices of

a regular tetrahedron. The group G is the group of  proper symmetries of  this

tetrahedron. The orbits O3 and O1 are the centres of  its faces and the midpoints

of  its edges respectively. The symmetry groups of  any two regular tetrahedra are

conjugate in SO(3). This proves the second case.

This result can also be proved using only spherical geometry: see [8], §3.8.

9.5 Exercises

1. Verify the class formula of S5.

2. Determine the conjugacy classes of Dn, for n ≥ 4.

3. Calculate the terms in the class equation for SL(2,F5).

4. Calculate the terms in the class equation of A6.
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5. Use the Mathematica function ConjugacyClass to compute the conjugacy

classes of A6.

6. What is the centre of  the permutation group of  degree 8 generated by

{(1 2 3 4 5 6 7 8), (1 3 5 7)}?

7. How many different necklaces with 6 beads can be made from beads of  3

colours?

8. How many ways can the faces of  a cube be coloured black and white?

9. Complete the proof  of  theorem 9.12 in the case of  the cube.

10. Show that D6
∼= S3 × Z/2Z.





10
Cosets

10.1 Lagrange's Theorem

At the beginning of  the previous chapter when we looked at the evaluation map

e : G→ Ox, we came upon subsets of G of  the form αGx, where x ∈ X, α ∈
G. Such subsets are called cosets of  the stabilizer Gx in G. In general, given a

subgroup K < G, we call a subset

αK := {ακ | κ ∈ K}

a left coset of K in G. For example, a left coset of nZ in Z is a set of  the form

m+ nZ, m ∈ Z. This is just the congruence class of m modulo n. A left coset

is not a subgroup of G except for the one coset 1 ·K = K , because this is the

only coset containing 1.

Examples 10.1. (i) What are the left cosets of An in Sn? Well, if α ∈ Sn is

even, then αAn = An. If α is odd, then αAn is the set of  odd permuta-

tions. So there are 2 cosets: the set of  even permutations and the set of

odd permutations.

149
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(ii) Suppose we take G = S3 and K = ⟨(1 2)⟩. Then

(1)K = K

(1 2)K = K

(1 3)K = {(1 3), (1 3 2)}

(2 3)K = {(2 3), (1 2 3)}

(1 2 3)K = {(2 3), (1 2 3)}

(1 3 2)K = {(2 3), (1 2 3)} .

Thus there are 3 left cosets: K = {(1), (1 2)}, {(1 3), (1 3 2)}, and

{(2 3), (1 2 3)}.

(iii) Here are the left cosets of V in A4:

V = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

(1 2 3)V = {(1 2 3), (2 4 3), (1 4 2), (1 3 4)}

(1 3 2)V = {(1 3 2), (1 4 3), (2 3 4), (1 2 4)} .

(Check this calculation yourself !)

(iv) Let G = R2 with vector addition, and let K be a line through (0, 0). The

left cosets of K in G are the translates v +K , v ∈ R2, of K .

.

.v +K .K

The last section of  this chapter explains Mathematica functions which compute

cosets. One can also look at the right cosets ofK inG: they are subsets of  the form

Kα, α ∈ G. We denote the set of  left cosets of K in G by G/K . We already
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used the notation Z/nZ for the set of  congruence classes mod n, otherwise

known as the integers mod n. If G/K is finite, then the number of  elements in

it is called the index of K in G, written [G : K].

Notice that in the examples we have just looked at, every left coset has the

same number of  elements, namely |K|, and distinct cosets are disjoint. As a result

of  this, [G : K]|K| = |G|. For example, there are 3 left cosets of V in A4. Each

has 4 elements, and |A4| = 12.

Theorem 10.2 (Lagrange's Theorem). If G is a finite group and K a subgroup of G,

then

|G| = [G : K]|K| .

Proof. The theorem can be proved in the way suggested above. This is done in

exercise 1. It also follows from formula 9.1, as we going to see now. The group

G acts on the set G/K by left multiplication: define

α · (βK) := (αβ)K ,

for α, β ∈ G. This is a variant of  the action of G on itself  by multiplication on

the left and you show that it is an action in the same way. It too is transitive:

given two cosets, βK, γK ∈ G/K , the group element α = γβ−1 satisfies

α · βK = γK .

So there is only the one orbit, with [G : K] points in it. The stabilizer of  the

coset K is the subgroup K . We can now apply our formula relating the number

of  points in an orbit to the order of  the stabilizer:

|G| = [G : K]|K| .

Corollary 10.3. The order of  a subgroup divides the order of  the group.
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For example, S3 can have subgroups of  order 1, 2 and 3, but not of  order 4 or

5. It is not hard to write down these subgroups. First there is the trivial subgroup

of  order 1. Subgroups of  order 2 are those generated by a transposition. There

are 3 of  these. There is exactly one subgroup of  order 3, namely A3 = ⟨(123)⟩.
The graph below shows how these subgroups fit together. It is called the lattice

of  subgroups of S3.

. .S3

.A3

.⟨(12)⟩ .⟨(13)⟩ .⟨(23)⟩

.{(1)}

Corollary 10.4. The order of  an element divides the order of  the group.

A consequence of  this is that if |G| = n, then for any α ∈ G

αn = 1 .

Corollary 10.5. A group of  prime order is cyclic.

Proof. Let G be a group of  order p, where p is prime. The order of  any element

in G must divide p. Therefore it must be either 1 or p. So if α ∈ G,α ̸= 1, then

⟨α⟩ = G.

Thus groups of  order 2, 3, 5 and 7 are all cyclic. On the other hand we know

of  a group of  order 4 which is not cyclic, namely V , and one of  order 6 which is

not cyclic, S3.
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Let's apply corollary 10.4 to the group F×
p . Since it has order p − 1 the

corollary tells us that ap−1 = 1 for any a ∈ F×
p , or equivalently

ap−1 ≡ 1 (mod p)

for any a ∈ Z, (a, p) = 1. But we can extend this to all integers if  we multiply

the congruence by a:

Theorem 10.6 (Fermat's Little Theorem).

ap ≡ a (mod p)

for all a ∈ Z.

The converse to Lagrange's theorem is not true. If G is a finite group and d

divides |G|, there need not be a subgroup of  order d. Here is an example.

Example 10.7. Look at A4. It consists of  eight 3-cycles, 3 products of  disjoint

transpositions and the identity. Each 3-cycle generates a cyclic subgroup of  order

3. Any two of  them generate the whole group (see page 44). Each element of

type {2, 2} generates a cyclic subgroup of  order 2. Two of  them generate the

subgroup V of  order 4. A 3-cycle and a product of  two transpositions generate

the whole group. So there is no subgroup of  order 6. Here is the lattice of

subgroups of A4 .
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. .A4

.V

.⟨(123)⟩ .⟨(124)⟩ .⟨(134)⟩ .⟨(234)⟩

.⟨(12)(34)⟩ .⟨(13)(24)⟩ .⟨(14)(23)⟩

.{(1)}

10.2 Normal Subgroups

Another situation where cosets naturally arise is the following. Suppose f : G→
H is a group homomorphism. When do two elements inG have the same image

in H? Well, let α, α′ ∈ G, ᾱ ∈ H with

f(α) = f(α′) = ᾱ .

Then

f(α−1α′) = 1H

so that

α−1α′ ∈ ker(f)

or

α′ ∈ α ker(f) .

Conversely, if f(α) = ᾱ and α′ ∈ α ker(f) then f(α′) = ᾱ. So

f−1(ᾱ) = α ker(f) .
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The kernel and its cosets have a special property. The most convenient way

to express it is this: for any α ∈ G,

α ker(f)α−1 = ker(f) .

(For β ∈ ker f, f(αβα−1) = f(α)f(α−1) = 1H ). We give a name to subgroups

with this property.

Definition 10.8. A subgroupK ofG is called a normal subgroup, writtenK▹ G,

if

αKα−1 = K ,

for all α ∈ G.

This property can be expressed in terms of  the cosets of K .

Theorem 10.9. A subgroup K of  a group G is normal if  and only if

(i) for any α ∈ G, αK = Kα, or equivalently,

(ii) for any α, β ∈ G, (αK)(βK) = (αβ)K , or equivalently,

(iii) for any α ∈ G, αKα−1 ⊂ K .

Proof. Suppose that K is a normal subgroup. Take an α ∈ G. We have that

αKα−1 = K . (10.1)

Multiplying on the right by α we get

αK = Kα .

Thus every left coset coincides with the corresponding right coset. In terms of

elements of K this means that for κ ∈ K , there exists a λ ∈ K , such that

ακ = λα ,
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and vice versa. Now assume that equation (i) holds for all α. Then given α, β ∈
G,

(αK)(βK) = α(Kβ)K = α(βK)K = (αβ)K

So the product of  the cosets of α and of β is the coset of αβ. If  equation (ii)

holds, then taking β = α−1, we have

(αK)(α−1K) = (αα−1)K = 1 ·K = K , (10.2)

which implies that

αKα−1 ⊂ K (10.3)

(Why? Well, lying in the set on the left-hand side of  (10.2) are all elements of

the form (ακ)(α−11), with κ ∈ K). Finally, since equation (10.3) holds for all

elements of G, it holds for α−1:

α−1Kα ⊂ K .

Conjugating both sides by α gives

K ⊂ αKα−1 ,

and combining this with (10.3) gives equation (10.1).

In practice, to check whetherK▹ G, you need only verify whetherαKα−1 ⊂
K , whenα runs through a set of  generators ofG. In fact it is sufficient to check if

ακα−1 ∈ K , where α runs through a set of  generators of G and κ runs through

a set of  generators of K . In example (10.1), we know that {(1 2 3), (1 2)(3 4)}
generatesA4. Since (1 2)(3 4) ∈ V , it is enough to check that (1 2 3)V (1 3 2) =

V . We see then that V is a normal subgroup of A4.

Remark 10.10. Any subgroup K of  index 2 is normal. There are 2 left cosets: K

and αK , where α ̸∈ K . And there are 2 right cosets: K andKα. The left cosets

are disjoint from one another and so are the right cosets. Therefore αK = Kα,

and K is normal. For example, An is a normal subgroup of Sn, for all n.
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If G is abelian, then every subgroup is normal since αβα−1 = β for any α

and β. The centre of  any group is a normal subgroup because the same equation

holds for any α, with β in the centre.

We should also see an example of  a subgroup which is not normal. Let G =

S3 and K = ⟨(1 2)⟩. Then (1 2 3)(1 2)(1 3 2) = (2 3) ̸∈ K . So K is not

normal.

10.3 Quotient Groups

Condition (ii) in theorem 10.9 tells us that we can make G/K into a group by

multiplying cosets when K is a normal subgroup (and only then). Let's do this

carefully. First, we have a binary operation on G/K :

G/K ×G/K → G/K ,

given by

(αK, βK) 7→ (αK)(βK) = αβK ,

for α, β ∈ G. This operation is associative:

(αKβK)γK = (αβ)KγK = (αβ)γK

= α(βγ)K = αK(βγ)K = αK(βKγK) .

Secondly there is an identity element, namely 1 ·K = K :

(αK)K = αK = K(αK) .

Thirdly, the inverse of  a coset αK is α−1K :

αKα−1K = (αα−1)K = K = α−1KαK .

G/K with this operation is called the quotient group of G mod K .

You have already seen a quotient group: Z/nZ, the integers mod n, which is

the quotient group of  the subgroup nZ. In fact, historically this is the example
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which lead to the general construction. If  we look again at example 10.1(iii), we

see that (
(1 2 3)V

)2
= (1 2 3)V (1 2 3)V = (1 2 3)2V = (1 3 2)V(

(1 2 3)V
)3

= (1 2 3)V (1 3 2)V = V .

This shows that A4/V is a cyclic group of  order 3.

Using Mathematica to generate left cosets and then multiply them together

makes it easy to see the multiplication in G/K in examples where [G : K] is

larger.

10.4 The Canonical Isomorphism

We noted at the beginning of  our discussion of  normal subgroups, that the kernel

of  a homomorphism is normal. In fact every normal subgroup is the kernel of

a homomorphism. For let K be a normal subgroup of  a group G. We have a

canonical map

p : G→ G/K

given by

p : α 7→ αK ,

where α ∈ G. By the definition of  the group operation in G/K , this map is a

homomorphism:

p(αβ) = αβK = αKβK = p(α)p(β)

for α, β ∈ G. It is surjective, and

p(α) = 1G/K = K if  and only if α ∈ K

Thus the kernel of p is K .
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Example 10.11. TakeG = S4 andK = V . It is easy to check that V is a normal

subgroup of S4. The quotient group S4/V has order 24/4 = 6. We think we

know all groups of  order 6. Which one is it? Three of  the cosets are written out

in 10.1(iii). The other three are

(1 2)V = {(1 2), (3 4), (1 3 2 4), (1 4 2 3)}

(1 3)V = {(1 3), (2 4), (1 2 3 4), (1 4 3 2)}

(2 3)V = {(2 3), (1 4), (1 2 4 3), (1 3 4 2)} .

Thus the 6 cosets can be written as

V, (1 2)V, (1 3)V, (2 3)V, (1 2 3)V, (1 3 2)V .

We can define a map

S3 → S4/V

by

α 7→ αV ,

for α ∈ S3. Because of  the definition of  the group operation in S4/V , this map

is a homomorphism. Since it is bijective, we have

S4/V ∼= S3 .

Here is a more sophisticated way of  presenting the same argument. Consider

the subgroup H of S4,

H := {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} ∼= S3 .

Then H ∩ V = {(1)}. So the canonical homomorphism p : S4 → S4/V

is one-to-one on H . Because both H and S4/V have order 6, they are in fact

isomorphic and

S4/V ∼= S3 .

△
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In example 10.15 below we will look at a more complicated example.

In a sense, every homomorphism looks like the canonical homomorphism.

This is what the following theorem says.

Theorem 10.12 (First Isomorphism Theorem). Let f : G → H be a homomor-

phism of  groups. Then f = f̄p where

p : G→ G/ ker(f)

is the canonical homomorphism and

f̄ : G/ ker(f) ∼= im(f) .

Proof. As we saw earlier, for any α′ ∈ α ker(f) ⊂ G

f(α′) = f(α) .

Therefore we get a well-defined mapping

f̄ : G/ ker(f) → H

if  we set

f̄
(
α ker(f)

)
:= f(α) .

This mapping is a homomorphism because f is one:

f̄
(
α ker(f)β ker(f)

)
= f̄

(
αβ ker(f)

)
= f(αβ)

= f(α)f(β) = f̄
(
α ker(f)

)
f̄
(
β ker(f)

)
.

As noted above as well, f̄ is injective: for ᾱ = f(α) ∈ im(f),

f−1(ᾱ) = α ker(f) .

And the image of f̄ is just the image of f . So

f̄ : G/ ker(f)
∼=−→ im(f) .
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and f = f̄p. Here is a diagram.

G
f−−−→ H

p

y x
G/(ker f)

f̄−−−→∼= im f

Examples 10.13. (i) In exercise 5.11 you looked at the exponential homo-

morphism exp : R → S given by

exp(x) = e2πix .

Its kernel is Z and it is surjective. Therefore it induces an isomorphism

exp : R/Z
∼=→ S .

(ii) For any field F we have the homomorphism

det : GL(2, F ) → F× .

By definition, its kernel is SL(2, F ) and it is surjective. Thus we have an

isomorphism

GL(2, F )/SL(2, F ) ∼= F× .

This holds in particular for F = Fp. We know that the order ofGL(2,Fp)
is (p− 1)2p(p+ 1). So we can compute |SL(2,Fp)|:

p−1 = |F×| = |GL(2,Fp)|/|SL(2,Fp)| = (p−1)2p(p+1)/|SL(2,Fp)|

and therefore

|SL(2,Fp)| = (p− 1)p(p+ 1) .

(iii) The action of GL(2,Fp) on P (Fp) gave us a homomorphism

fp : GL(2,Fp) → Sp+1 .



162 CHAPTER 10. COSETS

The kernel is Z
(
GL(2,Fp)

) ∼= F×. The map fp then induces an injective

homomorphism

f̄p : PGL(2,Fp) := GL(2,Fp)/Z
(
GL(2,Fp)

)
→ Sp+1 .

PGL(2,Fp) is called the projective linear group. Similarly one defines

PSL(2,Fp) which we shall discuss further in chapter 12.

10.5 Software and Calculations

For computing cosets there are functions LeftCosets and RightCosets . They

take as arguments a groupG and a subgroupK and produce a list of  the elements

of G partitioned into cosets with K itself  as the first coset. To illustrate, let's re-

peat example 10.1. We have:

In[1]:= A4 = Group[ P[{1,2,3}], P[{2,3,4}] ]

Out[1]= ⟨ (1 2 3), (2 3 4) ⟩

and

In[2]:= V = Group[ P[{1,2},{3,4}], P[{1,3},{2,4}]
]

Out[2]= ⟨ (1 2)(3 4), (1 3)(2 4) ⟩

Then

In[3]:= LeftCosets[A4,V]
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Out[3]= {{(1), (2 1)(4 3), (3 1)(4 2),
(4 1)(3 2)}, {(3 4 2), (2 4 1),
(3 2 1), (4 3 1)}, {(4 3 2), (2 3 1),
(3 4 1), (4 2 1)}}

If  you only want a representative from each coset you can use LeftCosetReps
or RightCosetReps:

In[4]:= LeftCosetReps[A4,V]

Out[4]= {(1), (3 4 2), (4 3 2)}

These are just the first elements from each coset. We can check that V satisfies

10.9(i) by computing its right cosets and comparing them with the left cosets:

In[5]:= RightCosets[A4,V]

Out[5]= {{(1), (2 1)(4 3), (3 1)(4 2),
(4 1)(3 2)},{(3 4 2), (3 2 1), (4 3 1),
(2 4 1)}, {(4 3 2), (4 2 1), (2 3 1),
(3 4 1)}}

So you can multiply two cosets together to get a third:

In[6]:= {P[{3, 4, 2}], P[{2, 4, 1}],
P[{3, 2, 1}], P[{4, 3, 1}]}.
{P[{4, 3, 2}], P[{2, 3, 1}],
P[{3, 4, 1}], P[{4, 2, 1}]}

Out[6]= {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
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We can also verify that V is normal in A4 by calculating its conjugates. First we

have the function Conjugate[a,b] which conjugates b by a. For example, if

In[7]:= a = P[{1,2,3}]

Out[7]= (1 2 3)

In[8]:= b = P[{1,4}]

Out[8]= (1 4)

then

In[9]:= Conjugate[a,b]

Out[9]= (2 4)

You can conjugate all the elements of  a set by a at once:

In[10]:= Conjugate[ a, Elements[V] ]

Out[10]= {(1), (1 4)(2 3), (1 2)(3 4), (1 3)(2 4)}

which confirms that V is normal in A4.

Example 10.14. In S5, we have the subgroup F20 (see exercise 8.20):

In[11]:= F20 = Group[ P[{1,2,3,4,5}] , P[{1,2,4,3}]
]

Out[11]= ⟨ (1 2 3 4 5), (1 2 4 3) ⟩
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A pair of  generators of S5 is

In[12]:= a = P[{1,2,3,4,5}]
b = P[{1,2}]

Out[12]= (1 2 3 4 5)

Out[13]= (1 2)

To check whether F20 is normal in S5 you conjugate the generators of F20 first

by a and then by b and look whether the resulting sets lie in F20. In fact since a
belongs to F20 you need only check

In[14]:= Conjugate[ b, Generators[F20] ]

Out[14]= {(1 3 4 5 2), (1 4 3 2)}

which does not lie in F20. So F20 is not normal.

Example 10.15. Let G72 (see exercise 8.16) be the permutation group

In[15]:= G72 = Group[ P[{1,2,3}], P[{1,4},{2,5},{3,6}],
P[{1,5,2,4},{3,6}] ]

Out[15]= ⟨ (1 2 3), (1 4)(2 5)(3 6), (1 5 2 4)(3 6) ⟩

G72 has order 72:

In[16]:= Order[G72]

Out[16]= 72
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Let K be the subgroup

In[17]:= K = Group[ P[{1,2,3}], P[{4,5,6}] ]

Out[17]= ⟨ (1 2 3), (4 5 6) ⟩

Since these two 3-cycles commute with one another, K ∼= Z/3Z× Z/3Z. The

first element of  the list of  generators ofG72 is also a generator ofK . So to check

that K ▹ G72 we need only conjugate the generators of K by the remaining two

generators of G72 :

In[18]:= Conjugate[ P[{1,4},{2,5},{3,6}],
Generators[K] ]
Conjugate[ P[{1,5,2,4},{3,6}],
Generators[K] ]

Out[18]= {(4 5 6), (1 2 3)}

Out[19]= {(4 6 5), (1 2 3)}

Therefore K is a normal subgroup of G72. The quotient group L := G72/K

has order 72/9 = 8. We want to determine which group of  order 8 it is. Since

each coset has 9 elements, we will tell Mathematica not to print out the entire list

of  cosets when it computes L:

In[20]:= L = LeftCosets[G72, K];

First we look at representatives from each of  the cosets.

In[21]:= LeftCosetReps[G72, K]
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Out[21]= {(1), (1 2), (4 5), (2 3)(4 5),
(1 4)(2 5)(3 6), (1 4)(2 5 3 6),
(1 4)(2 6 3 5), (1 4)(2 6)(3 5)}

The first coset, L[[1]], is K = 1L. The second, L[[2]] = (1 2)K . Now(
(1 2)K

)2
= (1 2)2K = K .

In other words, it has order 2. Since the representatives of  the cosets L[[3]],

L[[4]], L[[5]] and L[[8]] have order 2 as well, so do the cosets themselves. This

leaves L[[6]] and L[[7]]. We can see that(
(1 4)(2 5 3 6)

)−1
= (1 4)(2 6 3 5) .

So these two are inverse to each other. Do they in fact have order 4?

In[22]:= L[[6]].L[[6]]

Out[22]= {(2 3)(4 5), (1 2)(4 5), (1 3)(4 5),
(2 3)(5 6), (2 3)(4 6), (1 2)(5 6),
(1 2)(4 6), (1 3)(5 6), (1 3)(4 6)}

Comparing this with our list of  coset representatives, we see that this must be

L[[4]], which has order 2. So L[[4]] = L[[6]]2 and L[[7]] = L[[6]]3. It begins to

look as if L might be isomorphic to D4 (see equation (7.1)). To check this, we

need generators σ and τ satisfying

σ4 = 1 , τ 2 = 1 , στ = τσ−1 .

Let's try σ = L[[6]] and τ = L[[2]]. To see that they generate L we compute

In[23]:= L[[2]].L[[6]]
L[[2]].L[[4]]
L[[2]].L[[7]]
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Out[23]= {(1 4)(2 5)(3 6), (1 4 2 5 3 6),
(1 4 3 6 2 5), (1 5 2 6 3 4),
(1 5 3 4 2 6), (1 5)(2 6)(3 4),
(1 6 3 5 2 4), (1 6)(2 4)(3 5),
(1 6 2 4 3 5)}

Out[24]= {(4 5), (1 2 3)(4 5), (1 3 2)(4 5),
(5 6), (4 6), (1 2 3)(5 6),
(1 2 3)(4 6), (1 3 2)(5 6),
(1 3 2)(4 6)}

Out[25]= {(1 4)(2 6)(3 5), (1 4 2 6 3 5),
(1 4 3 5 2 6), (1 5 3 6 2 4),
(1 5)(2 4)(3 6), (1 5 2 4 3 6),
(1 6 2 5 3 4), (1 6 3 4 2 5),
(1 6)(2 5)(3 4)}

Thus

L[[2]].L[[6]] = L[[5]]

L[[2]].L[[6]]2 = L[[2]].L[[4]] = L[[3]]

L[[2]].L[[6]]3 = L[[2]].L[[7]]= L[[8]] .

So L[[6]] and L[[2]] do generate L. Now let's see whether they satisfy the right

relation. We must check whether

L[[6]]−1.L[[2]] = L[[7]].L[[2]] = L[[5]] :

In[26]:= L[[7]].L[[2]
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Out[26]= {(1 4)(2 5)(3 6), (1 4 2 5 3 6),
(1 4 3 6 2 5), (1 5 2 6 3 4),
(1 5 3 4 2 6), (1 5)(2 6)(3 4),
(1 6 3 5 2 4), (1 6)(2 4)(3 5),
(1 6 2 4 3 5)}

which is L[[5]]. So indeed

L ∼= D4 .

10.6 Exercises

1. Suppose that G is a finite group and K < G.

a) Define a relation in G by

α ∼ β if αK = βK .

Verify that this is an equivalence relation. Conclude that two cosets are

either equal or disjoint.

b) Show that |αK| = |K| for any α ∈ G.

c) From (a) and (b), deduce Lagrange's theorem.

2. Prove that for natural numbers a and n which are relatively prime,

aφ(n) ≡ 1 (mod n) .

3. • Draw the lattice of  subgroups ofD4. Do the same for the quaternion group

Q (see exercise 4.5).

4. Which subgroups of D4 are normal? Identify the corresponding quotient

groups. Do the same for Q.
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5. Verify that V is a normal subgroup of S4. Find all normal subgroups of S4.

6. Is the permutation group of  order 72 in example 10.15 a normal subgroup of

S6? Is N(p) a normal subgroup of GL(2,Fp) (see example (4.2)(ii))?

7. Let G be a group and K a subgroup. Suppose that g is a set of  generators of

G and k of K . Show that if

ακα−1 ∈ K ,

for all α ∈ g and κ ∈ K , then K is a normal subgroup.

8. • Let H and K be normal subgroups of  a group G with H ∩ K = {1}.

Prove that αβ = βα for any α ∈ H and β ∈ K . Suggestion: show that

αβα−1β−1 ∈ H ∩K .

9. Check that in example 10.1(ii) the product of  two left cosets may not be a left

coset.

10. Prove that a quotient group of  a cyclic group is cyclic.

11. Show that Sn/An ∼= Z/2Z.

12. Verify that the group of  translations T < GL(2,Fp) (see example 4.2(i)) is

a normal subgroup of  the Frobenius group F(p−1)p (see exercise 4.4). Prove

that the quotient group is isomorphic to F×
p .

13. In Q/Z, what is the order of  the coset of a/b, where a, b ∈ Z, b ̸= 0, and

(a, b) = 1? Conclude that every element in Q/Z has finite order, and that

there are elements of  arbitrarily large order.

14. Are there elements of  infinite order in R/Z ∼= S (cf. exercise 6.2)?
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15. Let H be the Heisenberg group (see exercise 8.15). Show that

H/Z(H) ∼= R2 .

16. • In example 10.15, let

H = ⟨{(1 4)(2 5)(3 6), (1 5 2 4)(3 6)}⟩ .

Prove directly that H ∼= D4. Show that the composition

H
i→ G72

p→ L ,

where i is the inclusion map and p is the canonical homomorphism, is an

isomorphism. Is G72 isomorphic to H ×K?

17. • In SL(2,C), let

α =

(
e2πi/3 0
0 e4πi/3

)
, β =

(
0 1
−1 0

)
.

Verify that βαβ−1 = α−1 and that G12 := ⟨α, β⟩ has order 12.

18. Let G be a group such that G/Z(G) is cyclic. Prove that G is abelian.

19. Show that f3 : PGL(2,F3) → S4 is an isomorphism.

20. What is the order of PSL(2,Fp)?

21. • Let F be a finite field. How many squares are there in F , that is, elements

of  the form a2, a ∈ F ? Suggestion: use exercise 6.20.

22. a) Suppose thatH is a normal subgroup of  a groupG. Show that if α ∈ H

then H contains the entire conjugacy class of α.

b) • In example 9.4(ii), we determined the conjugacy classes of A5. Use

this computation to prove that A5 has no normal subgroups other than

{1} and A5 itself.
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23. • Let G be a group, H ⊂ G, a subgroup, and set X = G/H . Then G acts

on X by multiplication on the left. As discussed in chapter 8, this determines

a homomorphism σ : G→ SX which is given by

σ(α) · βH = αβH .

a) Show that ker σ ⊂ H ;

b) If K ⊂ H is a normal subgroup of G, prove that K ⊂ ker σ.

24. Let

α =

(
1 1
0 1

)
, β =

(
0 1
−1 0

)
, γ =

(
3 1
2 1

)
in G = SL(2,F5) . Then g = {α, β} generates G. Verify that h = {β, γ}
generates a subgroup H of  index 5 (see exercise 4.11). The group G acts on

G/H . The 5 cosets of H in G each contain one of  the powers of α. So label

the cosets 1, 2, 3, 4, 5 by letting coset i be the one containing

αi =

(
1 i
0 1

)
.

This defines an action of G on {1, 2, 3, 4, 5}, in other words, a homomor-

phism of G into S5.

a) Prove that the image of G is A5.

b) Identify the kernel of  the mapping and prove that it induces an isomor-

phism of PSL(2,F5) with A5.

25. Let G be a group, and H and K normal subgroups. Suppose that K < H .

a) Verify that H/K is a normal subgroup of G/K .

b) (Second Isomorphism Theorem) Prove that (G/K)
/
(H/K) ∼= G/H .
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Sylow Subgroups

11.1 The Sylow Theorems

The Sylow subgroups of  a finite groupG are a class of  subgroups which provide

the first clues for discovering the structure ofG. We shall see later in this chapter

that the results we obtain about Sylow subgroups are enough to classify groups

of  small order.

Definition 11.1. LetG be a group of  order apr, where (a, p) = 1. A p-subgroup

of  order pr is called a Sylow p-subgroup of G.

In other words, a Sylow p-subgroup is a p-subgroup of  the maximal possible

order. For example, |S4| = 24 = 23 ·3. So a Sylow 2-subgroup is one of  order 8,

such asD4. A Sylow 3-subgroup is one of  order 3, for example a cyclic subgroup

generated by a 3-cycle. If  we consider the permutation group G72 in example

10.15, we have that 72 = 23 · 32. The subgroup H ∼= D4 in exercise 10.16 is a

Sylow 2-subgroup and the subgroup K ∼=
(
Z/3Z

)2
, a Sylow 3-subgroup.

Our first result tells us that for each prime p which divides |G| there exists a

Sylow subgroup. It is a partial converse to Lagrange's theorem. In order to prove

it we need an arithmetic lemma.

Lemma 11.2. Suppose n = apr where (a, p) = 1. Then(
n

pr

)
≡ a (mod p) .

In particular, p does not divide
(
n
pr

)
.

173
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Proof. As we saw in exercise 1.4,

(1 + x)p ≡ 1 + xp (mod p) .

Arguing by induction,

(1 + x)p
r ≡ 1 + xp

r

(mod p) .

Therefore

(1 + x)n =
(
(1 + x)p

r)a ≡ (1 + xp
r

)a = 1 + axp
r

+ · · ·+ xn (mod p) .

But the coefficient of xp
r

in the expansion of (1 + x)n is
(
n
pr

)
. Therefore(

n

pr

)
≡ a (mod p) .

Theorem 11.3. LetG be a finite group. For each prime p dividing |G| there exists a Sylow

p-subgroup.

Proof. Suppose n := |G| = apr, where (a, p) = 1. Let X be the set of  all

subsets of G with pr elements. We know that

|X| =
(
n

pr

)
.

Now G acts on X by

(α, T ) 7→ αT ,

where α ∈ G and T ∈ X . X decomposes into a disjoint union of  orbits of G.

According to the lemma, p does not divide |X|. So from formula 9.2 we see that

the order of  at least one of  these orbits is not divisible by p. Suppose OT is such

an orbit, and GT the stabilizer of T . By formula 9.1,

|G| = |OT ||GT | .
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Since |G| is divisible by pr, it follows that |GT | is divisible by pr. But for any

τ ∈ T , we have GT τ ⊂ T , so that

|GT | = |GT τ | ≤ |T | = pr .

Therefore

|GT | = pr

and GT is a Sylow p-subgroup.

Remark 11.4. The proof  shows that in fact

GT τ = T ,

in other words T is a right coset of  the Sylow p-subgroup GT . It also shows that

|OT | = a .

On the other hand, suppose H is any Sylow p-subgroup, and set

T = Hτ ,

for some τ ∈ G. Then it is easy to see that GT = H , and therefore |OT | =
|G|/|H| = a . So orbits OT for such T , are precisely the orbits whose length is

prime to p.

Our second result says something about the number of  Sylow p-subgroups.

Theorem 11.5. Let np be the number of  Sylow p-subgroups of G. Then

np ≡ 1 (mod p) .

Proof. As pointed out in the remark above, each orbit of  length a consists of  right

cosets of  Sylow p-subgroups. Cosets of  different subgroups are distinct: for if

Hσ = Kτ , σ, τ ∈ G ,

then

Hστ−1 = K .
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In particular, 1 = β(στ−1) for some β ∈ H . It follows that στ−1 = β−1 ∈ H ,

so that H = K .

We can now count the number of  elements of X in such orbits: there are

np Sylow p-subgroups and each one has a cosets. Therefore the total number

of  elements of X in these orbits is anp. Since the length of  any other orbit is

divisible by p, equation 9.2 shows that

|X| ≡ anp (mod p) .

But according to lemma 11.2,

|X| ≡ a (mod p) .

Therefore since (a, p) = 1,

np ≡ 1 (mod p) .

If H is a Sylow p-subgroup of G, then so is every conjugate of H . In the

example G = S4, we saw that the Sylow 3-subgroups are cyclic. They are in fact

all conjugate to each other, because all 3-cycles are conjugate in S4. The third

result tells us that this is not a coincidence.

Theorem 11.6. Let G be a finite group. Then its Sylow p-subgroups are conjugate to one

another.

Proof. Let H be a Sylow p-subgroup of G. Each left coset of H has pr elements.

Thus the set of  left cosets ofH ,G/H ⊂ X . LetK be another Sylow p-subgroup.

We can look at the action of K (by left multiplication) on X and in particular on

G/H . Then G/H decomposes into disjoint K-orbits. Since p does not divide

|G/H|, equation 9.2 again says that there must be an orbit whose order is not

divisible by p. Suppose the coset αH , α ∈ G, belongs to such an orbit. By 9.1,

the order of  this orbit divides |K| = pr. But this order is not divisible by p. So

it must be 1, in other words,

KαH = αH .
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This means that for any κ ∈ K ,

κα · 1 ∈ αH ,

or equivalently

α−1κα ∈ H .

Therefore α−1Kα ⊂ H , and since |K| = |H|, in fact

α−1Kα = H .

Thus any two Sylow p-subgroups are conjugate.

This result suggests another way of  counting the number of  Sylow

p-subgroups. If  we let G act on X by conjugation, then the orbit of  a Sylow

p-subgroup H is the set of  its conjugates. The stabilizer is the subgroup

NG(H) := {α ∈ G | αHα−1 = H} .

NG(H) is called the normalizer ofH inG. ClearlyH ▹NG(H) and ifH ▹G , then

NG(H) = G. Now we can apply 9.1 again to see that the number of  conjugates

of  H is |G|/|NG(H)| . Since

|G|
|NG(H)|

· |NG(H)|
|H|

=
|G|
|H|

= a ,

it follows that the number of  conjugates of H divides a. Therefore:

Corollary 11.7. np divides a.

Examples 11.8. (i) As we remarked, D4 is a Sylow 2-subgroup of S4:

D4 = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 2 3 4), (1 4 3 2),

(1 3), (2 4)} .

The subgroup

V = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
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is a normal subgroup of S4. So every conjugate of D4 contains V . Now

{(1 2)(3 4), (1 2 3 4)} generates D4. There are 6 4-cycles, all conjugate

to each other. A pair of  them, inverse to each other, occur in D4 and each

of  its conjugates. Therefore there are 3 subgroups of S4 conjugate to D4.

This fits with theorem 11.5 and corollary 11.7:

3 ≡ 1 (mod 2) and 3 = [S4 : D4] = a .

(ii) In the group G72, K is normal. So it is the only Sylow 3-subgroup. From

theorem 11.5 and corollary 11.7, we know that

n2 ≡ 1 (mod 2) and n2 | 9 .

So n2 = 1, 3 or 9. The Sylow 2-subgroup

H ={(1), (4 5), (1 2), (1 2)(4 5), (1 4)(2 5)(3 6),

(1 4 2 5)(3 6), (1 5 2 4)(3 6), (1 5)(2 4)(3 6)}

is isomorphic to D4, with generators {(1 5 2 4)(3 6), (1 4)(2 5)(3 6)} .

Using Mathematica (see chapter 8), or otherwise, we see that (1 5 2 4)(3 6)

has 18 conjugates in G72, occurring in mutually inverse pairs. Therefore

H has at least 9 conjugates. So n2 = 9.

In the last section we shall see how to find a Sylow 2-subgroup of S8.

11.2 Groups of  Small Order

Theorem 11.9. A group of  order p2, where p is prime, is cyclic or is isomorphic to Z/pZ×
Z/pZ.

Proof. LetG be a group of  order p2 and assume thatG is not cyclic. According to

theorem 9.7, the centre of G has order at least p. So take an element α ∈ Z(G),

α ̸= 1. Then |α| = p. Now pick an element β ̸∈ ⟨α⟩. Since |β| | p2 and G
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is not cyclic, it follows that |β| = p too. And because α ∈ Z(G), αβ = βα.

Therefore the mapping

Z/pZ× Z/pZ → G

given by

(a, b) 7→ αaβb , a, b ∈ Z/pZ .

is a well-defined homomorphism. This homomorphism is injective. But both

groups have order p2, so it is in fact an isomorphism. Thus G is either cyclic or

isomorphic to
(
Z/pZ

)2
.

For example a group of  order 9 is either cyclic or isomorphic to
(
Z/3Z

)2
. The

next result deals with groups of  order 2p.

Theorem 11.10. A group of  order 2p, where p ≥ 3 is prime, is isomorphic to Z/2pZ or

to Dp.

Proof. Let G be a group of  order 2p. Its Sylow p-subgroup has order p and is

therefore cyclic (see corollary 10.5). Similarly, the Sylow 2-subgroup is cyclic of

order 2. So let α be an element of G of  order p, and β of  order 2. Now np ≡ 1

(mod p) and np | [G : ⟨α⟩] = 2. This implies that np = 1 and that ⟨α⟩ is a

normal subgroup. Therefore

βαβ = αk ,

for some k, 0 < k < p. Conjugating again with β, we get

α = β2αβ2 = βαkβ = (αk)k = αk
2

.

Therefore k2 ≡ 1 (mod p), which means that k = ±1.

Thus there are two cases: first,

βαβ = α ,

which says that α and β commute. But then αβ has order 2p (see exercise 5.7)

and G is cyclic.
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In the second case

βαβ = α−1 .

This is the defining relation for Dp (equation (7.1)). So G is isomorphic to Dp.

In particular, for p = 3 this says again that a group of  order 6 is either cyclic or

isomorphic to S3. And for p = 5, it says that a group of  order 10 is either cyclic

or isomorphic to D5.

It is time to sort out the groups of  order 8.

Theorem 11.11. Let G be a group of  order 8. Then G is isomorphic to D4, Q, Z/8Z ,

Z/4Z× Z/2Z or
(
Z/2Z

)3
.

Proof. Suppose thatG is not cyclic. Then its non-trivial elements have order 2 or

4. It is not hard to see that if  all of  these have order 2, then

G ∼=
(
Z/2Z

)3
.

So let α ∈ G be an element of  order 4. Since the index of ⟨α⟩ is 2, ⟨α⟩ is a

normal subgroup. Pick an element β ̸∈ ⟨α⟩. Then

βαβ−1 = αk ,

where k = ±1. If k = 1 then α and β commute andG is abelian. There are two

possibilities: either |β| = 2 or |β| = 4. In the first case, arguing as in the proof

of  theorem 11.9 we see that

G ∼= Z/4Z× Z/2Z .

In the second case, we must have that β2 = α2. Therefore |αβ| = 2. So

replacing β by αβ we are back to the first case.

Now suppose that

βαβ−1 = α−1 .
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Thus G is not abelian. If |β| = 2, then the relation tells us that G ∼= D4 (see

equation (7.1)). This leaves us with the case |β| = 4. According to theorem 9.7,

Z(G) is not trivial. It is not hard to see that

|Z(G)| = 2 ,

and that if γ ∈ G has order 4, then

Z(G) ⊂ ⟨γ⟩ .

So let ϵ generate Z(G). Then α2 = ϵ , β2 = ϵ , and therefore

(βα)2 = (βα)(α−1β) = β2 = ϵ .

It follows that |βα| = 4. Furthermore,

βα = α−1β = α3β = ϵ(αβ) .

Comparing this with the description ofQ in exercise 4.5, we see thatG ∼= Q.

The following result is the key to classifying groups of  order 12.

Theorem 11.12. Let G be a group of  order 12. Then G has a normal subgroup of  order

3 or G ∼= A4.

Proof. Write 12 = 22 · 3. According to theorem 11.5, n3 ≡ 1 (mod 3). Accord-

ing to corollary 11.7, n3 divides 4. So n3 = 1 or 4. Suppose that n3 ̸= 1, in

other words that G does not have a normal subgroup of  order 3. Let H be one

of  the subgroups of  order 3. Then G acts on the set of 4 left cosets, G/H , by

multiplication on the left. This defines a homomorphism

σ : G→ S4 .

What is the kernel of σ? Well, σ(α) = 1 means that for all β ∈ G,

α(βH) = βH .
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Equivalently

β−1αβH = H

or

β−1αβ ∈ H

for all β ∈ G. But then

α ∈ βHβ−1

for all β ∈ G. By assumption, H has four distinct conjugates, and the intersec-

tion of  two distinct subgroups of  order 3 is trivial. Therefore α = 1 and σ is

injective. So G is isomorphic to a subgroup of S4 of  order 12, and the only such

subgroup is A4.

With this result it is not hard to classify groups of  order 12. It turns out that

up to isomorphism there are 5 groups: Z/12Z, Z/3Z×V , D6, A4 and G12 (see

exercise 4.17).

Example 11.13. Let G be a group of  order 15 = 3 · 5. Then n3 ≡ 1 (mod 3)

and n3 | 5. It follows that n3 = 1. Similarly, n5 ≡ 1 (mod 5) and n5 | 3. So

n5 = 1 too. Thus G has only one Sylow 3-subgroup and only one Sylow 5-

subgroup and both are normal. Let α be an element of  order 3 and β of  order

5. Applying exercise 10.8, we see that

αβ = βα .

But then by exercise 5.7,

|αβ| = |α||β| = 15 .

So G is cyclic. Thus every group of  order 15 is cyclic.
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11.3 A List

We can now begin a list, up to isomorphism, of  all the groups of  very small order.

∗ order 1: {1}.

∗ order 2: Since 2 is prime, all groups of  order 2 are cyclic and therefore iso-

morphic to Z/2Z .

∗ order 3: Just as for 2, all groups of  order 3 are isomorphic to Z/3Z .

∗ order 4: It is easy to see that a group of  order 4 is cyclic or isomorphic to V .

Notice that both are abelian.

∗ order 5: Z/5Z .

∗ order 6: By theorem 11.10, there are two groups of  order 6: Z/6Z ∼= Z/2Z×
Z/3Z and S3 . S3 is the smallest non-abelian group.

∗ order 7: Z/7Z .

∗ order 8: By theorem 11.11 there are five groups of  order 8: D4, Q, Z/8Z ,

Z/4Z× Z/2Z and (Z/2Z)3.

∗ order 9: From theorem 11.9 we know that every group of  order 9 is either

cyclic or isomorphic to
(
Z/3Z

)2
.

∗ order 10: By theorem 11.10 any group of  order 10 is isomorphic to Z/10Z
or D5 .

∗ order 11: Z/11Z .

∗ order 12: As mentioned following theorem 11.12 the groups of  order 12 are

Z/12Z , Z/3Z× V , D6, A4 and G12 .

∗ order 13: Z/13Z .
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∗ order 14: Again theorem 11.10 shows that the groups of  order 14 are Z/14Z
and D7 .

∗ order 15: Example 11.13 shows that all groups of  order 15 are cyclic.

Notice that there is no non-abelian group of  odd order in this list. Can you find

a non-abelian group of  least odd order?

11.4 A Calculation

Let's look at the Sylow subgroups of S8. First factor 8!.

In[1]:= FactorInteger[8!]

Out[1]= {{2,7},{3,2},{5,1},{7,1}}

In other words,

8! = 27 32 5 7 .

The Sylow 5-subgroups and Sylow 7-subgroups are cyclic, generated by 5-cycles

and 7-cycles respectively. A Sylow 3-subgroup is generated by two disjoint 3-

cycles. A Sylow 2-subgroup has order 27 = 128 and is harder to find. The order

of  any element in it is a power of 2. So let's begin our list of  generators with an

8-cycle, say

(1 2 3 4 5 6 7 8) .

If  we add an arbitrary 4-cycle we will get a group which is too big. Now the

square of  this 8-cycle is

(1 3 5 7)(2 4 6 8) .

So let's take (1 3 5 7) as the second generator.

In[2]:= H = Group[ P[{1,2,3,4,5,6,7,8}],
P[{1,3,5,7}] ]
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Out[2]= ⟨ (1 2 3 4 5 6 7 8), (1 3 5 7) ⟩

In[3]:= Order[H]

Out[3]= 32

So we have to add another element to our list of  generators. If  we take an arbitrary

2-cycle we will get the whole group S8. But the square of  our 4-cycle is

(1 5)(3 7) .

So let's add (1 5) to our set of  generators.

In[4]:= H = Group[ P[{1,2,3,4,5,6,7,8}], P[{1,3,5,7}],
P[{1,5}] ]

Out[4]= ⟨ (1 2 3 4 5 6 7 8), (1 3 5 7), (1 5) ⟩

In[5]:= Order[H]

Out[5]= 128

We have found a Sylow 2-subgroup!

Theorem 11.5 and corollary 11.7 tell us that the number of  Sylow 2-subgroups

is odd and divides 8!/128 = 315. It would nice to know how many there really

are. By the second Sylow theorem all Sylow 2-subgroups are conjugate to one

another. So we must determine the number of  subgroups of S8 conjugate to our

subgroup H . The function ConjugateSubgroups will do this. An 8-cycle and

a transposition generate S8:
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In[6]:= S8 = Group[ P[{1,2,3,4,5,6,7,8}],
P[{1,2}] ]

Out[6]= ⟨ (1 2 3 4 5 6 7 8), (1 2) ⟩

Then

In[7]:= ConjugateSubgroups[S8, H]

Out[7]= 315

11.5 Exercises

1. Write down the Sylow 2-subgroups of S4. Show directly that they are conju-

gate to each other.

2. Find a Sylow p-subgroup of S6 for each prime p dividing 6!.

3. Verify that the group of  translations T (see example 4.2(i)) is a Sylow p-

subgroup of GL(2,Fp). Find another Sylow p-subgroup. What is np?

4. Let p > 2 be a prime number. What is the order of  a Sylow p-subgroup of

S2p? Give an example of  such a subgroup by giving a set of  generators for it.

5. With the notation and assumptions of  the proof  of  the first Sylow theorem,

let H be a Sylow p-subgroup of G. What is the stabilizer of αHτ ? Write

αHτ as a right coset of  a Sylow p-subgroup.

6. Suppose that G is a group of  order pq, where p and q are prime, p < q and

p - (q − 1). Prove that G is cyclic.
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7. Determine all numbers n < 70 which are the product of  two primes satisfying

the conditions of  the previous exercise.

8. • Let G be a p-group. Show that G has a subgroup of  every order which

divides |G|.

9. • Let G be a finite group, and p a prime dividing |G|. Show that G has an

element of  order p.

10. Prove that a group of  order 4 is either cyclic or isomorphic to V .

11. Classify all groups of  order 26.

12. Classify all groups of  order 21.

13. Let G be a group of  order 8. Suppose every element except 1 has order 2.

Prove that G is abelian and

G ∼=
(
Z/2Z

)2
.

14. Let G be a group of  order 8.

a) Suppose that |Z(G)| ≥ 4. Show that G is abelian.

b) Suppose that G is not abelian, and that α ∈ G has order 4. Prove that

Z(G) ⊂ ⟨α⟩ .

15. Suppose thatG is a group of  order 12 andG � A4. By theorem 11.12, G has

a normal subgroup H of  order 3. Let K be a Sylow 2-subgroup of G. Then

K acts on H by conjugation.

a) Show that the kernel of  this action has order 2 if G is not abelian.

b) Suppose that K ∼= V . Prove that then G ∼= S3 × Z/2Z or

G ∼= Z/3Z× (Z/2Z)2.
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c) Suppose that K is cyclic. Prove that G is cyclic or that G ∼= G12.

16. How many Sylow 2-subgroups does S5 have? S6?

17. Prove that the construction in the previous section gives 315 Sylow

2-subgroups of S8.

18. How large is the centre of  a Sylow 2-subgroup of S8?

19. What is the order of  a Sylow p-subgroup of Sp2 , for p prime? Give an example

of  one.
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Simple Groups

12.1 Composition Series

If  we were to continue classifying groups of  small order, we would get a table like

this one.

Order of  Groups Number of  Groups

16 14
17 1
18 5
19 1
20 5
21 2
22 2
23 1
24 15

As the table suggests, when the order has many prime factors, there tend to be

many groups of  that order. So the order of  a group does not tell you very much

about it. Classifying groups in this way is not very enlightening. A better way

to understand groups is to analyze how they are built up out of  certain 'building

blocks'. The building blocks are called simple groups.

Definition 12.1. A group G is simple if  it has no normal subgroups other than

{1} and G itself.

189
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We have seen some simple groups already: the groups of  prime order. By

Lagrange's theorem they have no non-trivial subgroups at all. To understand

how a group is built out of  simple groups, we need the following observation.

Theorem 12.2. Let G be a group and K ▹ G. Let p : G → Ḡ := G/K be

the canonical homomorphism. Then there is a 1-to-1 correspondence between subgroups of G

containing K and subgroups of Ḡ given by

H 7→ p(H) = H/K ,

where K < H < G. Furthermore H is normal in G if  and only if p(H) is normal in Ḡ.

Proof. For any subgroup H̄ < Ḡ the set

H := p−1(H̄) := {α ∈ G | p(α) ∈ H̄}

is a subgroup of G. For 1 ∈ H , so H ̸= ∅. If α ∈ H , then p(α) ∈ H̄ , which

means that p(α−1) = p(α)−1 ∈ H̄ so that α−1 ∈ H . And if α, β ∈ H , then

p(αβ) = p(α)p(β) ∈ H̄ so that αβ ∈ H .

Now given H̄ < Ḡ, p−1(H̄) > K and p
(
p−1(H̄)

)
= H̄ . And if K <

H < G, then p−1
(
p(H)

)
= H . Thus the correspondence

H ↔ p(H)

is 1-to-1. Suppose H ▹ G. Given ᾱ ∈ Ḡ, pick α ∈ G with p(α) = ᾱ. Then

p(H) = p(αHα−1) = p(α)p(H)p(α−1) = ᾱp(H)ᾱ−1 ,

so that p(H) is normal in Ḡ. Conversely, if H̄ ▹ Ḡ and α ∈ G, then

p
(
α p−1(H̄)α−1

)
= p(α)H̄p(α)−1 = H̄ .

Therefore α p−1(H̄)α−1 = p−1(H̄) and p−1(H̄) ▹ G.

Now we can see how a finite groupG is built up from simple groups. LetH1

be a non-trivial proper normal subgroup which is as large as possible. In other
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words, there should be no proper normal subgroup containing H1. Then G/H1

has no non-trivial proper normal subgroups and is therefore simple. Next, pick

a non-trivial proper normal subgroup H2 of H1 which is as large as possible.

Again, by the theorem above, H1/H2 is simple. Continue in this way until you

have a non-trivial subgroupHn−1 which is simple itself. This will happen because

the orders of  the subgroupsH1, H2, . . . are strictly decreasing. This descending

sequence of  subgroups describes how G is built up out of  simple groups.

Definition 12.3. A composition series for a group G is a sequence of  subgroups

G = H0 ◃ H1 ◃ · · · ◃ Hn−1 ◃ Hn = {1}

where Hi/Hi+1 is a simple group for 0 ≤ i < n. The quotient groups Hi/Hi+1

are called composition factors of G.

For example, let's write down a composition series for S4. We have A4 ▹ S4

and V ▹ A4. Since V ∼= Z/2Z × Z/2Z we have one more term, Z/2Z ▹ V .

Thus our composition series is

S4 ◃ A4 ◃ V ◃ Z/2Z ◃ {1} . (12.1)

The composition factors are

S4/A4
∼= Z/2Z A4/V ∼= Z/3Z V

/
(Z/2Z) ∼= Z/2Z Z/2Z .

A composition series for S5 is

S5 ◃ A5 ◃ {1} .

That's all, because we saw in exercise 10.22 that A5 is a simple group.

Theorem 12.4 (Jordan - Hölder). Let G be a finite group. Then G has a composition

series. The composition factors are unique in the following sense. If

G = H0 ◃ H1 ◃ · · · ◃ Hm−1 ◃ Hm = {1}
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and

G = K0 ◃ K1 ◃ · · · ◃ Kn−1 ◃ Kn = {1}

are two composition series for G, then m = n and the composition factors are the same up to

permutation, that is there is a permutation σ of {1, 2, . . . , n} such that

Hi/Hi+1
∼= Kσ(i)/Kσ(i+1) ,

for 0 ≤ i < n.

We have seen that composition series exist, but shall not prove that they

are unique. Clearly it becomes important to know what the simple groups are.

We shall show that two families of  groups are simple: An , for n ≥ 5, and

PSL(2,Fp), for p prime, p > 2. That An is simple will be used in chapter

20 to prove that in general a polynomial equation of  degree 5 or more cannot be

solved by radicals.

12.2 Simplicity of An

We know that A3, which is cyclic of  order 3, is simple, and that A4 is not. In

exercise 10.22 we saw that A5 is simple. In fact, for all n ≥ 5, An is simple. First

we show that An is generated by the set of  all 3-cycles (cf. exercise 3.12).

Theorem 12.5. The set of 3-cycles generates An, n ≥ 3.

Proof. By definition, an even permutation can be written as a product of  an even

number of  transpositions. So it is sufficient to show that a product α of  two

transpositions is a product of 3-cycles. Now there are two possibilities for α.

Either the two transpositions have a symbol in common or they do not:

α = (i j)(j k)

or

α = (i j)(k l)
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Now

(i j)(j k) = (i j k) ,

and

(i j)(k l) = (i j)(j k)(j k)(k l) = (i j k)(j k l) .

So α is indeed a product of 3-cycles and therefore any even permutation is a

product of 3-cycles.

Suppose that N ▹ An. What we shall do is to prove that N must contain

all the 3-cycles and therefore be An. The following lemma tells us that if  one

3-cycle belongs to N , then all of  them do.

Lemma 12.6. Suppose that N ▹ An, n ≥ 5, which contains one 3-cycle. Then N

contains all 3-cycles. Equivalently, the 3-cycles form a single conjugacy class in An.

Proof. Suppose that the 3-cycle (i j k) ∈ N . Since n ≥ 5, there exist l,m ≤ n

different from i, j, k. Now let α be any other 3-cycle. As we saw in theorem 8.6,

there exists a permutation β ∈ Sn such that

βαβ−1 = (i j k) .

If β is even, then we are done. Otherwise we can replace β by (l m)β , since

(l m)βαβ−1(l m) = (l m)(i j k)(l m) = (i j k) .

So we want to show thatN contains a 3-cycle. To do this we look at commuta-

tors γ = αβα−1β−1, where α ∈ N and β ∈ An (see also exercise 13.12). Since

N is normal, βα−1β−1 ∈ N , and therefore γ ∈ N .

Theorem 12.7. The alternating groups An, for n ̸= 4 are simple.

Proof. SinceA3 is cyclic of  order 3, it is simple. So we can assume that n ≥ 5. We

now proceed by induction on n. In exercise 10.22 we saw thatA5 is simple. So let
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n be greater than 5 and assume that Ar is simple for all r < n. Let N be a non-

trivial normal subgroup ofAn. An acts on {1, 2, . . . , n} and the stabilizer of  any

number is isomorphic to An−1. So for any s, the stabilizer Ns is isomorphic to a

normal subgroup of An−1. If Ns is not trivial, then by the induction assumption

it must be isomorphic toAn−1 itself. In particular it contains a 3-cycle. Therefore

N contains a 3-cycle. Then lemma 12.6 proves that N contains all 3-cycles. But

according to theorem 12.5, the set of 3-cycles generatesAn. ThereforeN = An.

It remains to convince ourselves that for some s, Ns is not trivial. Suppose

α ∈ N,α ̸= 1. If β ∈ An is a 3-cycle then αβα−1 is a 3-cycle too. Therefore

the commutator γ = αβα−1β−1 ∈ N is a product of  two 3-cycles. Suppose

that

γ = (h i j)(k l m) .

If h, i, j, k, l,m are not distinct then since n ≥ 6, γ has a fixed point s and thus

Ns is not trivial. If  they are distinct, let δ = (i j k). Then

ϵ = γδγ−1δ−1 = (i k h l j) .

Now ϵ ∈ N too and it does have a fixed point, namely m. So Nm is not trivial.

We have shown therefore thatAn is simple and by the principle of  induction,

the theorem is proved.

12.3 Simplicity of PSL(2,Fp)

Another family of  groups which we can prove are simple is PSL(2,Fp), for p

prime. In chapter 4 we computed generators for SL(2,Fp). The first step is to

refine this result.

Theorem 12.8. SL(2,Fp) is generated by{(
1 1
0 1

)
,

(
0 1
−1 0

)}
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or equivalently, by {(
1 1
0 1

)
,

(
1 0
1 1

)}
.

Proof. We have the relations(
0 −1
1 0

)(
1 1
0 1

)(
0 1
−1 0

)
=

(
1 0
−1 1

)
(12.2)(

1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)
=

(
0 1
−1 0

)
(12.3)

as in chapter 4. These tell us that if  one pair of  matrices generates SL(2,Fp),
then so does the other. According to exercise 4.8 all we need to show is that we

can write (
c 0
0 c−1

)
, c ∈ F×

p ,

in terms of  these matrices. Now for any a, b ∈ Fp, we have(
1 0
b 1

)(
1 a
0 1

)
=

(
1 a
b 1 + ab

)
.

Taking a = 1, b = c−1 − 1 gives us the matrix(
1 1

c−1 − 1 c−1

)
.

Taking a = −c−1, b = c− 1 gives us the matrix(
1 −c−1

c− 1 c−1

)
.

If  we multiply these two together we have(
1 1

c−1 − 1 c−1

)(
1 −c−1

c− 1 c−1

)
=

(
c 0
0 c−1

)
.

Therefore the pair {(
1 1
0 1

)
,

(
1 0
1 1

)}
generates SL(2,Fp).
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Remark 12.9. For convenience, write G := SL(2,Fp). In chapter 8 we saw that

G acts onP (Fp) by fractional linear transformations. From the proof  of  theorem

8.7 it follows that

H := G0 ∩G∞ =

{(
c 0
0 c−1

) ∣∣∣∣c ∈ F×
p

}
.

If  we pick a c ∈ F×
p and set

δ =

(
c 0
0 c−1

)
.

then the corresponding fractional linear transformation is given by

sδ(x) = c2x .

Theorem 12.10. For p > 3, the groups PSL(2,Fp) are simple.

Proof. Let N̄ ▹ PSL(2,Fp) be a non-trivial subgroup, and N ▹ SL(2,Fp) be

its inverse image under SL(2,Fp) → PSL(2,Fp), (see theorem 12.2). We want

to show that N = G. To do this we shall show that

τ :=

(
1 1
0 1

)
∈ N . (12.4)

Why will this do the trick? Well, since N is normal, relation (12.2) above tells us

that (
1 0
−1 1

)
∈ N

and therefore by theorem 12.8, N = SL(2,Fp).
We will prove (12.4) by showing that

(i) N acts transitively on P (Fp);

(ii) N∞ acts transitively on P (Fp) \ {∞}.

The first statement tells us that p + 1 divides |N | and the second that p di-

vides |N∞| and therefore |N | as well. So p(p + 1) divides |N |. Now |G| =
(p − 1)p(p + 1)

(
see 10.13(ii)

)
. Therefore |G/N | divides p − 1. In particular,
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( |G/N | , p) = 1 . But |τ | = p . So the order of τ̄ in G/N must divide p. This

is only possible if τ̄ = 1̄, in other words, τ ∈ N .

First we show that N is transitive on P (Fp). So given c ∈ P (Fp), we must

find a γ ∈ N such that

sγ(0) = c .

Since N̄ ̸= {1}, there exists α ∈ N with sα ̸= 1. Thus for some a ∈ P (Fp),

b := sα(a) ̸= a .

Since G is doubly transitive (see exercise 8.25), there exists β ∈ G with

sβ(a) = 0 , sβ(b) = c .

If  we set γ = βαβ−1 ∈ N , then

sγ(0) = sβsαs
−1
β (0) = c .

Thus N is transitive on P (Fp).
Secondly, we prove thatN∞ is transitive on P (Fp)\{∞}. We will do this by

showing that the orbit of 0 has length p. First let's check that N∞ is not trivial.

Take α ∈ N such that

sα(0) = ∞ . (12.5)

Then for any δ ∈ H = G0 ∩G∞,

sδαδ−1(0) = ∞ .

Since δαδ−1 ∈ N , there is more than one element in N satisfying (12.5). Let β

be a second such element. It follows that αβ−1 ∈ N∞ and αβ−1 ̸= 1. Now

pick a γ ∈ N∞, γ ̸= 1. Then for

δ =

(
c 0
0 c−1

)
, c ∈ F×

p ,

we have

sδγδ−1(0) = c2sγ(0) .
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If  necessary, by replacing γ with αγα−1 for a suitably chosen α ∈ G∞, we

can assure that sγ(0) ̸= 0. Now there are (p− 1)/2 squares in F×
p (see exercise

10.21). SoO0, the orbit of 0 underN∞, must have length at least (p−1)/2+1 =

(p+ 1)/2. We know that

|O0|
∣∣∣∣ |N∞|

∣∣∣∣ |G∞| = (p− 1)p

Since (p+1)/2 does not divide p− 1 , it follows that |O0| = p . In other words

N∞ is transitive on P (Fp) \ {∞}.

12.4 Exercises

1. Write down composition series for Q and for D4, with their composition

factors.

2. Find a composition series for G72. What are the composition factors?

3. Find a composition series for a Sylow 2-subgroup of S8.

4. Let G be a group of  order pq, where p and q are distinct primes. Show that

G is not simple.

5. Prove that the product of  two 3-cycles is either

a) a product of  two disjoint 3-cycles, or

b) a 5-cycle, or

c) a product of  two disjoint transpositions, or

d) a 3-cycle.
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6. Verify that if γ = (h i j)(k lm), δ = (i j k) ∈ S6, where h, i, j, k, l,m are

distinct, then

γδγ−1δ−1 = (i k h l j) .

7. Suppose γ ∈ An, γ ̸= 1, n ≥ 5. Show that if γ has at least two fixed points,

then there exists a 3-cycle δ such that their commutator is a 3-cycle.

8. Let p > 2 be prime.

a) Set

α =

(
0 1
−1 0

)
.

Show that sα ∈ Ap+1. You may use the result that the congruence

x2 ≡ −1 (mod p) has a solution if  and only if p ≡ 1 (mod 4).

b) Prove that fα
(
SL(2,Fp)

)
< Ap+1.

9. A matrix

α =

(
a b
c d

)
∈ SL(2,Z)

is congruent to the identity matrix I modulo p, if

a ≡ 1 (mod p) b ≡ 0 (mod p)

c ≡ 0 (mod p) d≡ 1 (mod p)

Let

Γ(p) := {α ∈ SL(2,Z) | α ≡ I (mod p)} .

a) Show that Γ(p) ▹ SL(2,Z) .

b) Prove that

SL(2,Z)/Γ(p) ∼= SL(2,Fp) .

10. Suppose that H is a normal subgroup of Sn, n > 4. Prove that H = Sn or

H = An or H is trivial.
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11. Can you generalize theorem 12.10 to any finite field F , with |F | > 3?

12. Suppose that G is a finite group and H a proper subgroup such that |G| -
|G/H|! . Prove thatH contains a non-trivial normal subgroup ofG. Sugges-

tion: use exercise 10.23.

13. Let G be a finite simple group with a subgroup of  index n. Show that G is

then isomorphic to a subgroup of An. Suggestion: use exercise 10.23.

14. Prove that there is no simple group of  order 80.



13
Abelian Groups

As we have seen, finite groups, even small ones, are complicated and very difficult

to classify. However abelian groups are quite a different story. As we shall see

it is not hard to classify finite abelian groups, or even finitely generated abelian

groups. This is the goal of  this chapter.

13.1 Free Abelian Groups

Recall that a group G is finitely generated if  there is a finite subset g ⊂ G such that

G = ⟨g⟩. In this chapter, all groups will be abelian and finitely generated. As is

usual in abelian groups, we shall write the group operation as addition.

Definition 13.1. A set of  generators g = {α1, . . . , αn} of  a finitely generated

abelian group G is called a basis of G if  there are no non-trivial relations among

the elements of g, in other words

a1α1 + · · ·+ anαn = 0

for a1, . . . , an ∈ Z, implies that

a1 = · · · = an = 0 .

If  there exists a basis for G, then G is called a free abelian group.

For example, Zn has the basis {ϵ1, . . . , ϵn} where

ϵi = (0, . . . , 0, 1
i
, 0, . . . , 0)

201
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for 1 ≤ i ≤ n, and is thus a free abelian group. On the other hand, Z/nZ is not

free, because every element α satisfies

nα = 0 .

In fact since a free group is infinite, no finite abelian group is free. In general if

G is an abelian group, set

Gt = {α ∈ G | nα = 0, for some n ∈ Z} .

It is easy to see that Gt is a subgroup of G, called the torsion subgroup of G.

One consequence of  the classification theorem will be that

G ∼= Gfr ×Gt ,

where Gfr is a free subgroup of G.

Every finitely generated free abelian group is isomorphic to Zn for some n.

Why is this so? Suppose G has a basis {α1, . . . , αn}. Define a mapping

f : Zn → G

by

f(a1, . . . , an) := a1α1 + · · ·+ anαn .

This mapping is clearly a homomorphism, and is surjective since α1, . . . , αn

generate G. Suppose f(a1, . . . , an) = 0 for some (a1, . . . , an) ∈ Zn. So

a1α1 + · · ·+ anαn = 0

Then since there are no non-trivial relations among α1, . . . , αn , we have a1 =

· · · = an = 0. Thus f is injective.

It is not hard to see that for m ̸= n, Zm ̸∼= Zn. Therefore any two bases of

a free abelian group have the same number of  elements.

Definition 13.2. The rank of  a free abelian group is the number of  elements in

a basis of  the group.
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Now let's return to an arbitrary finitely generated abelian group G with gen-

erators g = {α1, . . . , αn}. Then as above, we have a homomorphism

f : Zn → G

given by

f : (a1, . . . , an) 7→ a1α1 + · · ·+ anαn , (13.1)

which is surjective. Its kernel is a subgroup of Zn. By describing the kernel

precisely, we shall get a description ofG. The first step is the following theorem.

Theorem 13.3. A subgroup of  a free abelian group of  rank n is free, of  rank at most n.

Proof. We prove the theorem by induction on n. For n = 0 there is nothing to

prove. So assume that the result holds for any subgroup of  a free group of  rank

less than n. Let G be a free group with basis {α1, . . . , αn}, and H a subgroup

of G. Set

G1 = ⟨α2, . . . , αn⟩

The inclusion H ↩→ G induces a homomorphism

g : H → G/G1
∼= Zα1

∼= Z .

Now

ker g = H ∩G1 ,

so the induced homomorphism

ḡ : H/(H ∩G1) → G/G1
∼= Z

is injective. Therefore, by exercise 6.11, H/H ∩G1 is cyclic, and in fact,

H/(H ∩G1) ∼= a1(Zα1) ,

for some a1 ∈ Z, a1 ≥ 0. Pick an element β1 ∈ H such that β̄1 generates

H/H ∩G1. We can assume that it is of  the form

β1 = a1α1 + β ∈ H ,
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for some β ∈ H∩G1. Since the rank ofG1 is n−1, by the induction assumption

H ∩G1 is free and of  rank at most n− 1. Let {β2, . . . , βm}, m ≤ n, be a basis

of H ∩ G1. We want to show that {β1, β2, . . . , βm} is a basis of H . First we

check that it generates H . Given an element γ ∈ H , we know that

γ̄ = b1β̄1 ∈ H/(H ∩G1) ,

for some b1 ∈ Z. Therefore γ − bβ1 ∈ H ∩G1 and so

γ − b1β1 = b2β2 + · · ·+ bmβm

for some b2, . . . bm ∈ Z. Thus

γ = b1β1 + b2β2 + · · ·+ bmβm ,

and {β1, . . . , βm} generates H .

Now suppose

b1β1 + b2β2 + · · ·+ bmβm = 0 ,

for some b1, . . . , bm ∈ Z. Then in H/(H ∩G1),

b1β̄1 = 0 ,

which means that b1 = 0 since H/(H ∩G1) is free. But then

b2β2 + · · ·+ bmβm = 0 .

Since {β2, . . . , βm} is a basis of H ∩G1, we have that

b2 = · · · = bm = 0

as well. Therefore {β1, . . . , βm} is a basis of H . By the principle of  induction,

the result then holds for all n.

In particular, this shows that the kernel of  the homomorphism f , defined in

(13.1) above, is a free subgroup of Zn. Suppose {β1, . . . , βm} ⊂ Zn is a basis

of ker f . We can write

βj =
n∑
i=1

aijϵi ,
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for some aij ∈ Z. If  we letA = (aij) ∈M(n,m,Z), then we have the sequence

of  homomorphisms

Zm A−→ Zn f−→ G ,

with

ker f = ⟨β1, . . . , βm⟩ = imA .

Thus

G ∼= Zn/ imA .

In the next section, we shall show that there is a basis {α1, . . . , αn} of Zn such

that {d1α1, . . . , dmαm} is a basis of ker f , where d1, . . . , dm ∈ Z and d1 | · · · |
dm. This will give us our first classification theorem.

13.2 Row and Column Reduction of  Integer
Matrices

Suppose that G is a free abelian group of  rank n with basis {α1, . . . , αn}, and

H is a subgroup of  rank m ≤ n with basis {β1, . . . , βm}. Write

βj =
n∑
i=1

aijαi , (13.2)

for some aij ∈ Z, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Let A = (aij) ∈ M(n,m,Z). Our

goal is to diagonalizeA using integral row and column operations. The algorithm

in fact applies to an arbitrary n×m integer matrix. First, let's list the elementary

operations.

(i) Multiply row (column) i by −1.

(ii) Interchange rows (columns) i and j.

(iii) Add a times row (column) i to row (column) j, where a ∈ Z.
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As with real row and column operations, these integer operations correspond

to multiplication on the left or right by elementary matrices. To obtain the corre-

sponding elementary matrix, apply the operation to the n×n or m×m identity

matrix. Row operations change the basis of G, and column operations, the basis

of H .

Now we diagonalize A. First, pick an entry of A of  minimal size. By in-

terchanging a row and a column, move it to the position (1, 1). If  necessary,

multiply by −1 to make it non-negative. Divide each entry in row 1 by a11. If

a remainder is not 0, then move that entry to the position (1, 1). Continue until

all entries in row 1, except the first are 0. Do the same with column 1. We now

have a matrix of  the form 
a11 0 · · · 0
0 a22 · · · a2m
...

... . . . ...
0 an2 · · · anm


We also want a11 to divide all other entries. Suppose that there is an entry in

row i which is not divisible by a11. Add row i to row 1. Then proceed as before

to make all other entries in row 1, 0. Continuing in this way, we end up with an

entry in position (1, 1) which divides all other entries in A.

Now apply the same procedure to the (n− 1)× (m− 1) matrix remaining.

Applying row and column operations will leave the entries divisible by a11. We

end up with a matrix of  the form

B =



d1 0 · · · 0
0 d2 · · · 0
...

... . . . ...
0 0 · · · dm
0 0 · · · 0
...

... . . . ...
0 0 · · · 0


where di ≥ 0, for 1 ≤ i ≤ m, and

d1 | d2 | · · · | dm .
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Furthermore,

B = PAQ ,

where P ∈M(n,Z) and Q ∈M(m,Z) are invertible. Thus we have proved:

Theorem 13.4. Let A ∈ M(n,m,Z). Then there exist invertible matrices P ∈
M(n,Z) and Q ∈ M(m,Z) such that B = PAQ is a diagonal matrix with non-

negative diagonal entries d1 | d2 | · · · | dm.

Now these numbers d1, . . . , dm are in fact invariants of A, that is they do

not depend on how A is diagonalized. To see this, we will show that they can

be expressed in terms of  the minors of A. For any matrix A ∈ M(n,m,Z),
let δk = δk(A) be the greatest common divisor of  the k × k minors of A, for

1 ≤ k ≤ m.

Lemma 13.5. Suppose that P ∈ M(n,Z) and Q ∈ M(m,Z) are invertible. Then

δ1, . . . , δm are the same for A and for PAQ.

Proof. The rows of PA are integral linear combinations of  the rows of A. So for

any k, 1 ≤ k ≤ m, the k×k minors of PA are linear combinations of  the k×k
minors of A. Therefore the greatest common divisor of  the k × k minors of

A divides all the k × k minors of PA, and thus divides their greatest common

divisor. Now A = P−1(PA). So, reversing the roles of A and PA, the same

argument shows that δk(PA) divides δk(A). Thus

δk(PA) = δk(A) .

Multiplying PA on the right by Q has a similar effect: the columns of PAQ

are linear combinations of  the columns of PA. So by an argument similar to the

one we have just made, we see that

δk(PAQ) = δk(PA) .

Therefore,

δk(PAQ) = δk(A) ,

as claimed.
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If B ∈ M(n,m,Z) is a diagonal matrix with non-negative diagonal entries

d1 | d2 | · · · | dm, then

δk = d1 · · · dk ,

for 1 ≤ k ≤ m. Equivalently,

dk = δk/δk−1 ,

for k > 1, provided δk−1 ̸= 0, and d1 = δ1. We can now prove that d1, . . . , dm
are invariants of A.

Theorem 13.6. LetA ∈M(n,m,Z). Suppose we diagonalizeA and obtain a diagonal

matrix with diagonal entries d1 | d2 | · · · | dm. If  we diagonalize A in a different way, we

will obtain the same diagonal matrix.

Proof. The lemma shows that the invariants δ1, . . . , δm are the same for A and

PAQ, for any invertible P ∈ M(n,Z) and Q ∈ M(m,Z). Diagonalizing A

means finding such P and Q so that PAQ is diagonal. So regardless of  how

we diagonalize A, the resulting diagonal matrices will have the same invariants

δ1, . . . , δm. But as we have seen these determine the diagonal entries of  the

resulting diagonal matrices.

Let's now return to the matrix A given by equation (13.2). In this case it has

rank m. The matrix P transforms our original basis {α1, . . . , αn} of G into a

basis {γ1, . . . , γn} of G such that

{d1γ1, . . . , dmγm}

is a basis of H . This proves the following result.

Theorem 13.7. Let G be a free abelian group of  rank n and H a subgroup. Then there

exists a basis {α1, . . . , αn} of G and positive integers d1 | · · · | dm, for some m ≤ n,

such that

{d1α1, . . . , dmαm}

is a basis of H .
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Example 13.8. Let

A =


0 2 0
−6 −4 −6
6 6 6
7 10 6


Apply the algorithm above to A:


0 2 0
−6 −4 −6
6 6 6
7 10 6

 col 1−−−−→
↔ col 2


2 0 0
−4 −6 −6
6 6 6
10 7 6

 clear col 1−−−−−→


2 0 0
0 −6 −6
0 6 6
0 7 6


Now 2 does not divide 7. So we add row 4 to row 1:


2 0 0
0 −6 −6
0 6 6
0 7 6

 row 1−−−−→
+ row 4


2 7 6
0 −6 −6
0 6 6
0 7 6

 col 2−−−−→
− 3 col 1


2 1 6
0 −6 −6
0 6 6
0 7 6

 col 1−−−−→
↔ col 2


1 2 6
−6 0 −6
6 0 6
7 0 6

 clear row 1,−−−−−−→
col 1


1 0 0
0 12 30
0 −12 −30
0 −14 −36

 col 3−−−−→
− 2 col 2


1 0 0
0 12 6
0 −12 −6
0 −14 −8

 col 2−−−−→
↔ col 3


1 0 0
0 6 12
0 −6 −12
0 −8 −14

 clear row 2,−−−−−−→
col 2


1 0 0
0 6 0
0 0 0
0 −2 2

 row 4−−−−−→
↔ row 2


1 0 0
0 −2 2
0 0 0
0 6 0

 −row 2−−−−→


1 0 0
0 2 −2
0 0 0
0 6 0

 clear row 2,−−−−−−→
col 2


1 0 0
0 2 0
0 0 0
0 0 6

 row 3−−−−−→
↔ row 4


1 0 0
0 2 0
0 0 6
0 0 0

 .

13.3 Classification Theorems

We can now state the first classification theorem for finitely generated abelian

groups.
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Theorem 13.9. LetG be a finitely generated abelian group. There exist d1, . . . , dm ∈ N,

with d1 | d2 | · · · | dm, and r ≥ 0, such that

G ∼= Z/d1Z× · · · × Z/dmZ× Zr .

Proof. To show the existence of  such a decomposition, we need only put together

what we have discussed in the previous two sections. Let {α1, . . . , αn} be a set

of  generators of G. Define f : Zn → G by

f : (a1, . . . , an) 7→ a1α1 + · · ·+ anαn .

This map is surjective and therefore

G ∼= Zn/ ker f .

By theorem 13.7, there exists a basis {β1, . . . , βn} of Zn and natural numbers

d1, . . . , dm with d1 | · · · | dm such that {d1β1, . . . , dmβm} is a basis of ker f .

Therefore

G ∼= Z/d1Z× · · · × Z/dmZ× Zr

with r = n−m.

For example, let A be the matrix in example 13.8, and let G = Z4/ imA.

Then

G ∼= Z/2Z× Z/6Z× Z .

Corollary 13.10. The torsion subgroup

Gt
∼= Z/d1Z× · · · × Z/dmZ ,

and G/Gt is free of  rank r.

This shows that r is an invariant ofG. We define the rank ofG to be the rank

of G/Gt. In the next section we shall show that d1, . . . , dm are also invariants,

called the elementary divisors of G.

Suppose we want to use the elementary divisors to classify finite abelian

groups of  a given order d. How do we do this? The key is the two conditions:
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(i) d1 | d2 | · · · | dm ,

(ii) d1d2 · · · dm = d .

For example, let's classify abelian groups of  order 72. We have

72 = 23 · 32 .

Since d1 divides all the other elementary divisors, each prime factor of d1 does

as well. No prime factor of 72 occurs with multiplicity greater than 3. So there

can be at most 3 elementary divisors. Begin with m = 1. The only possibility is

d1 = 72 .

Next, consider m = 2. We must write

72 = d1d2 , with d1 | d2 .

The possibilities are

72 = 2 · 36

72 = 3 · 24

72 = 6 · 12 .

Lastly, let m = 3. We are looking for factorizations

72 = d1d2d3 , where d1 | d2 | d3 .

The only possibilities are

72 = 2 · 6 · 6

72 = 2 · 2 · 18 .

So there are 6 abelian groups of  order 72.

One can also decompose a finite abelian group into a product of  cyclic groups

of  prime power order. This is our second classification theorem.
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Theorem 13.11. Let G be a finitely generated abelian group. Then

G ∼= (Z/p1Z)k1 × · · · × (Z/pmZ)km × Zr ,

where p1, . . . , pm are primes and k1, . . . , km ∈ N.

Proof. Because of  theorem 13.9 we need only show that for any d ∈ N, d > 1,

Z/dZ ∼= (Z/p1Z)k1 × · · · × (Z/plZ)kl , (13.3)

where p1, . . . , pl are prime numbers. Well, write

d = pk11 · · · pkll

where p1, . . . , pl are distinct primes, and k1, . . . , kl ∈ N. Then by example

5.9(ii), (13.3) holds.

Example 13.12. For comparison, let's use this theorem to list the abelian groups

of  order 72. Again we have

72 = 23 · 32 .

The abelian groups of  order 8 are

(Z/2Z)3 , Z/2Z× Z/4Z , Z/8Z .

Those of  order 9 are

(Z/3Z)2 , Z/9Z .

So we have the 6 groups:

(i) (Z/2Z)3 × (Z/3Z)2 ∼= Z/2Z× (Z/6Z)2

(ii) (Z/2Z)3 × Z/9Z ∼= (Z/2Z)2 × Z/18Z

(iii) Z/2Z× Z/4Z× (Z/3Z)2 ∼= Z/6Z× Z/12Z

(iv) Z/2Z× Z/4Z× Z/9Z ∼= Z/4Z× Z/18Z ∼= Z/2Z× Z/36Z

(v) Z/8Z× (Z/3Z)2 ∼= Z/24Z× Z/3Z

(vi) Z/8Z× Z/9Z ∼= Z/72Z.
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13.4 Invariance of  Elementary Divisors

In this section we shall show that the elementary divisors of  an abelian group are

invariants of  the group. First we set up the basic tool we shall use.

Let G be an abelian group. For any a ∈ Z,

aG := {aα | α ∈ G}

is a subgroup ofG. We are particularly interested in pjG, where p is prime. Now

the quotient group G/pG is naturally a vector space over the field Fp. We just

need to define scalar multiplication. Let

(a+ pZ)(α + pG) := aα + pG .

This is clearly well-defined, and makes G/pG into an Fp-vector space. For ex-

ample, if

G = (Z/3Z)× (Z/9Z) ,

then

G/3G ∼= (F3)
2 .

Since p(pj)G = pj+1G, the quotient group

pjG/pj+1G

is an Fp-vector space as well. The key to our proof  that the elementary divisors

are invariants is the following lemma.

Lemma 13.13. Let G = Z/dZ , for d ∈ N. Then for p prime,

dimFp p
jG/pj+1G =

{
0 , if pj+1 - d ,
1 , if pj+1 | d .

Proof. First suppose that pj+1 - d. Then

(pj+1, d) = pk = (pj, d) ,
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for some k ≤ j. Therefore in G,

|p̄j| = d/(pj, d) = d/pk = d/(pj+1, d) = |p̄j+1|

(exercise 5.6). Now p̄j = pj · 1̄ is a generator of pjG. So this tells us that p̄j+1 is

as well, and therefore

pjG/pj+1G = 0 .

However, if pj+1 | d, then (pj+1, d) = pj+1, whereas (pj, d) = pj . Thus

|p̄j| = d/pj and |p̄j+1| = d/pj+1 .

Therefore

pjG/pj+1G ∼= Z/pZ ,

and

dimFp p
jG/pj+1G = 1 .

For example, if d = 12, then

G = Z/12Z ∼= Z/4Z× Z/3Z ,

and we have

G/2G ∼= (Z/12Z)
/
(2Z/12Z) ∼= Z/2Z ⇔ dimF2 G/2G = 1

2G/4G ∼= (2Z/12Z)
/
(4Z/12Z) ∼= Z/2Z ⇔ dimF2 2G/4G = 1

4G/8G ∼= (Z/3Z)
/
(Z/3Z) ∼= 0 ⇔ dimF2 4G/8G = 0

G/3G ∼= (Z/12Z)
/
(3Z/12Z) ∼= Z/3Z ⇔ dimF3 G/3G = 1

3G/9G ∼= (Z/4Z)
/
(Z/4Z) ∼= 0 ⇔ dimF3 3G/9G = 0

We are now ready to prove that the elementary divisors are invariants.

Theorem 13.14. Suppose that

Z/d1Z× · · · × Z/dmZ× Zr ∼= G ∼= Z/e1Z× · · · × Z/enZ× Zs

where d1 | · · · | dm and e1 | · · · | en. Then r = s, m = n, and d1 = e1, . . . ,

dm = em.
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Proof. From Corollary 13.10, we see that r = s and

Z/d1Z× · · · × Z/dmZ ∼= Gt
∼= Z/e1Z× · · · × Z/enZ .

Pick a prime number p. By the lemma,

dimFp Gt/pGt ≤ m .

Furthermore,

dimFp Gt/pGt = m

if p | d1, since this implies that p | dk for all k. In particular,

m = max
p

dimFp Gt/pGt .

The same holds for n. Therefore m = n.

Now for any prime, and any j ≥ 0,

l := dim pjGt/p
j+1Gt

is the number of dk such that pj+1 divides dk. Keeping in mind that if pj+1

divides dk, then it also divides dk+1, . . . , dm, this tells us that

pj+1 - d1, . . . , dm−l but pj+1 | dm−l+1, . . . , dm .

So these dimensions determine the prime factorization of d1, . . . , dm. The same

holds for e1, . . . , em. Therefore

d1 = e1, . . . , dm = em .

For example, suppose that G is a finite abelian group with

dimF2 G/2G = 7 (13.4)

dimF2 2G/4G = 4 (13.5)

dimF2 4G/8G = 2 (13.6)

dimF2 8G/16G = 1 (13.7)

dimFp G/pG = 0 ,
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for p ̸= 2. Then we know that the number of  elementary divisors is m = 7.

Furthermore, (13.4) implies that 2 divides all of  them, (13.5) that 4 divides d4,

d5, d6 and d7, (13.6) that 8 divides d6 and d7, and (13.7) that 16 divides d7.

Therefore

d1 = d2 = d3 = 2 , d4 = d5 = 4 , d6 = 8 , d7 = 16 .

So

G = (Z/2Z)3 × (Z/4Z)2 × Z/8Z× Z/16Z .

13.5 The Multiplicative Group of  the Integers
Mod n

An interesting class of  abelian groups are the multiplicative groups (Z/nZ)×.

How do they decompose? First, recall that if n = pk11 · · · pkmm , with p1, . . . , pm

distinct primes, then

Z/nZ ∼= Z/pk11 Z× · · · × Z/pkmm Z

(see example 5(ii)). It is easy to see that

(Z/nZ)× ∼= (Z/pk11 Z)× × · · · × (Z/pkmm Z)× .

(see exercise 5.24). The question is then: for p prime, k ∈ N, what does

(Z/pkZ)× look like ?

First we introduce the p-adic expansion of  a natural number a.

Theorem 13.15. Any a ∈ N has a unique p-adic expansion

a = a0 + a1p+ · · ·+ akp
k ,

where 0 ≤ ai < p, for all i.
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Proof. First we show that such an expansion exists. Pick the smallest k such that

pk+1 > a and argue by induction on k. If k = 0 take a0 = a and we are finished.

Suppose that the result holds for k − 1, i.e., any a < pk has such an expansion.

Divide a by pk:

a = akp
k + b ,

where 0 ≤ b < pk. Since pk+1 > a, we have ak < p. By assumption, we can

write

b = a0 + · · ·+ ak−1p
k−1 .

Therefore

a = a0 + · · ·+ ak−1p
k−1 + akp

k ,

and by the principle of  induction, the result holds for all k. This argument also

shows that k and ak, . . . , a1 are uniquely determined, and gives an algorithm for

computing them.

For example, take a = 744 and p = 7. The smallest k for which 7k > 744

is k = 4. So we divide 744 by 73:

744 = 2 · 73 + 58 .

Then we divide 58 by 72, and so on:

744 = 2 · 73 + 58

= 2 · 73 + 72 + 9

= 2 · 73 + 72 + 7 + 2 .

We can describe (Z/pkZ)× using p-adic expansions. Any element in (Z/pkZ)×

can be represented by a unique integer a, 0 < a < pk, which is prime to p. If  we

write

a = a0 + a1p+ · · ·+ ak−1p
k−1 , (13.8)

then (a, p) = 1 if  and only if a0 ̸= 0. Counting such integers, we see that

|(Z/pkZ)×| = (p− 1)pk−1 .
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Now (Z/pkZ)× has a distinguished subgroup. For p > 2, let

Upk = ker[(Z/pkZ)× → (Z/pZ)×] ,

where the homomorphism is reduction modulo p. These are just the elements

represented by integers with a p-adic expansion (13.8) where a0 = 1. Thus

|Upk | = pk−1 .

In the case p = 2 this group would coincide with (Z/pkZ)× itself. The right

definition in this case is

U2k = ker[(Z/2kZ)× → (Z/4Z)×] .

So these are elements which can be represented by integers with a 2-adic expan-

sion (13.8) where a0 = a1 = 1. Therefore

|U2k | = 2k−2 .

The groups Upk are the key to finding the structure of (Z/pkZ)×:

Theorem 13.16. The group Upk is cyclic. Assume k > 1. Then for p > 2, the element

1 + p is a generator, and for p = 2, the element 5̄.

Proof. Suppose that p > 2. Since |Upk | = pk−1, the order of 1 + p must be a

power of p. But by the binomial formula,

(1 + p)p
k−2 ≡ 1 + pk−1 (mod pk)

̸≡ 1 (mod pk) .

Therefore

|1 + p| = pk−1 ,

and Upk is cyclic.

If p = 2, we have

(1 + 22)2
k−3 ≡ 1 + 2k−1 (mod 2k)

̸≡ 1 (mod 2k) .
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Therefore

|5̄| = 2k−2 ,

and U2k is cyclic too.

Corollary 13.17. For p > 2, (Z/pkZ)× is cyclic, and (Z/2kZ)× ∼= U2k ×
(Z/4Z)×.

Proof. For p > 2, we have that |(Z/pkZ)×| = (p − 1)pk−1. So decomposing

the group into a product of  cyclic groups of  prime power order, we see that one

factor isUpk , and the product of  the remaining factors is isomorphic to (Z/pZ)×.

Thus

(Z/pkZ)× ∼= Upk × (Z/pZ)× .

As we shall see (see theorem 14.7), (Z/pZ)× is cyclic. Therefore since the orders

of  these two groups are relatively prime, by example 5.9(ii), their product is cyclic.

If p = 2, then U2k is cyclic of  order 2k−2 and (Z/4Z)× is cyclic of  order

2. So by theorem 13.11, (Z/2kZ)× is either the product of  the two or is cyclic.

Now let

a = 1 + 2 + · · ·+ 2k−1 = 2k − 1 .

Then

a2 = (2k − 1)2 ≡ 1 (mod 2k) and a ≡ 3 (mod 4) .

Therefore ⟨ā⟩ ⊂ (Z/2kZ)× maps isomorphically onto (Z/4Z)× under re-

duction mod 4, and

(Z/2kZ)× ∼= U2k × ⟨ā⟩ ∼= U2k × (Z/4Z)× .



220 CHAPTER 13. ABELIAN GROUPS

13.6 Exercises

1. Prove that if Zm ∼= Zn , then m = n.

2. Let G be an abelian group. Show that Gt is a subgroup of G.

3. Suppose that

G = Z/d1Z× · · · × Z/dmZ× Zr .

where d1, . . . , dm ∈ N, and d1, . . . , dm > 1. Prove that

Gt = Z/d1Z× · · · × Z/dmZ .

4. Let

A =


−22 −48 267
−4 −4 31
−4 −24 105
4 −6 −6

 .

Find the elementary divisors of Z4/ imA.

5. What are the elementary divisors of

Z/2Z× (Z/6Z)2 × Z/21Z× Z/50Z ?

6. Classify abelian groups of  order 16.

7. Classify abelian groups of  order 360.

8. • Let G be a finite abelian group, with elementary divisors d1 | · · · | dm.

Show that

dm = min{n ∈ N | nα = 0, for all α ∈ G} .
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9. Let p be a prime number and let

G =
{ a
pk

∈ Q | a ∈ Z, k ≥ 0
}
.

a) Verify that G is a subgroup of Q. Is G finitely generated?

b) Show that every element inG/Z has finite order, and thatG/Z consists

of  precisely the elements of Q/Z whose order is a power of p. Is G/Z
finitely generated?

10. Give the 3-adic, 5-adic, and 7-adic expansions of 107.

11. Write the elements of U27 as powers of 4̄.

12. Let G be a group. Let G′ be the subgroup generated by all commutators, that

is, elements of  the form

αβα−1β−1 ,

forα, β ∈ G. Show thatG′ is a normal subgroup (called the commutator sub-

group), and that G/G′ is abelian. Prove that if K ⊂ G is a normal subgroup

such that G/K is abelian, then K ⊃ G′.

13. Write a Mathematica function which diagonalizes an integer matrix.





14
Polynomial Rings

In the coming chapters, we are going to use the group theory discussed so far

to see how to solve polynomial equations. What ``solving'' an equation means

is a rather delicate question. People have known how to write solutions for a

quadratic equation in terms of  the square root of  its discriminant for some 4000

years, and today everyone learns the formula in high school. It is simple and

very useful. In the Renaissance similar formulas were discovered for cubics and

quartics. However, they are much more complicated and much less useful. Early

in the 19th century it was realized that for equations of  degree greater than 4,

there do not even exist formulas for solutions in terms of  radicals. At the same

time several mathematicians noticed that the symmetries of  an equation, as we

discussed them in some examples in chapter 7, tell you many interesting and

profound things about its solutions. This point of  view has been developed with

great success in the past two centuries and will be the theme of  the remainder of

this book. If  you are interested in the history of  these ideas, the first part of  van

der Waerden's History of  Algebra ([10]) is a good reference.

To begin we set out the basic properties of  polynomials. Then we clarify what

we mean by ``algebraic relations'' among the roots of  a polynomial. To do this we

introduce field extensions, in particular the splitting field of  a polynomial. With

this apparatus in place we can explain exactly what the symmetry group or Galois

group of  an equation is, and what its properties are. We shall give two classical

applications of  this theory: first, to prove that an equation of  degree greater than

223
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4 cannot in general be solved by taking roots, and secondly to discuss geometric

constructions with straight edge and compass.

In this chapter we will look at polynomials with coefficients in an arbitrary

field. These behave in many ways like the integers. There is a Euclidean al-

gorithm for long division. There are ``prime'' polynomials and there is unique

factorization into ``primes''. And the set of  all polynomials with coefficients in a

given field has formal properties like those of Z.

14.1 Basic Properties of  Polynomials

To begin with, let F be a field. A polynomial with coefficients in F is an expres-

sion of  the form

f(x) = amx
m + . . .+ a1x+ a0 ,

where a0, . . . , am ∈ F . We define the degree of  the polynomial f , written deg f ,

to be the degree of  the highest monomial with a non-zero coefficient:

deg f = max{n | an ̸= 0} .

If f(x) = anx
n + . . . + a1x + a0 with an ̸= 0, then an is called the leading

coefficient of f . We can add polynomials in the obvious way:

(amx
m + . . .+ a1x+ a0) + (bmx

m + . . .+ b1x+ b0)

= (am + bm)x
m + . . .+ (a1 + b1)x+ (a0 + b0)

and multiply them:

(amx
m+ . . .+ a1x+ a0)(bmx

m+ . . .+ b1x+ b0) = c2mx
2m+ . . .+ c1x+ c0

where

cn =
n∑
i=0

aibn−i .
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(The two polynomials can have any degree ≤ m. It makes it easier to write the

formulas if  you allow terms with zero coefficients.) Clearly, for any f, g,

deg(fg) = deg f + deg g .

The set of  all polynomials with coefficients in F , we will denote by F [x]:

F [x] = {amxm + am−1x
m−1 + . . .+ a1x+ a0 | m ≥ 0, a0, . . . , am ∈ F}

We can regard F as the set of  constant polynomials in F [x].

Next we show that we can do long division with polynomials. Remember

that for a, b ∈ Z, a, b ̸= 0,

b = qa+ r ,

where q, r ∈ Z, and 0 ≤ r < |a|. Here is the analogous statement for polyno-

mials.

Theorem 14.1. Suppose f, g ∈ F [x], f, g ̸= 0. Then there exist unique q, r ∈ F [x],

with deg r < deg f , such that

g = qf + r .

Proof. Let m = deg f and n = deg g. We will argue by induction on n − m.

If n − m < 0, in other words deg g < deg f , then we take q = 0 and r = g.

Now let n−m = l ≥ 0 and assume that the statement of  the theorem holds for

n −m < l. Suppose that am is the leading coefficient of f , and bn the leading

coefficient of g. Then we can write

g(x) = (bn/am)x
n−mf(x) + h(x)

where degh < deg g. Therefore degh−deg f < l. So by the induction assump-

tion there exist q1, r ∈ F [x], with deg r < deg f such that

h(x) = q1(x)f(x) + r(x) .

But then

g(x) =
(
(bn/am)x

n−m + q1(x)
)
f(x) + r(x) .
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Thus the statement holds for n −m = l and by the principle of  induction, for

all values of n−m.

To see that q and r are unique, suppose that there exist q′ and r′ as well, such

that

g = q′f + r′ ,

with deg r′ < deg f . Then

(q − q′)f = r′ − r .

But deg(r′ − r) < deg(q − q′)f unless q − q′ = 0. But then r′ = r too. So q

and r are uniquely determined.

Now we can define common divisors just as we did for the integers in chapter

1. If f, g ∈ F [x], then one says that f  divides g , and writes

f | g ,

if g = qf for some q ∈ F [x]. Notice that a non-zero scalar a ∈ F× divides any

polynomial g ∈ F [x]. A polynomial d is a common divisor of f and g if d | f and

d | g. In order to have a unique greatest common divisor we make the following

definition: a polynomial d ∈ F [x] is monic if  its leading coefficient is 1.

Definition 14.2. The greatest common divisor of f, g ∈ F [x] is the common

divisor of f and g which is monic and of  greatest degree.

As for integers, the greatest common divisor is denoted by (f, g) . And just

as for integers the greatest common divisor can be computed using the Euclidean

algorithm . We write

g = qf + r deg r < deg f
f = q1r + r1 deg r1 < deg r

...
...

ri−1 = qi+1ri + ri+1 deg ri+1 < deg ri
...

...
rn−2 = qnrn−1 + rn deg rn < deg rn−1

rn−1 = qn+1rn ,
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for some n. To see that this algorithm computes (f, g) we argue just as in chapter

1. First we prove:

Lemma 14.3. Let u and v be polynomials in F [x], not both 0. Write

u = qv + r ,

for some q and r with deg r < deg v. Then

(u, v) = (v, r) .

The proof  is the same as the proof  of  lemma 1.7. Applying this to the list of

divisions above we obtain

(ri−1, ri) = (ri, ri+1)

for each i < n. Now the last equation says that rn | rn−1. This means that

rn = a(rn−1, rn) ,

for some a ∈ F×. Therefore arguing by induction,

rn = a(ri−1, ri)

for all i, in particular

rn = a(f, g) .

So up to a scalar factor, rn is the greatest common divisor of f and g. It is easy

to see that any common divisor of f and g divides (f, g).

As in chapter 1, we can read more out of  this list of  equations. The first

equation can be rewritten

r = g − qf .

Using this, we can rewrite the second one:

r1 = f − q1r = f − q1(g − qf) = (1 + q1q)f − q1g .
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In other words, r and then r1 are linear combinations of f and g, with coeffi-

cients from F [x]. The third equation shows that r2 is a linear combination of r1
and r, and therefore of f and g. Continuing like this, we get that rn is a linear

combination of f and g. Thus there exist s, t ∈ F [x] such that

(f, g) = sf + tg .

Example 14.4. In F11[x], let

f(x) = x4 + x3 + x2 + 3x+ 2

and

g(x) = x5 − x4 − x3 + 2x2 − x− 2 .

Then

x5 − x4 − x3 + 2x2 − x− 2 = (x− 2)(x4 + x3 + x2 + 3x+ 2) + (x2 + 3x+ 2)

x4 + x3 + x2 + 3x+ 2 = (x2 − 2x+ 5)(x2 + 3x+ 2) + 3(x+ 1)

x2 + 3x+ 2 = (4x+ 8)(3x+ 3) .

Therefore

x+ 1 = (x4 + x3 + x2 + 3x+ 2, x5 − x4 − x3 + 2x2 − x− 2) .

Furthermore

x2 + 3x+ 2 = (x5 − x4 − x3 + 2x2 − x− 2)− (x− 2)(x4 + x3 + x2 + 3x+ 2)

x+ 1 = 4(x4 + x3 + x2 + 3x+ 2)− 4(x2 − 2x+ 5)(x2 + 3x+ 2)

= 4(x4 + x3 + x2 + 3x+ 2)− (4x2 + 3x+ 9)[
(x5 − x4 − x3 + 2x2 − x− 2)− (x− 2)(x4 + x3 + x2 + 3x+ 2)

]
= (4x3 + 6x2 + 3x+ 8)(x4 + x3 + x2 + 3x+ 2)

+ (7x2 + 8x+ 2)(x5 − x4 − x3 + 2x2 − x− 2) .
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So we can take

s = 4x3 + 6x2 + 3x+ 8 and t = 7x2 + 8x+ 2 .

△

We say that f and g are relatively prime if (f, g) = 1, that is, if  they have no

common divisors except the non-zero scalars. Thus, if f and g are relatively

prime, there exist polynomials s and t such that

1 = sf + tg .

For example, x2 + 1 and x+ 1 in Q[x] are relatively prime and

1 =
1

2
(x2 + 1)− 1

2
(x− 1)(x+ 1) .

We also want to discuss roots of  polynomials and their relation to divisors.

Definition 14.5. A root of  a polynomial f ∈ F [x] is an element a ∈ F such

that f(a) = 0.

Theorem 14.6. a ∈ F is a root of f ∈ F [x] if  and only if x − a divides f . If

deg f = n, then f has at most n roots in F .

Proof. Given a ∈ F , divide f by x− a:

f = q(x− a) + r ,

where deg r < deg(x− a), in other words r ∈ F . It follows that

f(a) = q(a− a) + r = r .

So a is a root of f if  and only if r = 0, which is the case if  and only if (x−a) | f .

We can now argue by induction that if deg f = n, then f has at most n roots.

Start with n = 1. A linear polynomial ax + b has one root: −b/a. Suppose we
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know that a polynomial of  degree n− 1 has at most n− 1 roots. Let a be a root

of f . Then

f = q(x− a) ,

where deg q = n− 1. If b is any root of f , then

0 = f(b) = q(b)(b− a) .

So either b is a root of q, or b = a. By assumption, q has at most n − 1 roots.

Therefore f has at most n roots. Applying the principle of  induction, the result

holds then for all n.

This result has a surprising application.

Application 14.7. The multiplicative group F× of  a finite field F is cyclic.

Proof. Set n = |F |. So F× is an abelian group of  order n− 1. By theorem 13.9

F× ∼= Z/d1Z× · · · × Z/dmZ ,

where d1, . . . , dm ∈ N, and d1 | d2 | · · · | dm. As pointed out in exercise 13.8,

adm = 1

for all a ∈ F×. Thus all n − 1 elements of F× are roots of  the polynomial

xdm − 1 ∈ F [x]. It follows from the theorem above that

n− 1 ≤ dm .

On the other hand, since there is an element of  order dm in F×

dm ≤ n− 1 ,

by corollary 10.4. Therefore dm = n− 1 and F× is cyclic.

Remark 14.8. The proof  does not need the full power of  the classification theorem

for finite abelian groups. An argument using exercise 5.8 is given in exercise

13.16.
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14.2 Unique Factorization into Irreducibles

Continuing the analogy between Z and F [x] we now explain what ``primes'' are

in F [x] and show that every polynomial can be factored uniquely into a product

of  ``primes''.

Definition 14.9. A polynomial f ∈ F [x] is reducible if  it can be factored f = gh,

where g, h ∈ F [x], and deg g, degh > 0. A polynomial f ∈ F [x] is irreducible if

it is not reducible.

In other words, a polynomial is irreducible if  its only divisors are itself  and

the non-zero scalars. For example, x2 + 1 ∈ Q[x] is irreducible. Regarded as a

polynomial in F5[x], it is reducible because x2+1 = (x+2)(x+3) ∈ F5[x]. A

polynomial with a root is reducible. But a polynomial may be reducible without

having a root. For example, in Q[x],

x4 − 4 = (x2 − 2)(x2 + 2) ,

is reducible. But it has no roots in Q because neither x2+2 nor x2− 2 have any

roots in Q.

Irreducible polynomials are analogous to prime numbers, and reducible poly-

nomials to composite numbers. And every polynomial can be written in a unique

way as a product of  irreducibles. The key to proving this is the following lemma.

Lemma 14.10. Let p ∈ F [x] be irreducible. Suppose p | fg, where f, g ∈ F [x]. Then

p | f or p | g.

Proof. Suppose that p does not divide f . Then (p, f) = 1 since the only monic

divisor of p of  degree greater than 0 is p itself. Therefore

1 = sp+ tf ,

for some s, t ∈ F [x]. Multiply by g:

g = spg + tfg .

Now p | spg and p | tfg. So p | g.
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It is not hard to extend this result to a product of  more than two polynomials:

if p is irreducible, and p | f1 · · · fr , then p | fi for some i, 1 ≤ i ≤ r. The

following theorem is the analogue of  the fundamental theorem of  arithmetic (see

[1], §2.2), and is proved in the same way.

Theorem 14.11. Let f ∈ F [x], where F is a field. Then

f = ap1 · · · pr ,

where a ∈ F× and p1, . . . , pr ∈ F [x] are irreducible monic polynomials. This decompo-

sition is unique up to the order of p1, . . . , pr.

Proof. First we prove the existence of  such a decomposition into irreducibles. We

proceed by induction on n := deg f . Linear polynomials are irreducible. So the

result holds for them. Assume that it holds for all polynomials of  degree less

than n. If f is irreducible, then f = ap, where a ∈ F× and p is irreducible and

monic. If f is reducible, then

f = gh ,

where deg g, degh < n. By assumption then

g = bp1 · · · pj , h = cpj+1 · · · pr ,

where b, c ∈ F× and p1, . . . , pr are irreducible monic polynomials. It follows

that

f = (bc)p1 · · · pr ,

as desired. So by the principle of  induction, any f ∈ F [x] can be decomposed

into a product of  irreducibles.

Next we demonstrate that such a decomposition is unique up to the order of

the factors. Suppose that

f = ap1 · · · pr ,

and

f = bq1 · · · qs ,
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where a, b ∈ F× and p1, . . . , pr, q1, . . . , qs ∈ F [x] are irreducible monic poly-

nomials. For any i, 1 ≤ i ≤ r, we have that

pi | q1 · · · qs .

Therefore by the lemma, there exists a j(i), 1 ≤ j(i) ≤ s, such that pi | qj(i).
But qj(i) is irreducible and monic. Therefore pi = qj(i). Similarly, for any j,

1 ≤ j ≤ s, there exists an i(j), 1 ≤ i(j) ≤ r, with qj = pi(j). Thus r = s and

the factors q1, . . . , qr are just p1, . . . , pr re-ordered by the permutation i 7→ j(i).

It follows that a = b as well. This completes the proof  of  the theorem.

14.3 Finding Irreducible Polynomials

Suppose you want to factor a polynomial in F [x]. You have to know which

polynomials are irreducible. Deciding whether one is irreducible or not is usually

not easy. In this section we will look at two simple criteria for irreducibility of

polynomials in Q[x], and how to list irreducible polynomials in Fp[x]. In the last

section of  the chapter we will discuss an algorithm for factoring polynomials in

Fp[x]. It will also give us a test for irreducibility.

Let's begin with

f(x) = anx
n + · · ·+ a1x+ a0 ∈ Q[x] .

If  we multiply f by a common multiple a of  the denominators of a0, . . . , an, then

af has integer coefficients. One can show that af can be written as a product

of  integer polynomials of  positive degree, if  and only if f is reducible in Q[x].

Lemma 14.12. Suppose f(x) = anx
n+ · · ·+a1x+a0 ∈ Q[x] with a0, . . . , an ∈

Z. If f is reducible, then f = gh where g and h have integer coefficients; g and h can be

taken to be monic if f is monic.

Proof. Suppose that

f = gh ,
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g, h ∈ Q[x]. Let b (respectively c) be a common multiple of  the denominators

of  the coefficients of g (respectively h). Set d = bc. Then

df = g1h1 ,

where g1 and h1 have integer coefficients. Now let p be a prime factor of d, and

reduce this equation modulo p. We obtain

0 = ḡ1h̄1 ∈ Fp[x] .

Therefore

ḡ1 = 0 or h̄1 = 0 .

Suppose that ḡ1 = 0. This means that all the coefficients of g1 are divisible by p.

So we can divide d and g1 by p:

(d/p)f = g2h2 ,

where g2 and h2 have integer coefficients. We can continue in this way with each

prime factor of d until we end up with a factorization of f into a product of  poly-

nomials with integer coefficients. The leading coefficient of f is the product of

the leading coefficients of g and h. So if f is monic, then the leading coefficients

of g and h are both 1 or both −1.

The Eisenstein criterion then gives a condition for a polynomial with integer

coefficients to be irreducible.

Theorem 14.13. Let

f(x) = xn + · · ·+ a1x+ a0 ∈ Q[x] ,

with a0, . . . , an−1 ∈ Z. Suppose that for some prime p ∈ Z,

p | a0, . . . , p | an−1 ; p2 - a0 .

Then f is irreducible.
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Proof. Suppose that f is reducible. By the lemma we can assume that f = gh,

where

g = xr + · · · b1x+ b0 , h = xs + · · ·+ c1x+ c0 ,

with r + s = n, r, s < n and bi, cj ∈ Z for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s− 1.

Then we have that

p | a0 = b0c0 ,

which implies that p | b0 or p | c0. It cannot divide both since by assumption

p2 - a0. Suppose that p - b0. Now reduce these polynomials modulo p: in Fp[x]
we have

xn = f̄(x) = ḡ(x)h̄(x) .

We have just said that b̄0 ̸= 0 and c̄0 = 0. We want to show that c̄k = 0 for all

k. Suppose we know that c̄0 = · · · = c̄k−1 = 0. Since

0 = āk = b̄kc̄0 + · · ·+ b̄1c̄k−1 + b̄0c̄k ,

it follows that

0 = āk = b̄0c̄k ,

which implies that c̄k = 0. So by the principle of  induction, c̄k = 0 for all k, and

h̄(x) = xs. But then calculating the coefficient of xs in f̄ , we see that

0 = ās = b̄0 ̸= 0 ,

which is impossible. So f is irreducible.

This criterion shows for example that x2+2x+2 is irreducible in Q[x]. Here

is a less obvious example.

Example 14.14. Let f(x) = xp−1 + · · · + x + 1 ∈ Q[x] , where p is a prime

number. Since

f(x) =
xp − 1

x− 1
,
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its roots in C are just the roots of  unity other than 1 (see example 6.8(iii)). The

Eisenstein criterion does not apply directly to f . But if  we make the substitution

x = y + 1 ,

then

g(y) := f(y+1) =
(y + 1)p − 1

y
= yp−1+pyp−2+ · · ·+

(
p

k

)
yk−1+ · · ·+p .

Since
(
p
k

)
≡ 0 (mod p) , for 1 ≤ k ≤ p − 1, (see exercise 1.4), the criterion

does apply to g. And if g is irreducible then so is f . △

A second test is based on the following observation. Let f(x) = anx
n +

· · ·+ a1x+ a0 be a polynomial with integer coefficients. Suppose that

f = gh ,

where g and h also have integer coefficients, and deg g, degh > 0. If  we pick a

prime pwhich does not divide the leading coefficient an and reduce this equation

modulo p, then we obtain

f̄ = ḡh̄ ∈ Fp[x] .

Since p - an , p does not divide the leading coefficients of g and h. Therefore

deg ḡ = deg g > 0 , deg h̄ = degh > 0 .

So f̄ is reducible in Fp[x]. Taking the converse of  this gives us a test for irre-

ducibility:

Test 14.15. Let

f(x) = anx
n + · · ·+ a1x+ a0 ∈ Q[x] ,

where a0, . . . , an ∈ Z. If  there exists a prime p - an , such that f̄ , the reduction of f mod

p, is irreducible, then f is irreducible in Q[x].
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This is a very practical test because it is easy to check whether polynomials in

Fp[x] are irreducible, as we shall see in the final section of  the chapter.

Example 14.16. Take f(x) = x5 − 5x+ 12 ∈ Q[x]. If  we reduce f modulo 7,

it is not hard to check that f̄ ∈ F7[x] is irreducible. Therefore f is irreducible.△

You can build a list of  irreducible polynomials in Fp[x] by using a sieve, like

Eratosthene's sieve for finding prime numbers (see [1], p.14). First write down all

the linear polynomials, then the quadratic ones, and so on. Cross out the multiples

of x, of x+1, . . . , then of  the remaining quadratics, . . . . The polynomials which

are left are irreducible. It is enough to find the monic irreducibles since the others

will be scalar multiples of  them. For example, take p = 2. First list the monic

polynomials over F2:

x, x+ 1

x2, x2 + 1, x2 + x, x2 + x+ 1

x3, x3 + 1, x3 + x, x3 + x2, x3 + x+ 1, x3 + x2 + 1, x3 + x2 + x,

x3 + x2 + x+ 1

x4, x4 + 1, x4 + x, x4 + x2, x4 + x3, x4 + x+ 1, . . .
...

Cross out multiples of  the linear polynomials:

x, x+ 1

x2 + x+ 1

x3 + x2 + 1, x3 + x+ 1

x4 + x+ 1, x4 + x2 + 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1
...
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Cross out the multiples of  the remaining quadratics:

x, x+ 1

x2 + x+ 1

x3 + x2 + 1, x3 + x+ 1

x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1
...

Cross out the multiples of  the remaining cubics . . . , and so on. The list above

already gives us the monic irreducible polynomials of  degree less than 5.

You can also prove that there are infinitely many irreducible monic polyno-

mials in Fp[x] by imitating the classical proof  that there are infinitely many prime

numbers (see [1], theorem 1.6). Suppose that there were only finitely many irre-

ducible monic polynomials. Make a list of  them: f1, f2, . . . , fm. Let

f = f1f2 · · · fm + 1 .

If f were reducible, then one of  the list of  irreducible polynomials would divide

it, say fj | f for some j, 1 ≤ j ≤ m. Then

fj | (f − f1f2 · · · fm) = 1 .

This is impossible. So f must be irreducible. It is monic since f1, f2, . . . , fm are.

But it does not occur in the list because

deg f > deg fj

for all j, 1 ≤ j ≤ m. So there cannot be only finitely many monic irreducible

polynomials in Fp[x].

14.4 Commutative Rings

We have been emphasizing similarities between F [x] and Z. The most basic

similarity is that addition and multiplication look the same in both. This suggests

that it is useful to make a definition which sets out these common properties.
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Definition 14.17. A ring R is a set with two binary operations, ``addition'' and

``multiplication'' satisfying:

(i) R is an abelian group under addition;

(ii) multiplication is associative;

(iii) there is an identity element for multiplication, written 1, which is not 0;

(iv) multiplication is distributive over addition.

A ring is called commutative if  its multiplication is commutative. Thus F [x]

and Z are commutative rings. The set M(n, F ) of  all n × n matrices with co-

efficients in a field F is a ring under matrix addition and multiplication which is

not commutative. Any field is a commutative ring. In fact a field is just a com-

mutative ring in which every non-zero element has a multiplicative inverse. In

general, the group of  units of  a ring R is the set

R× = {a ∈ R | a has a multiplicative inverse}

with the operation of  ring multiplication. Thus

Z× = {±1}

and

F [x]× = F× .

As we saw in chapter 1, the integers mod n, Z/nZ, have a well-defined mul-

tiplication which satisfies the properties above. So Z/nZ is also a commutative

ring. Its group of  units, (Z/nZ)×, was introduced in example 5(v) and studied

in detail in chapter 13, page 216ff.

Remark 14.18. Most commutative rings do not have unique factorization into

primes, like Z and F [x].

If R and S are rings, then a mapping ψ : R → S is a ring homomorphism if  it

is a group homomorphism which respects multiplication:
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(i) ψ(a+ b) = ψ(a) + ψ(b),

(ii) ψ(ab) = ψ(a)ψ(b),

(iii) ψ(1) = 1,

for any a, b ∈ R. For example, the canonical map Z → Z/nZ is a ring ho-

momorphism. A homomorphism which is bijective is called an isomorphism.

Remark 14.19. (i) Suppose that ψ : R → S is a ring homomorphism, and let

a ∈ R be a unit. Then ψ(a) is a unit in S:

1 = ψ(1) = ψ(aa−1) = ψ(a)ψ(a−1) .

In particular, ψ(a) ̸= 0. Now if R is a field, then every non-zero element

is a unit. So in this case kerψ = 0 and ψ is injective.

(ii) Let F be a field. Define ψ : Z → F by

ψ(n) := 1 + · · ·+ 1︸ ︷︷ ︸
n

, ψ(−n) := −ψ(n) , ψ(0) := 0 ,

for n ∈ N. Then ψ is a ring homomorphism, and

kerψ = pZ ,

where p is either 0 or the least positive integer in kerψ (see exercise 6.11).

In the first case ψ is injective, and ψ(n) has a multiplicative inverse if

n ̸= 0. Therefore we can extend ψ to all of Q by setting

ψ(m/n) = ψ(m)ψ(n)−1 ,

for any m,n ∈ Z, n ̸= 0. It is easy to see that this is a homomorphism,

and by the previous remark, it must be injective. So there is a copy of Q
inside F . Examples of  such fields are R and C.
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The other possibility is that p > 0. Suppose that p is a composite number,

say

p = qr ,

where q, r > 0. Then in F ,

0 = p · 1 = qr · 1 = (q · 1)(r · 1).

Since F is a field, we must have that either q · 1 = 0 or r · 1 = 0. But

we chose p to be the least positive integer in kerψ. So this cannot happen,

and p must be prime. Now from theorem 10.12, we know that ψ induces

a group homomorphism

Fp = Z/pZ ψ̄−−−→ F .

It is easy to see that ψ̄ is a ring homomorphism, and therefore by the

previous remark, must be injective. So in this case, F contains a copy of

Fp. An example is the field Fp2 (see exercise 1.21) which contains Fp as

the set of  diagonal matrices.

Definition 14.20. Let F be a field. If  there exists a prime p such that p · 1 = 0

in F , then p is called the characteristic of F , written

chrF = p .

If  no such p exists, then

chrF := 0 .

The copy of Q in F , if chrF = 0, or of Fp, if chrF = p, is called the prime field

of F .

Later on we shall be very interested in automorphisms of  a field. An

automorphism of  a field F is an isomorphism of F to itself. The set of  all auto-

morphisms forms a group under composition (see exercise 11).

Just as you can construct the field of  rational numbers from the integers,

so you can construct the field of  rational functions F (x) from F [x] A rational
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function over F is a quotient f/g where f, g ∈ F [x] and g ̸= 0. We identify

f/g with kf/kg for any k ∈ F [x]. You can define addition and multiplication

just as for rational numbers:

f1
g1

+
f2
g2

:=
f1g2 + f2g1

g1g2
,

f1
g1

· f2
g2

:=
f1f2
g1g2

,

where f1, f2, g1, g2 ∈ F [x] , g1, g2 ̸= 0. With these two operations, F (x) is a

commutative ring. The ring of  polynomials F [x] can be regarded as a subring

by identifying f ∈ F [x] with the quotient f/1 ∈ F (x). Any rational function

f/g ̸= 0 has a multiplicative inverse, g/f . So just like Q , F (x) is a field.

14.5 Congruences

We can also look at 'congruences' modulo a polynomial and 'quotient rings' anal-

ogous to Z/nZ. Suppose f ∈ F [x] and define the subgroup (f) by

(f) := fF [x] = {fg | g ∈ F [x]}

The quotient group F [x]/(f) has a well-defined multiplication induced by the

multiplication on F [x]: given f1, f2 ∈ F [x]

(f1 + fg1)(f2 + fg2) = f1f2 + f(f1g2 + g1f2 + fg1g2) ,

where g1, g2 ∈ F [x], so that in F [x]/(f)

(f1 + fg1)(f2 + fg2) = f1f2 .

This multiplication satisfies properties (ii), (iii), and (iv) in 14.17. So F [x]/(f)

is also a commutative ring, and is called a quotient ring of F [x]. It is sometimes

convenient to describe calculations in F [x]/(f) via congruences mod f :

f1 ≡ f2 (mod f)

means that f1 = f2 + fg for some g ∈ F [x], in other words, f̄1 = f̄2 in

F [x]/(f).
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Notice that F [x]/(f) is an F -vector space. In fact if deg f = n, then

dimF F [x]/(f) = n .

Why is this so? Well any g ∈ F [x] can be written

g = qf + r ,

where deg r < n. In other words, ḡ = r̄ is a linear combination of 1, x̄, . . . , x̄n−1.

Thus {1, x̄, . . . , x̄n−1} spans F [x]/(f). On the other hand, if  for some

a0, . . . , an−1 ∈ F ,

a0 + a1x̄+ · · ·+ an−1x̄
n−1 = 0

in F [x]/(f), then f | (a0 + a1x + · · · + an−1x
n−1), which is not possible. So

{1, x̄, . . . , x̄n−1} is linearly independent.

This construction is particularly interesting when f is irreducible. Remember

that for p a prime number, Z/pZ is a field. The same is true for F [x]/(f) if f is

irreducible.

Theorem 14.21. Let f ∈ F [x]. If f is irreducible, then F [x]/(f) is a field.

Proof. We must show that every non-zero element in F [x]/(f) has a multiplica-

tive inverse. So suppose g ∈ F [x] and f - g. Then f and g are relatively prime

because f is irreducible. So there exist s, t ∈ F [x] such that

1 = sf + tg .

Therefore

tg ≡ 1 (mod f) ,

or equivalently, t̄ḡ = 1 ∈ F [x]/(f). Thus F [x]/(f) is a field.

Examples 14.22. (i) Let f = x2 + 1 ∈ R[x]. Since deg(x2 + 1) = 2,

dimR R[x]/(x2 + 1) = 2 ,
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In fact we know that

{1, x̄}

is a basis. Since x2 + 1 is irreducible, R[x]/(x2 + 1) is a field. Now let

i := x̄. Then every element can be written in the form a + bi, a, b ∈ R,

and

i2 + 1 = x̄2 + 1 = x2 + 1 = 0.

So

R[x]/(x2 + 1) ∼= C ,

the field of  complex numbers.

(ii) Let f(x) = x2 − 2 ∈ Q[x]. By the Eisenstein criterion, x2 − 2 is irre-

ducible. So Q[x]/(x2 − 2) is a field. Since deg(x2 − 2) = 2,

dimQ Q[x]/(x2 − 2) = 2 .

Define a homomorphism ϵ√2 : Q[x] → R by

ϵ√2 (g) = g(
√
2) .

Given a polynomial g ∈ Q[x], we can divide it by x2 − 2:

g(x) = q(x)(x2 − 2) + (ax+ b) ,

for some a, b ∈ Q. Then

ϵ√2 (g) = g(
√
2) = a

√
2 + b .

So the image of ϵ√2 is

Q(
√
2) = {a

√
2 + b | a, b ∈ Q}

(see exercise 1.19). Now for any g ∈ Q[x],

ϵ√2

(
g(x)(x2 − 2)

)
= 0 .
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Therefore ϵ√2 induces a homomorphism

ϵ̄√2 : Q[x]/(x2 − 2) → Q(
√
2) ⊂ R .

This is injective because Q[x]/(x2− 2) is a field. Since it is also surjective,

it is in fact an isomorphism.

(iii) Suppose r ∈ Fp is not a square. Let f = x2 − r ∈ Fp[x]. Then f is

irreducible. Therefore Fp[x]/(f) is a field. Again, since deg(x2 − r) = 2,

dimFp Fp[x]/(f) = 2 ,

It is not hard to see that the mapping

a+ bx̄ 7→
(
a b
br a

)
is an isomorphism from Fp[x]/(f) to the field Fp2 defined in exercise 1.21.

(iv) Take f(x) = xp−1 + · · ·+ x+ 1 ∈ Q[x], where p is a prime number. In

example 14.14 we saw that f is irreducible, so that Q[x]/(f) is a field. If

we set ω = e2πi/p, then its roots are

{ω, . . . , ωp−1} .

Let

Q(ω) = {a0 + a1ω + · · ·+ ap−2ω
p−2 | a0, . . . , ap−2 ∈ Q} .

Define a homomorphism ϵω : Q[x] → C by

ϵω(g) = g(ω) .

The image is just Q(ω), and the induced map

ϵ̄ω : Q[x]/(f) → C ,

is injective. So Q(ω) is a field and

Q[x]/(f) ∼= Q(ω) .
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Remark 14.23. We can generalize the constructions in (ii) and (iv) which use eval-

uation maps. Suppose that E and F are fields, with F ⊂ E. So any polynomial

in F [x] can be regarded as being a polynomial in E[x] too. Pick an element

ζ ∈ E. Define a map (evaluation at ζ)

ϵζ : F [x] → E

by

ϵζ(f) = f(ζ) .

for f ∈ F [x]. Then ϵζ is a ring homomorphism: for any f, g ∈ F [x],

ϵζ(f + g) = (f + g)(ζ) = f(ζ) + g(ζ) = ϵζ(f) + ϵζ(g)

ϵζ(fg) = (fg)(ζ) = f(ζ)g(ζ) = ϵζ(f)ϵζ(g)

ϵζ(1) = 1(ζ) = 1 .

Now suppose that f ∈ F [x] is irreducible of  degree n, and that ζ ∈ E is a root

of f . Any g ∈ F [x] can be written

g = qf + r ,

where deg r < n. Therefore

ϵζ(g) = g(ζ) = q(ζ)g(ζ) + r(ζ) = r(ζ) .

So the image of ϵζ is

F (ζ) := {a0 + a1ζ + · · ·+ an−1ζ
n−1 | a0, . . . , an−1 ∈ F} ⊂ E .

The homomorphism ϵζ induces a homomorphism

ϵ̄ζ : F [x]/(f) → E ,

since (gf)(ζ) = g(ζ)f(ζ) = 0 , for any g ∈ F [x]. As F [x]/(f) is a field, ϵ̄ζ
must be injective. So F (ζ) ∼= F [x]/(f) is a field, with F ⊂ F (ζ) ⊂ E. We

shall make heavy use of  such fields in coming chapters.



14.5. CONGRUENCES 247

Just as in the integers, we have the Chinese remainder theorem (see theorem

1.12).

Theorem 14.24 (Chinese Remainder Theorem). If p1, . . . , pm ∈ F [x] are pairwise

relatively prime, then the m congruences

f ≡ gi (mod pi) , 1 ≤ i ≤ m ,

have a unique solution modulo p1 · · · pm for any gi ∈ F [x].

Proof. We prove the theorem by induction on m. If m = 1, we are looking at a

single congruence

f ≡ g1 (mod p1)

with the solution f = g1, which is unique modulo p1. So suppose that the result

holds for m− 1 congruences, m > 1. We want to show that m congruences

f ≡ gi (mod pi) , 1 ≤ i ≤ m ,

have a solution. By the induction assumption, the first m − 1 of  these have a

solution fm−1 ∈ F [x] and all other solutions are of  the form

fm−1 + up1 · · · pm−1 ,

for u ∈ F [x]. The mth congruence then becomes

up1 · · · pm−1 ≡ gm − fm−1 (mod pm) ,

which we want to solve for u. Now given that p1, . . . , pm are pairwise relatively

prime, it is easy to check that (p1 · · · pm−1, pm) = 1. Therefore there exist

s, t ∈ F [x] such that

1 = sp1 · · · pm−1 + tpm .

Multiplying this equation by gm − fm−1 gives

gm − fm−1 = (gm − fm−1)sp1 · · · pm−1 + (gm − fm−1)tpm .
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Thus

(gm − fm−1)sp1 · · · pm−1 ≡ gm − fm−1 (mod pm) .

So take u = (gm − fm−1)s and let

f = fm−1 + (gm − fm−1)sp1 · · · pm−1 .

Then

f ≡ fm−1 ≡ gi (mod pi) , 1 ≤ i ≤ m− 1 ,

and

f ≡ fm−1 + (gm − fm−1) ≡ gm (mod pm) ,

which are the m congruences we want to solve. Therefore by the principle of

induction, there exists a solution for all m.

If f and g are two solutions then

f − g ≡ 0 (mod pi) , 1 ≤ i ≤ m .

Since p1, . . . , pm are relatively prime, it follows that p1 · · · pm | (f −g), in other

words

f ≡ g (mod p1 · · · pm) .

Remark 14.25. The theorem can also be interpreted the following way (cf. exam-

ple 5.10(ii) and exercise 5.24). For any f ∈ F [x], let f̄ denote its residue class in

F [x]/(p1 · · · pm), and f̄j its residue class in F [x]/(pj), for 1 ≤ j ≤ m. Then

the map

ψ : F [x]/(p1 · · · pm) → F [x]/(p1)× · · · × F [x]/(pm)

given by

ψ : f̄ 7→ (f̄1, . . . , f̄m) .

is well-defined and is a ring homomorphism (see exercise 19 for direct products of

rings). The Chinese remainder theorem says precisely that ψ is an isomorphism.
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14.6 Factoring Polynomials over a Finite Field

Earlier we saw how to build up a list of  irreducible polynomials in Fp[x]. This

is clearly not a good way to find out whether a given polynomial is irreducible.

There is a very effective algorithm, discovered by Berlekamp, which will test for

irreducibility. In fact it is actually an algorithm for factoring polynomials over Fp.
To explain it we need to make some preparations.

First consider the polynomial xp − x ∈ Fp[x] . According to theorem 10.6,

every a ∈ Fp is a root. Since xp− x has exactly p roots, these are all. So xp− x

factors

xp − x = x(x− 1) · · · (x− p+ 1) .

If g is any polynomial in Fp[x] then we can substitute g for x in the previous

equation and obtain

g(x)p − g(x) = g(x)
(
g(x)− 1

)
· · ·
(
g(x)− p+ 1

)
. (14.1)

Now suppose we have a monic polynomial f ∈ Fp[x]. We can factor it into

irreducibles as in theorem 14.11:

f = q1 · · · qr

where each qi = pmi
i for some monic irreducible polynomial pi, and some

mi ∈ N, and where q1, . . . , qr are pairwise relatively prime. Our algorithm will

determine q1, . . . , qr. How can one determine p1, . . . , pr from them? Suppose

that q = sm, where s is irreducible. There are two cases to consider: (i) p - m;

(ii) p | m.

Lemma 14.26. (i) If p - m, then (q, q′) ̸= 1 and s = q/(q, q′).

(ii) If m = pn, then q(x) = q1(x
p) for some q1 ∈ Fp[x].

Proof. In the first case,

q′ = msm−1s′
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Since s is irreducible, (s, s′) = 1 and therefore

(q, q′) = sm−1 .

It follows that

s = q/(q, q′) .

Now for any polynomial s ∈ Fp[x], putting together exercise 1.4 and theorem

10.6, we see that

s(x)p = s(xp) .

So if q = spm, then

q(x) = (s(x)p)m = sm(xp) ,

and we can take q1 = sm to get the second statement.

To determine s in the second case, we have to apply the lemma again to q1.

Suppose then that

f = q1 · · · qr ∈ Fp[x] ,

where q1, . . . , qr are pairwise relatively prime. How can we find the factors qi?

Berlekamp's idea is to consider the congruences

g ≡ a1 (mod q1) . . . g ≡ ar (mod qr) (14.2)

where a1, . . . , ar ∈ Fp. According to the Chinese remainder theorem, there is

a unique solution g modulo q1 · · · qr = f . From solutions to such congruences

you can find the factors q1, . . . , qr. On the other hand, a solution g is a solution

of  the congruence

gp − g ≡ 0 (mod f) . (14.3)

This congruence is easy to solve. We shall now explain this in detail.

Recall thatV := Fp[x]/(f) is a vector space overFp of  dimensionn = deg f .

The map

ψ : g 7→ gp
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is a linear mapping of V to itself. The set of  solutionsW ⊂ V of  the congruence

(14.3) is just the kernel of ψ − I . So if  we let A be the matrix of ψ with respect

to the basis {1, x, . . . , xn−1} of V , then W = ker(A − I). This explains how

to solve (14.3).

Now if g is a solution of (14.3), then each qi divides the right hand side of

equation (14.1) since f = q1 · · · qr. As the terms on the right hand side are

relatively prime, this means that for each i, 1 ≤ i ≤ r, there is an ai ∈ Fp
such that qi | g − ai . Therefore g is a solution of  the congruences (14.2) with

this choice of a1, . . . , ar. Conversely, suppose g is a solution of (14.2) for some

a1, . . . , ar. Each term g − ai occurs in the right hand side of  equation (14.1).

Therefore q1 · · · qr = f divides the right hand side and thus g is a solution of

(14.3). So r-tuples (a1, . . . , ar) correspond to solutions of (14.3). This give us

the connection between (14.2) and (14.3). In fact we have a linear map from

Fpr → W ,

given by

(a1 . . . ar) 7→ g , (14.4)

where g is the corresponding solution of (14.2). Since this map is an isomor-

phism, the dimension of W is r.

Finally we must know how to find the factors q1, . . . , qr from solutions g ∈
W . Looking at (14.2) we see that

(g − ai, f) ̸= 1

for 1 ≤ i ≤ r. It is not hard to see that

f =
∏
a∈Fp

(g − a, f) , (14.5)

for any g ∈ W (see exercise 23). If a ̸= b are in Fp and (g − a, f) ̸= 1 and

(g − b, f) ̸= 1, then these two factors of f will be relatively prime. So if  the

numbers of  the r-tuple (a1 . . . ar) corresponding to g are all distinct, then we
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have r relatively prime factors of f and are finished. If  not, then we must take

each factor f̃ we have found and repeat the procedure with it. Let's summarize

this all in the form of  an algorithm:

Algorithm 14.27. Suppose that f is a polynomial in Fp[x]. To factor f into

irreducible polynomials:

(i) Solve the congruence

gp − g ≡ 0 (mod f) .

Let g1 = 1, g2, . . . , gr be a basis of  the solution space, with

deg gk < deg f , 1 ≤ k ≤ r.

(ii) Find all a ∈ Fp such that

(g2 − a, f) ̸= 0 .

If  there are r such numbers a, then you have r relatively prime factors of

f and are finished by (14.5).

(iii) Otherwise, take each such factor f̃ and find all a ∈ Fp such that

(g3 − a, f̃) ̸= 0 .

Now

deg(g3 − a, f̃) < deg f .

This means that as you continue with g4, . . . , gr the process will terminate,

and you will end up with r relatively prime factors of f .

(iv) Each qi = pmi
i where pi is irreducible. To determine pi take the derivative

of qi. If q′i ̸= 0, then

pi = qi/(qi, q
′
i) .

If q′i = 0, then qi(x) = q̃i(x
p), for some q̃i ∈ Fp[xp]. The polynomial q̃i

is in turn a power of  an irreducible polynomial in Fp[xp]. So we return to

the beginning of  this step and take its derivative.
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Let's calculate an example.

Example 14.28. Set

f = 3 + x+ 6x2 + 2x3 + 4x4 + 5x5 + x6 ∈ F7[x] .

We want to find solutions of

g7 − g ≡ 0 (mod f) .

To do this we compute the matrix A of

g 7→ g7

in V := F7[x]/(f) with respect to the basis {1, x, . . . , x5}. We have

x0 = 1

x7 = 1 + 2x+ x2 + 4x3 + 4x4

x14 = 3 + 4x+ 3x2 + 3x3 + 2x4 + 3x5

x21 = 3 + 3x+ x2 + x3 + x4 + 4x5

x28 = 3 + 5x2 + 5x3 + 2x4

x35 = 3 + 3x2 + 5x4 + 5x5

Therefore the matrix is

A =


1 1 3 3 3 3
0 2 4 3 0 0
0 1 3 1 5 3
0 4 3 1 5 0
0 4 2 1 2 5
0 0 3 4 0 5


If  we row reduce A− I we see that its kernel has the basis {(1, 0, 0, 0, 0, 0),
(0, 3, 6, 5, 1, 1)}, or equivalently, the solution space of  (14.3) has a basis

{1, 3x+ 6x2 + 5x3 + x4 + x5} and r = 2. So taking

g = 3x+ 6x2 + 5x3 + x4 + x5



254 CHAPTER 14. POLYNOMIAL RINGS

we look for solutions of  (14.2). We find that

(g + 4, f) = 5 + 3x+ x2

(g + 5, f) = 2 + 6x+ 2x3 + x4

and

f = (5 + 3x+ x2)(2 + 6x+ 2x3 + x4) .

The quadratic q1 = 5 + 3x+ x2 ∈ F7[x] is clearly irreducible. But

q2 = 2 + 6x+ 2x3 + x4 is not:

(q2, q
′
2) = 3 + x+ x2 .

This quadratic too is irreducible, and q2 = (3+ x+ x2)2. So we have found the

irreducible factors of  f:

f = (5 + 3x+ x2)(3 + x+ x2)2 .

14.7 Calculations

Mathematica has a function PolynomialExtendedGCD which calculates (f, g)

for two polynomials f and g, as well as polynomials s and t such that

(f, g) = sf + tg .

If  we take f = x3 + x2 + x+ 1, g = x4 + x3 + x+ 1 ∈ Q[x] , we obtain

In[1]:= PolynomialExtendedGCD[ x^3+x^2+x+1,
x^4+x^3+x+1 ]

Out[1]=
{
1+ x ,

{1
2
− x

2
− x2

2
,
1
2
+

x
2

}}
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Thus

(x3 + x2 + x+ 1, x4 + x3 + x+ 1) = x+ 1 ,

and

x+ 1 =
(1
2
− x

2
− x2

2

)
(x3 + x2 + x+ 1) +

(1
2
+
x

2

)
(x4 + x3 + x+ 1) .

The function can also calculate in Fp . Here is example 14.4:

In[2]:= PolynomialExtendedGCD[ x^4 + x^3 + x^2 +
3 x + 2, x^5 - x^4 - x^3 + 2 x^2 - x - 2,
Modulus -> 11]

Out[2]= { 1+ x , {8+ 3 x+ 6 x2 + 4 x3 , 2+ 8 x+ 7 x2 }}

Mathematica is very useful for a calculation like example 14.28. We have

In[3]:= f = 3+ x+ 6 x^2 + 2 x^3 + 4 x^4 + 5 x^5 + x^6

Out[3]= 3+ x+ 6x2 + 2x3 + 4x4 + 5x5 + x6

To compute x7, x14, x21, x28, and x35 in term of  the basis 1, x, ..., x6 of V ,

we can use the function PolynomialMod which reduces a polynomial modulo a

natural number n and a polynomial f.

In[4]:= PolynomialMod[ x^7, {f,7} ]

Out[4]= 1+ 2x+ x2 + 4x3 + 4x4

In[5]:= PolynomialMod[ x^14, {f,7} ]

Out[5]= 3+ 4x+ 3x2 + 3x3 + 2x4 + 3x5
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In[6]:= PolynomialMod[ x^21, {f,7} ]

Out[6]= 3+ 3x+ x2 + x3 + x4 + 4x5

In[7]:= PolynomialMod[ x^28, {f,7} ]

Out[7]= 3+ 5x2 + 5x3 + 2x4

In[8]:= PolynomialMod[ x^35, {f,7} ]

Out[8]= 3+ 3x2 + 5x4 + 5x5

Then

In[9]:= A = Transpose[{{1,0,0,0,0,0},{1,2,1,4,4,0},
{3,4,3,3,2,3},{3,3,1,1,1,4},
{3,0,5,5,2,0},{3,0,3,0,5,5}}];

In[10]:= MatrixForm[A]

Out[10]=


1 1 3 3 3 3
0 2 4 3 0 0
0 1 3 1 5 3
0 4 3 1 5 0
0 4 2 1 2 5
0 0 3 4 0 5


To compute the kernel of A-I we can use the function Nullspace.

In[11]:= NullSpace[ A-IdentityMatrix[6], Modulus->7
]
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Out[11]= {{0,3,6,5,1,1},{1,0,0,0,0,0}}

Now we set

In[12]:= g = 3 x + 6 x^2 + 5 x^3 + x^4 + x^5

Out[12]= 3x+ 6x2 + 5x3 + x4 + x5

To check the greatest common divisors (g+a, f) for a ∈ F7, we use the function

PolynomialGCD:

In[13]:= PolynomialGCD[ g + 4, f, Modulus->7 ]

Out[13]= 5+ 3x+ x2

In[14]:= PolynomialGCD[ g + 5, f, Modulus->7 ]

Out[14]= 2+ 6x+ 2x3 + x4

We check the greatest common divisor of  this quartic with its derivative:

In[15]:= PolynomialGCD[ 2 + 6 x + 2 x^3 + x^4,
PolynomialMod[ D[2 + 6x + 2x^3 + x^4,

x], 7 ], Modulus->7 ]

Out[15]= 3+ x+ x2

Lastly, we verify the factorization.

In[16]:= PolynomialMod[ Expand[(5 + 3 x + x^2)
*(3 + x + x^2)^2], 7 ]



258 CHAPTER 14. POLYNOMIAL RINGS

Out[16]= 3+ x+ 6x2 + 2x3 + 4x4 + 5x5 + x6

Mathematica does have a built-in function which implements Berlekamp's

algorithm:

In[17]:= Factor[ x^6 + 5 x^5 + 4 x^4 + 2 x^3 + 6 x^2
+ x + 3, Modulus -> 7 ]

Out[17]= (3+ x+ x2)2 (5+ 3x+ x2)

We can use this to check that x5 − 5x+ 12 is irreducible modulo 7:

In[18]:= Factor[ x^5 - 5 x + 12, Modulus -> 7 ]

Out[18]= 5+ 2x+ x5

You can also factor polynomials over Q:

In[19]:= Factor[x^6 + x^5 + 4 x^4 + 2 x^3 + 6 x^2
+ x + 3]

Out[19]= (1+ x2) (3+ x+ 3x2 + x3 + x4)

14.8 Exercises

1. Let p ∈ F [x] be irreducible, and suppose p | (f1 · · · fr) where f1, . . . , fr ∈
F [x]. Prove that p | fi for some i, 1 ≤ i ≤ r.

2. Suppose that p1, . . . , pm , m > 2, are pairwise relatively prime. Prove that

(p1 · · · pm−1) and pm are relatively prime.
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3. a) Let f(x) = anx
n+ · · ·+ a1x+ a0 be a polynomial with integer coeffi-

cients. Show that if  a rational number a/b, with (a, b) = 1, is a root of

f , then a | a0 and b | an.

b) Find the rational roots of 8− 38x+ 27x2 + 47x3 − 11x4 + 15x5 .

4. Show that a polynomial in F [x] of  degree 2 or 3 is reducible if  and only if  it

has a root.

5. Make a list of  the monic irreducible polynomials of  degree less than 4 in F3[x].

6. Write a Mathematica function which lists the monic irreducible polynomials of

degree less than n in Fp[x] by making a sieve.

7. Decide whether the following polynomials are reducible or irreducible:

a) x5 + x3 + x2 + x+ 1 ∈ F2[x] ;

b) x4 + 2x2 + x+ 2 ∈ F3[x] ;

c) x4 + x2 + 1 ∈ F3[x] ;

d) x5 + 6x4 − 54x3 + 12x2 + 72x+ 24 ∈ Q[x] ;

e) x4 − 10x2 + 1 ∈ Q[x] ;

f) x7 + 3x+ 5 ∈ Q[x] .

8. • Let f be a monic polynomial with integer coefficients. Suppose that

g ∈ Q[x] is monic and divides f . Prove that the coefficients of g are integers

too.

9. Let p be prime. By factoring xp−1 − 1 ∈ Fp, show that

(p− 1)! ≡ −1 (mod p) .
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10. • Let F be a field, and K ⊂ F , its prime field. Show that if α is an auto-

morphism of F then α fixes K , in other words α(a) = a for all a ∈ K .

11. a) Show that the set of  automorphisms of  a field forms a group under

composition.

b) Compute the group of  automorphisms of

i. Q(
√
2) ,

ii. Q(ω) , where ω = e2πi/5 ,

iii. Q(ω) , where ω = eπi/4 .

12. • Let F1 and F2 be fields, and ψ : F1 → F2 an isomorphism. Then ψ induces

a mapping ψ∗ : F1[x] → F2[x] as follows. For

f(x) = anx
n + · · ·+ a1x+ a0 ,

with an, . . . , a1, a0 ∈ F1, let

bj = ψ(aj) , 0 ≤ j ≤ n ,

and then set

ψ∗(f)(x) = bnx
n + · · ·+ b1x+ b0 .

Prove that ψ∗ is an isomorphism of  rings.

13. Suppose f ∈ F [x] is reducible. Prove that F [x]/(f) is not a field (cf. exercise

1.18).

14. Prove that the mapping in example 14.22(iii) is an isomorphism of  fields.

15. • Let F be a finite field of  characteristic p with q elements.

a) Verify that F is a vector space over Fp. If dimFp F = n, show that

q = pn.
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b) Suppose f ∈ F [x] is an irreducible polynomial of  degree n. Prove that

E := F [x]/(f) is a finite field. How many elements does it have?

c) Construct fields with

i. 8 elements;

ii. 9 elements;

iii. 125 elements.

16. Let G be a finite abelian group.

a) Given α, β ∈ G show that there exists an element in G of  order

lcm(|α|, |β|) .

Suggestion: use exercise 5.8.

b) Let F be a finite field and set

r = max
a∈F×

|a| .

Show that |α| | r for all α ∈ F .

c) Prove that the multiplicative group of  a finite field is cyclic.

17. Let R be a commutative ring and let I ⊂ R be a subgroup such that

rI ⊂ I

for all r ∈ R. Prove that there is a well-defined multiplication on the quotient

group R/I induced by the multiplication on R, and that with this multipli-

cation R/I is a ring. Such a subgroup I is called an ideal of R, and the ring

R/I is called the quotient ring of I . Let S be another ring and ψ : R → S a

ring homomorphism. Show that kerψ is an ideal. Prove that if ψ is surjective,

then it induces an isomorphism of  rings:

R/I ∼= S .
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18. Prove that every ideal I of F [x] is of  the form I = (f) for some f ∈ F [x].

19. Let R and S be two rings. For any r1, r2 ∈ R, s1, s2 ∈ S, define

a) (r1, s1) + (r2, s2) := (r1 + r2, s1 + s2)

b) (r1, s1)(r2, s2) := (r1r2, s1s2)

Show that with these operations R × S is a ring, with multiplicative identity

(1R, 1S).

20. • Prove that a polynomial f ∈ F [x] has a repeated factor if  and only if f and

its derivative have a common factor, in other words if  and only if (f, f ′) ̸= 1.

21. • Prove that for any g ∈ Fp[x],

g(x)p = g(xp) .

22. • Let F be a field of  characteristic p. Show that the map ψ : F → F , given

by

ψ(a) = ap ,

is a homomorphism. Prove that if F is finite then ψ is an automorphism of

F , in particular that every element of F is a pth power.

23. a) Let F be a field and f ∈ F [x]. Suppose that g, h ∈ F [x] are relatively

prime. Show that

(f, gh) = (f, g)(f, h) .

b) Prove that the formula (14.5) holds.

24. Prove the the mapping (14.4) is linear, and is an isomorphism: Frp →W .
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25. Use Berlekamp's algorithm to show that x5 − 5x+12 ∈ F7[x] is irreducible.

26. Use Berlekamp's algorithm to factor x6+3x5+x4+x3+5x2+x+4 ∈ F7[x].

27. Use Berlekamp's algorithm to factor x8+x6+10x4+10x3+8x2+2x+8 ∈
F13[x].





15
Symmetric Polynomials

The coefficients of  a polynomial in one variable are symmetric functions of  its

roots. So are other quantities, like the discriminant of  the polynomial. In this

chapter we will discuss symmetric polynomials and their basic properties. First

we say a little about polynomials in more than one variable.

15.1 Polynomials in Several Variables

Let F be a field. A polynomial f in n variables x1, x2, . . . , xn with coefficients

in F is a finite sum

f(x1, . . . , xn) =
∑
i1,...,in

ai1··· inx
i1
1 · · · xinn ,

where the coefficients ai1··· in lie in F . We denote by F [x1, . . . , xn] the set of

all polynomials in x1, . . . , xn with coefficients in F . The degree of  a monomial

xi11 · · · xinn is i1 + · · ·+ in. The degree of  a polynomial f is the largest degree of

a monomial with a non-zero coefficient in f . For example, the degree of

x21x
3
2x3 + x1x

4
3 ∈ F [x1, x2, x3] ,

is 6. You can add and multiply two such polynomials in the obvious way. With

these two operations F [x1, . . . , xn] becomes a commutative ring. The zero ele-

ment is the polynomial, all of  whose coefficients are 0. The constant polynomials

form a subring isomorphic to the field of  coefficients F .

265
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Just as with one variable, we can define rational functions in n variables. A

rational function in x1, . . . , xn overF is a quotient f/g, where f, g ∈ F [x1, . . . , xn],

g ̸= 0. We identify f/g with kf/kg for any k ∈ F [x1, . . . , xn]. The set

of  rational functions in x1, . . . , xn over F is denoted by F (x1, . . . , xn). If

you define addition and multiplication in the same way as for one variable, then

F (x1, . . . , xn) becomes a field, called the field of  rational functions inx1, . . . , xn.

15.2 Symmetric Polynomials and Functions

A symmetric polynomial is one which is symmetric in the variables x1, . . . , xn :

Definition 15.1. A polynomial f ∈ F [x1, . . . , xn] is symmetric if

f(xα(1), . . . , xα(n)) = f(x1, . . . , xn) ,

for all α ∈ Sn.

For example,

x21x2 + x21x3 + x1x
2
2 + x22x3 + x1x

2
3 + x2x

2
3 ∈ F [x1, x2, x3]

is symmetric. It is easy to see that if f1 and f2 are symmetric, then so are f1+ f2

and f1f2. It follows that set of  all symmetric polynomials in F [x1, . . . , xn] is

a subring of F [x1, . . . , xn]. A rational function h ∈ F (x1, . . . , xn) is called

symmetric if

h(xα(1), . . . , xα(1)) = h(x1, . . . , xn) ,

for all α ∈ Sn. The set of  all symmetric functions in F (x1, . . . , xn) is a field.

Now suppose that

f(x) = xn + an−1x
n−1 + · · ·+ a0 ∈ F [x] ,

and that f has n roots ζ1, . . . , ζn ∈ F . So

f(x) = (x− ζ1) · · · (x− ζn) .
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Expanding the product, you obtain formulas for the coefficients a0, . . . , an−1:

a0 = (−1)nζ1 · · · ζn
...

...

an−j = (−1)j
∑

i1<···<ij

ζi1 · · · ζij

...
...

an−1 = −
n∑
j=1

ζj .

These expressions are symmetric in ζ1, . . . , ζn. The corresponding symmetric

polynomials are called the elementary symmetric polynomials:

Definition 15.2. The jth elementary symmetric polynomial in x1, . . . , xn is

sj(x1, . . . , xn) :=
∑

i1<···<ij

xi1 · · · xij ,

for 1 ≤ j ≤ n.

Thus

an−j = (−1)jsj(ζ1, . . . , ζn) .

The second reason that elementary symmetric polynomials are important is

that every symmetric polynomial can be expressed in terms of  them. The proof

actually gives an algorithm for doing so. Let's see how it works in an example

before looking at the general case. Take

h(x1, x2, x3) = x31 + x32 + x33 .

We will write h in terms of

s1 = x1 + x2 + x3

s2 = x1x2 + x1x3 + x2x3

s3 = x1x2x3 .



268 CHAPTER 15. SYMMETRIC POLYNOMIALS

To begin with, notice that the only way to obtain x31 using s1, s2 and s3, is to take

s31. Then

h = s31 − 3(x21x2 + x21x3 + x22x3 + x1x
2
2 + x1x

2
3 + x2x

2
3)− 6x1x2x3 .

Now the first term in the difference h − s31 is x21x2. This occurs only in s1s2,

and

h = s31 − 3s1s2 + 3x1x2x3 .

Of  course what remains on the right hand side is just 3s3. So we end up with

h = s31 − 3s1s2 + 3s3 .

To carry out this procedure for an arbitrary symmetric polynomial we will

have to argue by induction. For this, we must order the monomials. The sim-

plest way to do so is to order them lexicographically . Suppose that we have two

monomials, xi11 · · · xinn and xj11 · · · xjnn . Then we define

xi11 · · · xinn ≻ xj11 · · · xjnn ,

if

i1 = j1 , . . . , ir = jr , but ir+1 > ir+1 .

for some r, 1 ≤ r < n. So for example,

x31 ≻ x21x2 ≻ x21x3 ≻ x1x
2
2 .

This ordering has the property that, for any two monomials m1 and m2, either

m1 ≻ m2 or m1 = m2 or m2 ≻ m1 .

Notice that the greatest monomial in sj is x1 · · · xj . Therefore in an expression

sj11 s
j2
2 · · · sjnn ,

the greatest monomial will be

xj11 (x
j2
1 x

j2
2 ) · · · (x

jn
1 · · · xjnn ) = xj1+j2+···+jn

1 xj2+···+jn
2 · · · xjnn . (15.1)
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Now let f be a symmetric polynomial in x1, . . . , xn. Order its monomials

lexicographically. Suppose that xi11 · · · xinn is the greatest monomial that occurs

in f . To write it in terms of  the elementary symmetric polynomials, we compare

its exponents with those of  the monomial (15.1). This gives us the system of

linear equations:

i1 = j1 + j2 + · · ·+ jn

i2 = j2 + · · ·+ jn
... . . .

in = jn .

This system is easy to solve and has the unique solution:

j1 = i1 − i2

j2 = i2 − i3
... . . .

jn = in .

Therefore we must use si1−i21 si2−i32 · · · sinn to get the term xi11 · · · xinn . The dif-

ference

h − si1−i21 si2−i32 · · · sinn ,

is again a symmetric polynomial, and only has lesser monomials in it. So arguing

by induction, it can be written in a unique way in terms of s1, . . . , sn. This gives

us the theorem:

Theorem 15.3 (Fundamental Theorem of  Symmetric Polynomials). A symmetric

polynomial f ∈ F [x1, . . . , xn] can be written in a unique way as a polynomial in the

elementary symmetric polynomials.

Corollary 15.4. There are no algebraic relations among the elementary symmetric polynomi-

als.
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Proof. By an algebraic relation among s1, . . . , sn is meant a polynomial g ̸= 0 in

n variables such that g(s1, . . . , sn) = 0. If  there were such a polynomial relation

among them, then there would be more than one way to express the symmetric

polynomial 0 in terms of  them.

Examples 15.5. (i) Let

f(x) = x3 + ax2 + bx+ c ∈ F [x] ,

with roots ζ1, ζ2 and ζ3 in F . Thus

a = −s1(ζ1, ζ2, ζ3) = − ζ1 − ζ2 − ζ3

b = s2(ζ1, ζ2, ζ3) = ζ2ζ3 + ζ1ζ3 + ζ1ζ2

c = −s3(ζ1, ζ2, ζ3) = − ζ1ζ2ζ3 .

Now we are going to see how we can write down the monic cubic g ∈ F [x]

whose roots are ζ21 , ζ22 and ζ23 , in terms of a, b and c. To do this we must

write s1(ζ21 , ζ
2
2 , ζ

2
3 ), s2(ζ

2
1 , ζ

2
2 , ζ

2
3 ) and s3(ζ21 , ζ

2
2 , ζ

2
3 ) in terms of a, b and

c. We have

s1(ζ
2
1 , ζ

2
2 , ζ

2
3 ) = ζ21 + ζ22 + ζ23

= (ζ1 + ζ2 + ζ3)
2 − 2(ζ2ζ3 + ζ1ζ3 + ζ1ζ2)

= a2 − 2b

s2(ζ
2
1 , ζ

2
2 , ζ

2
3 ) = ζ22ζ

2
3 + ζ21ζ

2
3 + ζ21ζ

2
2

= (ζ2ζ3 + ζ1ζ3 + ζ1ζ2)
2 − 2(ζ21ζ2ζ3 + ζ1ζ

2
2ζ3 + ζ1ζ2ζ

2
3 )

= (ζ2ζ3 + ζ1ζ3 + ζ1ζ2)
2 − 2(ζ1ζ2ζ3)(ζ1 + ζ2 + ζ3)

= b2 − 2ac

s3(ζ
2
1 , ζ

2
2 , ζ

2
3 ) = ζ21ζ

2
2ζ

2
3

= c2 .

Therefore the cubic g is given by

g(x) = x3 − s1(ζ
2
1 , ζ

2
2 , ζ

2
3 )x

2 + s2(ζ
2
1 , ζ

2
2 , ζ

2
3 )x− s3(ζ

2
1 , ζ

2
2 , ζ

2
3 )

= x3 − (a2 − 2b)x2 + (b2 − 2ac)x− c2 .
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(ii) Suppose we have a polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a0 ∈ F [x] ,

with roots ζ1, . . . , ζn ∈ F , none of  which are 0. Then we can write down a

monic polynomial g ∈ F [x]whose roots are the reciprocals 1/ζ1, . . . , 1/ζn ,

in terms of a0, . . . , an−1 . What we must do is to express sk(1/ζ1, . . . , 1/ζn) ,

0 ≤ k < n, in terms of a0, . . . , an−1 . Well,

sk(1/ζ1, . . . , 1/ζn) =
∑

i1<···<ik

1

ζi1 · · · ζik

If  we multiply this by (ζ1 · · · ζn) we obtain

(ζ1 · · · ζn) sk(1/ζ1, . . . , 1/ζn) =
∑

j1<···<jn−k

ζj1 · · · ζjn−k

Therefore

sk(1/ζ1, . . . , 1/ζn) = sn−k(ζ1, . . . , ζn)/sn(ζ1, . . . , ζn)

= (−1)kak/a0 .

It follows that

g(x) = xn + · · ·+ (an−k/a0)x
k + · · ·+ (1/a0) .

Now that we have the answer it is clear that we could get it more easily:

xnf

(
1

x

)
= 1 + · · ·+ an−kx

k + · · ·+ a0x
n = a0g(x) ,

and the roots of xnf(1/x) are 1/ζ1, . . . , 1/ζn .
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15.3 Sums of  Powers

There is another simple type of  symmetric polynomial which occurs frequently,

namely the sums of  the jth powers. Let

pj(x1, . . . , xn) :=
n∑
i=1

xji .

By the fundamental theorem there must be formulas which express p1, . . . , pn in

terms of s1, . . . , sn . These can be obtained recursively from Newton's identities.

Theorem 15.6.

0 = p1 − s1

0 = p2 − s1p1 + 2s2

0 = p3 − s1p2 + s2p1 − 3s3
...

0 = pn − s1pn−1 + s2pn−2 + · · ·+ (−1)nnsn .

Proof. We have for n ≥ r > 1,

pr =
∑
j

xrj

s1pr−1 =
∑
j

xj
∑
k

xr−1
k =

∑
j

xrj +
∑
j1 ̸=j2

xj1x
r−1
j2

s2pr−2 =
∑
j1<j2

xj1xj2
∑
k

xr−2
k =

∑
j1 ̸=j2

xj1x
r−1
j2

+
∑

j1<j2<j3

∑
i

xj1x
r−2
ji

xj3

...
...

sr−1p1 =
∑

j1<···<jr−1

xj1 · · · xjr−1

∑
k

xk =
∑

j1<···<jr−1

∑
i

xj1 · · · x2ji · · · xjr−1

+ r
∑

j1<···<jr

xj1 · · · xjr

rsr = r
∑

j1<···<jr

xj1 · · · xjr .

Taking the alternating sum of  these equations gives us the formula.
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Notice that if chrF = 0, then these identities also allow us to write s1, . . . , sn
in terms of p1, . . . , pn .

15.4 Discriminants

Let F be a field of  characteristic ̸= 2 and f(x) = x2 + a1 x + a0 ∈ F [x], a

quadratic polynomial with roots ζ1 and ζ2 in F . By completing the square, we

get the well-known formula:

ζ1 =
−a1 +

√
∆

2
, ζ2 =

−a1 −
√
∆

2
,

where ∆ = a21 − 4a0 is the discriminant of f . This formula tells us that

∆ = (ζ1 − ζ2)
2 .

Now suppose that f ∈ F [x] is a polynomial of  degree n with roots ζ1, . . . , ζn ∈
F . By analogy,

∆ :=
∏
i<j

(ζi − ζj)
2 = (−1)n(n−1)/2

∏
i ̸=j

(ζi − ζj)

is called the discriminant of f . The most obvious property of ∆ is that it is non-

zero if  and only if  the roots of f are distinct. In the chapters to come we shall

see some of  its more subtle properties.

Interchanging two roots ζi and ζj does not change ∆. Since Sn is generated

by the set of  all transpositions, ∆ is therefore symmetric in ζ1, . . . , ζn. So define

a polynomial

∆(x1, . . . , xn) :=
∏
i<j

(xi − xj)
2 ∈ F [x1, . . . , xn] .

Then∆ is symmetric in x1, . . . , xn. Using the algorithm above, you can compute

that

∆(x1, x2, x3) = s21s
2
2 − 4s32 − 4s31s3 + 18s1s2s3 − 27s23 .
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With software it is easy to calculate ∆(x1, . . . , xn) in terms of  the elementary

symmetric polynomials for larger n. Notice that the polynomial

δ(x1, . . . , xn) :=
∏
i<j

(xi − xj)

is not symmetric. If  you interchange two variables you get −δ(x1, . . . , xn) (see

exercise 11).

15.5 Software

Mathematica has a function SymmetricReduction which implements the algorithm

in theorem 15.3. It requires that you list the variables in your symmetric polyno-

mial, and name the elementary symmetric polynomials. Here is p3 in terms of

s1, s2 and s3:

In[1]:= SymmetricReduction[ u^3 + v^3 + w^3,
{x1,x2,x3},{s1,s2,s3} ]

Out[1]= {s13 − 3 s1 s2+ 3 s3 , 0}

Actually the function will take an arbitrary polynomial and write it as symmetric

polynomial and a remainder. This is where the second term 0 comes from. If

you are only interested in symmetric polynomials, you can get rid of  the zero

remainder by applying the function First:

In[2]:= First[%]

Out[2]= s13 − 3 s1 s2+ 3 s3

Here is the discriminant Delta in four variables x1, x2, x3, x4, written in terms

of  the elementary symmetric polynomials:
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In[3]:= Delta
= ((x1-x2)(x2-x3)(x3-x4)(x1-x3)(x2-x4)(x1-x4))^2

Out[3]= (x1− x2)2(x2− x3)2(x3− x4)2(x1− x3)2(x2−
x4)2(x1− x4)2

In[4]:= First[ SymmetricReduction[ Expand[Delta],
{x1,x2,x3,x4},{s1,s2,s3,s4} ] ]

Out[4]= s12 s22 s32 − 4 s23 s32 − 4 s13 s33 + 18 s1 s2 s33

− 27 s34 − 4 s12 s23 s4 + 16 s24 s4 + 18 s13 s2 s3 s4
− 80 s1 s22 s3 s4 − 6 s12 s32 s4 + 144 s2 s32 s4
− 27 s14 s42 + 144 s12 s2 s42 − 128 s22 s42

− 192 s1 s3 s42 + 256 s43

15.6 Exercises

1. Prove that the set of  all symmetric polynomials in F [x1, . . . , xn] is a subring

of F [x1, . . . , xn] and that the set of  all symmetric functions in F (x1, . . . , xn)

is a field.

2. Write x51 + x52 in terms of s1 and s2.

3. Suppose that

f(x) = x3 + a2x
2 + a1x+ a0 ∈ F [x]

has roots ζ1, ζ2, ζ3 ∈ F . Write down the polynomial with roots ζ2ζ3, ζ1ζ3,

and ζ1ζ2 in terms of  the coefficients of f .
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4. a) Give an algorithm which expresses an arbitrary symmetric polynomial

in Q[x1, . . . , xn] in terms of p1, . . . , pn. Do not go via the elementary

symmetric polynomials.

b) Write ∆(x1, x2, x3) in terms of p1, p2 and p3.

5. Let f ∈ Q[x] be a cubic. Suppose that the sum of  its roots is 0, the sum of

the squares of  its roots is 1, and the sum of  the cubes of  its roots is 2. What

is the sum of  the fourth powers of  its roots?

6. • Let

f(x) = x4 + b2x
2 + b1x+ b0 ∈ F [x] ,

where chrF is not 2, be a quartic with roots ζ1, ζ2, ζ3, ζ4 ∈ F . Set

η1 = (ζ1 + ζ2)(ζ3 + ζ4)

η2 = (ζ1 + ζ3)(ζ2 + ζ4)

η3 = (ζ1 + ζ4)(ζ2 + ζ3) ,

and let

r(x) = (x− η1)(x− η2)(x− η3) .

Prove that

r(x) = x3 − 2b2x
2 + (b22 − 4b0)x+ b21 .

7. Derive Newton's identities for pn+r, r > 0: show that

pn+r − s1pn+r−1 + s2pn+r−2 + · · ·+ (−1)nsnpr = 0 .

8. Prove that there exist polynomials rn ∈ Q[x] such that

xn +
1

xn
= rn

(
x+

1

x

)
,

for n ≥ 1. Suggestion: derive a recursion formula for xn + 1/xn from

Newton's identities.



15.6. EXERCISES 277

9. Let F be a field of  characteristic 0. A polynomial f ∈ F [x] of  degree n is

called a reciprocal polynomial if

xnf

(
1

x

)
= f(x) .

a) If f is a reciprocal polynomial and ζ ∈ F , ζ ̸= 0, is a root of f verify

that 1/ζ is also a root of f .

b) Suppose that n is odd and that f is a reciprocal polynomial. Show that

−1 is a root of f , and that

g(x) := f(x)/(x+ 1)

is also a reciprocal polynomial.

c) Suppose that n is even, and

f(x) = anx
n + · · ·+ a1x+ a0 .

Show that f is a reciprocal polynomial if  and only if

an−k = ak

for all k.

d) Let f be a reciprocal polynomial, and let ζ ∈ F be a root of f . Prove

that ζ ̸= 0.

e) If n = 2m and f is a reciprocal polynomial, prove that

1

xm
f(x) = g

(
x+

1

x

)
for some polynomial g ∈ F [x] of  degree m.

10. a) Show that

(−1)
n(n−1)

2

∏
i<j

(xi − xj) =

∣∣∣∣∣∣∣∣∣
1 x1 x21 . . . xn−1

1

1 x2 x22 . . . xn−1
2

...
...

...
...

1 xn x2n . . . xn−1
n

∣∣∣∣∣∣∣∣∣
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b) Show that

∆(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣
n p1 p2 . . . pn−1

p1 p2 p3 . . . pn
...

...
...

...
pn−1 pn pn+1 . . . p2n−2

∣∣∣∣∣∣∣∣∣
Suggestion: multiply the underlying matrix in (a) by its transpose and

take the determinant.

11. • Let

δ(x1, . . . , xn) =
∏
i<j

(xi − xj) .

Show that for any α ∈ Sn,

δ (xα(1), . . . , xα(n)) = sgnα δ(x1, . . . , xn) .

12. • Let f ∈ F [x] have distinct roots ζ1, . . . , ζn ∈ F . Prove that

∆(ζ1, . . . , ζn) = (−1)n(n−1)/2

n∏
j=1

f ′(ζj) .



16
Roots of Equations

16.1 Introduction

In this chapter and the following ones, we are going to discuss solving polynomial

equations. For a quadratic equation, it is easy to write down a formula for the

roots. This formula tells you a lot about them and is very useful. There is a similar

formula for the roots of  a cubic. But it is more complicated, less informative and

less useful (see chapter 20). For quartics this is even more so, and for equations

of  degree greater than 4, such formulas do not even exist. So in trying to describe

the solutions of  an equation we will take a different approach, namely the one

outlined in the introduction to chapter 14.

As we saw in chapter 7, algebraic relations among the roots are important.

First, let's be more precise about what we mean by this. To make things more

concrete, suppose f(x) = xn+ · · ·+a1x+a0 ∈ Q[x]. According to the funda-

mental theorem of  algebra, f has n complex roots, ζ1, . . . , ζn. Then an algebraic

relation among the roots is a polynomial g in n variables with coefficients in Q
such that g(ζ1, . . . , ζn) = 0. Examples of  such relations are

sj(ζ1, . . . , ζn) = (−1)jan−j .

for 1 ≤ j ≤ n. These hold for any f . But there may well be others for a

particular polynomial.

Now it is awkward to work directly with these relations. But there is an ap-

proach which works amazingly well. The basic idea is the following. The roots

279
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of  the polynomial f lie in C, which is a very large field. In fact they lie in a much

smaller field. If  we look at the smallest field containing them, we will see that its

algebraic structure is determined by the algebraic relations among the roots. It is

this field, called the splitting field of f , which we will study. A few examples will

make clearer what this means.

Examples 16.1. (i) f(x) = x2 − 2 ∈ Q[x]. The roots of f are ±
√
2 ∈

C . These lie in the field Q(
√
2). And this is clearly the smallest field

containing Q and the two roots. Elements of Q(
√
2) are of  the form

a+ b
√
2, a, b ∈ Q, and the multiplication in Q(

√
2) is determined by the

relation

(
√
2)2 = 2 .

(ii) Let f(x) = x4 + x3 + x2 + x + 1 ∈ Q[x]. As we saw in chapter 7, the

roots of f are

ζ1 = e2πi/5 , ζ2 = e4πi/5 , ζ3 = e6πi/5 , ζ4 = e8πi/5 .

These satisfy the relations determined by the symmetric polynomials. They

also satisfy

ζ2 = ζ21 , ζ3 = ζ31 , ζ4 = ζ41 .

Let's set ω := ζ1. Then all the roots lie in the field Q(ω)
(
see example

14.17(iv)
)
, and this is the smallest field containing Q and the four roots.

Elements of Q(ω) are of  the form a0 + a1ω + a2ω
2 + a3ω

3, and multi-

plication in Q(ω) is determined by the relation

−1 = s1(ζ1, ζ2, ζ3, ζ4) = ζ1 + ζ2 + ζ3 + ζ4 = ω + ω2 + ω3 + ω4 .

In general, given f ∈ Q[x] with roots ζ1, . . . , ζn ∈ C, let

Q(ζ1, . . . , ζn) := {g(ζ1, . . . , ζn) ∈ C} ,

where g = h/k is a rational function, withh, k ∈ Q[x1, . . . , xn] and k(ζ1, . . . , ζn)

̸= 0. It is not hard to see that Q(ζ1, . . . , ζn) is a field, and in fact

Q(ζ1, . . . , ζn) = ∩ {K | Q ⊂ K ⊂ C, ζ1, . . . , ζn ∈ K,K a field} .



16.2. EXTENSION FIELDS 281

In other words, Q(ζ1, . . . , ζn) is the smallest field containing ζ1, . . . , ζn and Q.

The relations among the roots determine the structure of  this field. However,

this is too vague to be of  much use. So we will develop a clearer, more precise

description.

In the examples, we have extended the field Q to obtain a larger field con-

taining the roots of f . These fields are called extension fields of Q. As was

mentioned, the relative size of  an extension field is important. There is a simple

way of  measuring this. Such a field is a Q -vector space. So we can measure its

size by its dimension. In the first example it is 2, and in the second, 4. In general,

Q(ζ1, . . . , ζn) is finite dimensional. On the other hand, the dimension of C as a

Q -vector space is uncountably infinite. So in this sense, C is a very large field,

and Q(ζ1, . . . , ζn), a much smaller one.

16.2 Extension Fields

Definition 16.2. Let E and F be fields, with E ⊃ F . Then E is called an

extension field of F , and F , a subfield of E.

One often refers to the extension E over F, writtenE/F . So Q(
√
2) and Q(ω)

are extension fields of Q and they are subfields of C. In example 14.22(iii), Fp is

embedded in Fp2 as the set of  diagonal matrices:

Fp ∼=
{(

a 0
0 a

) ∣∣∣∣ a ∈ Fp
}

⊂
{(

a b
br a

) ∣∣∣∣ a, b ∈ Fp
}

= Fp2 .

These are all examples of simple extensions. An extensionE/F is called simple

if  there exists an element ζ ∈ E such that

E = F (ζ) := {g(ζ)/h(ζ) | g, h ∈ F [x], h(ζ) ̸= 0} .

We say that F (ζ) is obtained from F by adjoining ζ . Simple extensions can be

described precisely, which makes them very useful.
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Theorem 16.3. Suppose E = F (ζ), for some ζ ∈ E. Then either

F (ζ) ∼= F [x]/(f) ,

for some irreducible polynomial f ∈ F [x], or

F (ζ) ∼= F (x) ,

the field of  rational functions in x.

Proof. Suppose there exists f ∈ F [x], f ̸= 0, such that f(ζ) = 0. Pick one of

minimal degree. This f will be irreducible: for if f = gh, with deg g, degh <

deg f , then either g(ζ) = 0 or h(ζ) = 0. We have the evaluation map (see

remark 14.23)

ϵζ : F [x] → F (ζ)

given by

ϵζ(g) = g(ζ) ,

which induces an isomorphism

ϵ̄ζ : F [x]/(f) → F (ζ) .

The other possibility is that f(ζ) ̸= 0 for all f ∈ F [x], f ̸= 0. We define

ϵζ : F [x] → f(ζ) as above. But now we can extend it to F (x) by setting

ϵζ(g/h) = g(ζ)/h(ζ) ,

for any g, h ∈ F [x], h ̸= 0. This gives a homomorphism, whose image again is

an extension of F containing ζ . Therefore it must be all of F (ζ).

In the first case the polynomial f chosen in the proof  can be taken to be

monic. It is then called the minimal polynomial of ζ . Its degree is called the degree

of ζ .

Corollary 16.4. IfE/F is an extension, and ζ ∈ E, with g(ζ) = 0 for some g ∈ F [x],

then g is divisible by the minimal polynomial of ζ .
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Proof. If g(ζ) = 0, then ϵ̄ζ(g) = 0, which means that ḡ = 0 ∈ F [x]/(f). In

other words, g ∈ (f) or f | g.

In general, if E/F is an extension and ζ ∈ E, one says that ζ is algebraic over

F if  there exists f ∈ F [x] such that f(ζ) = 0. If  no such f exists, one says that

ζ is transcendental over F . If ζ is algebraic over Q, then ζ is called an algebraic

number, and if  it is transcendental over Q, a transcendental number. It is not hard to

see that there are countably many algebraic numbers. So there are uncountably

many transcendental numbers. For example, π and e are transcendental. Yet it is

very hard to prove that a complex number is transcendental (see [1], §6.3 )

Let's look at a slightly more complicated example:

Example 16.5. Let f(x) = x3 − 2. Clearly 3
√
2 ∈ R is a root of f . If ω is a

cube root of 1, then ω 3
√
2 is also a root of f . So let ω = e2πi/3. Then

3
√
2 , ω

3
√
2 , ω2 3

√
2 ∈ C

are the roots of f . We want to describe Q( 3
√
2, ω 3

√
2, ω2 3

√
2). Now

Q(
3
√
2) ⊂ R ,

but

ω
3
√
2, ω2 3

√
2 ̸∈ R

So

ω
3
√
2, ω2 3

√
2 ̸∈ Q(

3
√
2) .

Any field containing all 3 roots must contain

ω
3
√
2
/

3
√
2 = ω .

So let's adjoin ω to Q( 3
√
2) . Then

E := Q(
3
√
2)(ω) = Q(

3
√
2, ω) ⊂ Q(

3
√
2, ω

3
√
2, ω2 3

√
2) ,

and on the other hand, E will contain ω 3
√
2 and ω2 3

√
2. So

Q(
3
√
2, ω

3
√
2, ω2 3

√
2) = Q(

3
√
2, ω) .

Can you describe Q( 3
√
2, ω) as a simple extension? △
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In general, suppose that E/F is a field extension, and ζ1, . . . , ζr ∈ E. Then

we can define the extension

F (ζ1, . . . , ζr) = F (ζ1) . . . (ζr) ⊂ E

= ∩ {K | F ⊂ K ⊂ E , ζ1, . . . , ζr ∈ K}

= {g(ζ1, . . . , ζr) ∈ E} ,

where g = h/k is a rational function, with h, k ∈ F [x1, . . . , xn] and

k(ζ1, . . . , ζn) ̸= 0. We say that F (ζ1, . . . , ζr) is obtained from F by adjoining

ζ1, . . . , ζr.

16.3 Degree of  an Extension

If E is an extension of F , then E is an F -vector space:

(i) for ζ, η ∈ E, define vector addition to be field addition in E

ζ + η := ζ + η ∈ E .

(ii) for a ∈ F and ζ ∈ E, define scalar multiplication using the field multipli-

cation in E

aζ := aζ ∈ E .

It is straightforward to check that E with these two operations is an F -vector

space.

Definition 16.6. Let E/F be a field extension. Then the degree of  the extension,

written [E : F ], is the dimension of E as an F -vector space, that is,

[E : F ] := dimF E .

If [E : F ] <∞ then E/F is called a finite extension.
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If f ∈ F [x] is irreducible then we saw in the previous chapter that the di-

mension of  the simple extension E constructed from f is deg f . So in this case,

[E : F ] = deg f .

In our first example, [
Q(

√
2) : Q

]
= 2 ,

with basis

{1,
√
2} .

In the second one, [
Q(ω) : Q

]
= 4 ,

where ω = e2πi/5, and

{1, ω, ω2, ω3}

is a basis. In the third example, [
Fp2 : Fp

]
= 2 .

and {
1,

(
0 1
r 0

)}
is a basis.

In example 16.5, we have

Q ⊂ Q(
3
√
2) ⊂ Q(

3
√
2, ω) .

It is clear that [
Q(

3
√
2) : Q

]
= 3

with basis

{1, 3
√
2, (

3
√
2)2} .

What about
[
Q( 3

√
2, ω) : Q( 3

√
2)
]
? Well, ω is a root of x2 + x + 1 which is

irreducible in R[x]. Therefore it is irreducible over Q( 3
√
2) and[

Q(
3
√
2, ω) : Q(

3
√
2)
]
= 2
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with basis

{1, ω} .

We would also like to compute
[
Q( 3

√
2, ω) : Q

]
. It is not obvious thatQ( 3

√
2, ω)/Q

is a simple extension. But the following result shows that we can calculate its de-

gree from
[
Q( 3

√
2, ω) : Q( 3

√
2)
]

and
[
Q( 3

√
2) : Q

]
.

Theorem 16.7. Let D ⊃ E ⊃ F be fields. Then

[D : F ] = [D : E][E : F ] .

Proof. First, let's assume that [D : E] and [E : F ] are both finite. So suppose

that

S = {ζ1, . . . , ζs}

is a basis of D over E, and

T = {η1, . . . , ηt} ,

a basis of E over F . Set

U = {ζjηk ∈ D | 1 ≤ j ≤ s, 1 ≤ k ≤ t} .

We want to show that U is a basis ofD/F . First we show that it generatesD/F .

Pick θ ∈ D. Since S is a set of  generators ofD overE, there existα1, . . . αs ∈ E

such that

θ = α1ζ1 + · · ·+ αsζs .

Now T generates E over F . So for each j, 1 ≤ j ≤ s, there exist βjk ∈ F ,

1 ≤ k ≤ t, such that

αj = βj1η1 + · · ·+ βjtηt .

Therefore

θ =
s∑
j=1

t∑
k=1

βjk(ζjηk) .

So U generates D over F .
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Now we check that U is linearly independent over F . Suppose that

0 =
s∑
j=1

t∑
k=1

βjk(ζjηk) =
s∑
j=1

(
t∑

k=1

βjkηk

)
ζj

for some βjk ∈ F , 1 ≤ j ≤ s, 1 ≤ k ≤ t. Since S is linearly independent over

E, the coefficients of ζ1, . . . , ζs must be 0, in other words,

βj1η1 + · · ·+ βjtηt = 0 ,

for 1 ≤ j ≤ s . But {η1, . . . , ηt} are linearly independent over F . Therefore

βjk = 0 for all j, k. So U is linearly independent over F and is therefore a basis

of D/F . It follows that

[D : E][E : F ] = [D : F ] ,

if  all three are finite.

If  one of [D : E] or [E : F ] is infinite, then [D : F ] is infinite.

We now can compute [Q( 3
√
2, ω) : Q]:[

Q(
3
√
2, ω) : Q

]
=
[
Q(

3
√
2, ω) : Q(

3
√
2)
][
Q(

3
√
2) : Q

]
= 2 · 3 = 6 .

Using the bases for Q( 3
√
2)/Q and Q( 3

√
2, ω)/Q( 3

√
2) given above, the basis

constructed in the theorem is

{1, 3
√
2, (

3
√
2)2, ω, ω

3
√
2, ω(

3
√
2)2} .

Example 16.8. Take f(x) = x4 − 10x2 + 1 (see chapter 7). Its roots are
√
2 +

√
3 , −

√
2 +

√
3 ,

√
2−

√
3 , −

√
2−

√
3 .

Any subfield of R containing the four roots contains
√
2 and

√
3 and vice versa.

So the smallest field containing the roots is Q(
√
2,
√
3). From the theorem,[

Q(
√
2,
√
3) : Q

]
=
[
Q(

√
2) : Q

][
Q(

√
2,
√
3) : Q(

√
2)
]
= 2 · 2 = 4 ,
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since x2 − 3 has no root in Q(
√
2).

In fact it is not hard to see that Q(
√
2,
√
3)/Q is a simple extension. We

have

Q(
√
2 +

√
3) ⊂ Q(

√
2,
√
3) .

A short calculation shows that we can express
√
2 and

√
3 in terms of

√
2+

√
3

and its powers:

(
√
2 +

√
3)2 = 5 + 2

√
2
√
3 ,

and

(
√
2 +

√
3)3 = 11

√
2 + 9

√
3 .

Thus √
2 = −9

2
(
√
2 +

√
3) +

1

2
(
√
2 +

√
3)3 ,

and √
3 =

11

2
(
√
2 +

√
3)− 1

2
(
√
2 +

√
3)3 .

Therefore

Q(
√
2 +

√
3) = Q(

√
2,
√
3) .

16.4 Splitting Fields

We can now say more about the smallest extension field containing the roots of

a polynomial. Suppose that F is a field, and f a polynomial of  degree n with

coefficients in F . We say that f splits in an extension E of F if f has n roots

ζ1, . . . , ζn ∈ E, or equivalently,

f(x) = (x− ζ1) · · · (x− ζn) ∈ E[x] .

We want to show that any polynomial f ∈ F [x] splits in some extension of F .

The smallest such extension is called a splitting field of f . This is the smallest field

containing all the roots of f .

For example,
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(i) Q(
√
2) is the splitting field of x2 − 2 ∈ Q[x]

(ii) Q(ω), whereω = e2πi/5, is the splitting field of x4+x3+x2+x+1 ∈ Q[x]

(iii) Q( 3
√
2, ω) is the splitting field of x3 − 2 ∈ Q[x]

(iv) Q(
√
2,
√
3) is the splitting field of x4 − 10x2 + 1 ∈ Q[x]

As mentioned at the beginning of  the chapter, the structure of  the splitting

field reflects precisely the algebraic relations among the roots of  the polynomial.

In the next chapter we will use splitting fields to study the symmetries of  the

roots.

An obvious question to ask is, does a splitting field for a polynomial f ∈ F [x]

always exist. If  the answer is yes, then we can ask whether it is unique or not. In

examples (i) and (ii) above, we were able to construct a splitting field by adjoining

one root to the field F . In example (iii), we had to adjoin a second root. This

suggests how we can construct splitting fields in general. Uniqueness of  splitting

fields will be discussed in the next chapter.

Theorem 16.9. Let f ∈ F [x] be a polynomial of  degree n. There exists a splitting field

E/F of f with [E : F ] ≤ n!.

Proof. We first assume that f is irreducible and argue by induction on n. If n = 1,

then f is linear and its only root lies in F . So suppose that the result holds for

irreducible polynomials of  degree at most n− 1. Set

E = F [x]/(f) .

In E, f has at least one root. So we can write

f(x) = (x− ζ1) · · · (x− ζr)g(x) ∈ E[x] ,
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with ζ1, . . . , ζr ∈ E, and g ∈ E[x] irreducible. Since deg g < n, by the induc-

tion assumption the result applies to g. Thus there exists a splitting field D/E

for g with

[D : E] ≤ (n− r)! .

If

g(x) = (x− ζr+1) · · · (x− ζn) ∈ D[x] ,

then

f(x) = (x− ζ1) · · · (x− ζn) ∈ D[x] ,

in other words, f splits in D. The field D then contains a splitting field E ′ of f

with

[E ′ : F ] ≤ [D : F ] = [D : E][E : F ] ≤ (n− r)!n ≤ n! ,

as desired. If f is reducible, we can apply the result for irreducible polynomials

to each irreducible factor of f . It is not hard to see that here too, the degree of

the splitting field is at most n!.

Example 16.10. Consider f(x) = xp − 2, where p is prime. We have already

looked at p = 3. First, there is a real root, p
√
2. Furthermore, if ωp = 1, then

ω
p
√
2 is also a root of f . So pick a pth root of 1, ω ̸= 1, for example ω = e2πi/p.

Then the remaining pth roots of 2 are ωj p
√
2, 1 < j < p . As in the case p = 3,

we see that if  an extension field contains all the roots, then it must contain

ω
p√
2
/ p√

2 = ω .

Conversely, if  it contains p
√
2 and ω, then it contains all the roots. So the splitting

field of f is

Q(
p√
2, ω) .

To calculate
[
Q(

p
√
2, ω) : Q

]
, first note that[

Q(
p√
2) : Q

]
= p .

So

p
∣∣∣ [Q(

p√
2) : Q

][
Q(

p√
2, ω) : Q

]
=
[
Q(

p√
2, ω) : Q(

p√
2)
]
.
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And since ω is a root of xp−1 + · · ·+ x+ 1 ,[
Q(

p√
2, ω) : Q(

p√
2)
]
≤ p− 1 .

Therefore [
Q(

p√
2, ω) : Q

]
≤ (p− 1)p .

On the other hand, [
Q(ω) : Q

]
= p− 1

since xp−1 + · · ·+ x+ 1 is the minimal polynomial of ω over Q, and[
Q(ω) : Q

] ∣∣∣ [Q(
p√
2, ω) : Q

]
.

Therefore both p and p − 1 divide
[
Q(

p
√
2, ω) : Q

]
. Since they are relatively

prime, we have

(p− 1)p
∣∣∣ [Q(

p√
2, ω) : Q

]
.

Thus [
Q(

p√
2, ω) : Q

]
= (p− 1)p .

The diagram below shows the relationships between the four fields, and the de-

grees of  the extensions.

..Q(
p
√
2, ω)

.Q(
p
√
2)

.Q(ω)

.Q

.p− 1

.p

.p− 1

.p
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16.5 Cubics

Let F be a field of  characteristic ̸= 2 and f(x) = x2 + a1 x + a0 ∈ F [x],

a quadratic polynomial. On page 273 we recalled the standard formula for its

roots ζ1 and ζ2. You can also write this in a slightly different way:

ζ1 =
−a1 + δ

2
, ζ2 =

−a1 − δ

2
,

where δ =
√
a21 − 4a0 is a square root of  the discriminant of f . This formula

tells us that

δ = ζ1 − ζ2 ,

and that F (δ) is a splitting field of f over F .

Now suppose that

f = x3 + a2 x
2 + a1 x+ a0 ∈ F [x]

is a cubic with 3 distinct roots ζ1, ζ2, and ζ3 in some extension E/F . So we can

write

f(x) = (x− ζ1)(x− ζ2)(x− ζ3) ∈ E[x] .

Set

δ := (ζ1 − ζ2)(ζ2 − ζ3)(ζ1 − ζ3) ∈ E .

So ∆ = δ2 is the discriminant of f . It is not hard to see that ∆ ∈ F . If  we pick

one root, say ζ1, then we can express the other two in terms of  it and δ. First, we

have

−a2 = ζ1 + ζ2 + ζ3 ,

which gives us

ζ2 + ζ3 = −a2 − ζ1 . (16.1)

Furthermore,

f ′(x) = (x− ζ2)(x− ζ3) + (x− ζ1)(x− ζ3) + (x− ζ1)(x− ζ2) ,
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so that

f ′(ζ1) = (ζ1 − ζ2)(ζ1 − ζ3) .

Therefore,

ζ3 − ζ2 =
δ

f ′(ζ1)
.

Combining this with equation (16.1), we get

ζ2 = −a2
2

− ζ1
2
− δ

2f ′(ζ1)

ζ3 = −a2
2

− ζ1
2
+

δ

2f ′(ζ1)
.

(16.2)

Thus F (δ, ζ1) is a splitting field for f over F . One should think of  this as F (δ)

with a root of f adjoined. If f is irreducible over F , then[
F (δ, ζ1) : F

]
= 3 or 6 ,

depending upon whether δ ∈ F or δ ̸∈ F .

For example, take f(x) = x3 − 2 ∈ Q[x]. As we saw in example 16.5, the

roots are

ζ1 =
3
√
2 , ζ2 = ω

3
√
2 , ζ3 = ω2 3

√
2 ,

where ω = e2πi/3. So

δ = (
3
√
2− ω

3
√
2)(ω

3
√
2− ω2 3

√
2)(

3
√
2− ω2 3

√
2)

= 2(1− ω)(ω − ω2)(1− ω2)

= 6 + 12ω ,

and Q(δ, ζ1) = Q(ω, 3
√
2) is the splitting field again.

Remark 16.11. If f is a real quadratic then the discriminant controls whether the

roots are real: if ∆ is positive, then f has 2 real roots. If ∆ is negative, then f has

a pair of  complex conjugate roots. For a cubic f ∈ R[x] the discriminant has a

similar significance. A real cubic always has a real root. So take ζ1 to be this root.

Then formula (16.2) shows that the other 2 roots are real if  the discriminant is

positive, and complex conjugate if  it is negative. The discriminant of  real cubics

is discussed further on page 300.
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16.6 Cyclotomic Polynomials

We have been making much use of  roots of  unity. In this section, we are going

to discuss their minimal polynomials, called cyclotomic polynomials.

As we saw in exercise 6.2, the nth roots of 1 form a cyclic group µn of  order

n. A primitive nth root of 1 is one which generates the group. If  we write µn as

{e2πik/n | 0 < k ≤ n} ⊂ C ,

then the primitive roots are those with (k, n) = 1. Thus there are φ(n) of  them

(see chapter 1).

Here is a plot of  the 18th roots of 1 and the primitive 18th roots of 1 in the

complex plane.

.

We define the nth cyclotomic polynomial Φn(x) to be the monic polynomial

whose roots are the primitive nth roots of 1, that is

Φn(x) =
∏

ω primitive
nth root of 1

(x− ω) =
∏

(k,n)=1
0<k<n

(x− e2πik/n) .

If ω is an nth root of 1, and the order of ω in µn is d, then d | n and ω is a

primitive dth root of 1. Conversely, if d | n and ω is a primitive dth root of 1,
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then ω is an nth root of 1 whose order is d. Therefore, sorting the roots by their

order, we see that

xn − 1 =
∏
ωn=1

(x− ω) =
∏
d|n

∏
ω primitive

dth root of 1

(x− ω) =
∏
d|n

Φd(x) . (16.3)

Using this formula, we can compute the cyclotomic polynomials recursively. We

have

x− 1 = Φ1(x) ,

and

x2 − 1 = Φ1(x)Φ2(x) = (x− 1)Φ2(x) .

Therefore

Φ2(x) = x+ 1 .

Next,

x3 − 1 = Φ1(x)Φ3(x) = (x− 1)Φ3(x) .

So

Φ3(x) = x2 + x+ 1 .

In fact, for any prime p,

xp − 1 = (x− 1)Φp(x) ,

and thus

Φp(x) = xp−1 + · · ·+ x+ 1 .

Going on, we have

x4 − 1 = Φ1(x)Φ2(x)Φ4(x) = (x− 1)(x+ 1)Φ4(x) .

Therefore

Φ4(x) = x2 + 1 .

And

x6 − 1 = Φ1(x)Φ2(x)Φ3(x)Φ6(x) = (x− 1)(x+ 1)(x2 + x+ 1)Φ6(x) ,
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which tells us that

Φ6(x) = x2 − x+ 1 .

You can continue like this. You can also use software to compute Φn for much

larger values of n. Looking at these calculations the first thing you notice is that

all the cyclotomic polynomials computed have integer coefficients.

Theorem 16.12. The cyclotomic polynomials Φn have integer coefficients and are monic, for

all n ∈ N.

Proof. To see this, we argue by induction on n. It is certainly true for n = 1.

Suppose that allΦd for d < n, have integer coefficients and are monic. Therefore

g(x) :=
∏
d|n
d<n

Φd(x)

is monic with integer coefficients. By formula (16.3), we have

xn − 1 = g(x)Φn(x) .

It follows that Φn too must have integer coefficients and be monic (see exercise

14.8). So by the principle of  induction, the first statement is proved.

Remark 16.13. Calculations of Φn for small n may lead you to ask whether its

coefficients are ±1 for all n. This is not the case. For example,

Φ105(x) = 1 + x+ x2 − x5 − x6 − 2 x7 − x8 − x9 + x12 + x13 + x14

+ x15 + x16 + x17 − x20 − x22 − x24 − x26 − x28 + x31

+ x32 + x33 + x34 + x35 + x36 − x39 − x40 − 2x41 − x42

− x43 + x46 + x47 + x48 .

In fact arbitrarily large and small integers occur as coefficients of  cyclotomic

polynomials.

Looking again at our calculations of  cyclotomic polynomials, you notice that

Φ3, Φ4 and Φ6 are irreducible over Q. In 14.14 we saw that Φp is irreducible. So

one might ask whether this is true for all Φn.
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Theorem 16.14. The cyclotomic polynomials Φn are irreducible over Q, for all n ∈ N.

Proof. Suppose that f ∈ Q[x] is monic, irreducible, and divides Φn. It follows

from exercise 14.8 that f has integer coefficients. Since Φn divides xn − 1, so

does f . Write

xn − 1 = f(x)g(x) .

for some g with integer coefficients. Now letω be a primitive nth root of 1 which

is a root of f . Thus f is the minimal polynomial of ω. Pick a prime p which does

not divide n. Then

0 = (ωp)n − 1 = f(ωp)g(ωp) .

So either f(ωp) = 0 or g(ωp) = 0.

Suppose that g(ωp) = 0. Then ω is a root of g(xp). It follows from corollary

16.4 that f(x) | g(xp), say

g(xp) = f(x)h(x) ,

where h too has integer coefficients. Next, reduce this equation mod p:

ḡ(xp) = f̄(x)h̄(x) .

Since ḡ(xp) = ḡ(x)p (see exercise 14.21), we have

ḡ(x)p = f̄(x)h̄(x) .

Now in Fp[x], every polynomial factors uniquely into a product of  irreducibles

(theorem 14.11). Therefore some irreducible factor k ∈ Fp[x] of ḡ is also a

factor of f̄ . Hence

k2 | f̄ ḡ = x̄n − 1 .

But if x̄n − 1 has a repeated factor, then by exercise 14.20,

(x̄n − 1, nx̄n−1) ̸= 1 ,

which is impossible. It follows that ωp must be a root of f for every prime p - n.
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We want to see thatωr is a root of f for every r relatively prime to n. Suppose

that r = p1 · · · pl, where p1, . . . , pl are primes which do not divide n. Now in

the argument above, we can replace ω by ωp1 , since it too is a primitive nth root

of 1. It follows that (ωp1)
p2 = ωp1p2 is a root of f . Continuing like this we see

that ωr is as well. Since every root of Φn is of  this form, we must have that

f = Φn, and so Φn is irreducible.

Since µn is a cyclic group, an extension of Q which contains one primitive

nth root contains all of  them. So the splitting field En of Φn is isomorphic to

Q[x]/(Φn) . It contains all nth roots of 1 and is thus the splitting field of xn− 1

as well. Furthermore, [
En : Q

]
= φ(n) .

En is called a cyclotomic field.

16.7 Finite Fields

Let's now look more closely at the case where F is a field of  characteristic p, in

particular where F is finite with q elements. Suppose that E/F is an extension

of  degree r. For example, if f ∈ F [x] is irreducible of  degree r, then F [x]/(f)

is such a field. Since [E : F ] = r,

|E| = qr

(see exercise 14.15). It follows that

|E×| = qr − 1 .

So if ζ ∈ E×,

ζq
r−1 = 1 .

Therefore, for all ζ ∈ E, (cf. Fermat's little theorem)

ζq
r

= ζ .
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This tells us that xq
r − x has qr roots in E. So E is in fact a splitting field for

xq
r −x over F . We are going to show in the next chapter that splitting fields are

unique up to isomorphism. This means that all extensions E/F of  degree r are

isomorphic. So given the uniqueness result, we have:

Theorem 16.15. There is a unique field of  order pr, for p prime, r ∈ N.

For example, Fp2 is the field with p2 elements, and is the splitting field over

Fp of xp
2 −x. In general, let's denote by Fpr , the field with pr elements. If r | s,

then there is an extension of  degree s/r of Fpr . It has pr
(s/r)

= ps elements,

and is therefore just Fps . The converse also holds: if Fps is an extension of Fpr ,

then r | s.
This discussion also tells us something about the irreducible polynomials over

Fp. Suppose f ∈ Fp is monic and irreducible of  degree r, and r | s. Since

Fp[x]/(f) ∼= Fpr , f is the minimal polynomial of  some element ζ ∈ Fpr . As

Fpr ⊂ Fps ,

ζp
s − ζ = 0 .

Therefore by corollary 16.4,

f | (xps − x) .

Since any two distinct monic, irreducible polynomials are relatively prime, it fol-

lows that ∏
f irreducible
f monic
deg f | s

f
∣∣ (xps − x) .

Conversely, suppose that f is a monic, irreducible factor of  degree r of xp
s − x

. Since xp
s − x splits in Fps , so does f . Pick a root of ζ of f . Then

Fpr ∼= Fp[x]/(f) ∼= Fp(ζ) ⊂ Fps .

So r | s and all the factors of xp
s − x occur in the product above. Since the

leading coefficient of  the product is 1, we have the result:
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Theorem 16.16.

xp
s − x =

∏
f irreducible
f monic

deg f | s

f .

Corollary 16.17. Let N(p, r) be the number of  irreducible monic polynomials in Fp[x] of

degree r. Then

ps =
∑
r|s

N(p, r)r .

Proof. The degree of  the left hand side of  the equation in the theorem is ps. The

degree of  the right hand side is
∑

r|sN(p, r)r .

You can obtain an explicit formula for N(p, r) by using the Möbius inversion

formula (see [1], p. 113).

16.8 Plots and Calculations

As we have seen, the discriminant ∆ of  a real cubic

f(x) = x3 + ax+ b

is given by

∆ = −4a3 − 27b2 .

Here is a plot of  the semi-cubical parabola ∆ = 0. The regions ∆ > 0, re-

spectively ∆ < 0, correspond to values of a and b for which f has 3 real roots,

respectively 1 real root and a pair of  complex conjugate roots.

In[1]:= ContourPlot[ -4a^3 - 27b^2 == 0, {a,-2,0},
{b,-1.1,1.1}]
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D < 0 

D > 0 

Out[1]= - Graphics -

The notebook ``CubicRoots.nb'' contains a demonstration showing how the

discriminant controls the behavior of  the roots of  a 1-parameter family of  real

cubics. First choose a real cubic with two real critical points, for example x3 − 3x.

Plot its graph:

In[2]:= Plot[ x^3 - 3x, {x,-2,2}]
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-2 -1 1 2 

-2 

-1 

1 

2 

Out[2]= - Graphics -

The critical values are 2 and −2. Any value greater than 2 is taken on at one real

point and two complex conjugate points. A value between 2 and −2 is taken on

at three real points and one less than −2 at one real and two complex conjugate

points. Equivalently one can look at the roots of x3 − 3x+ a = 0. In the ani-

mation below they are plotted, in black, in the complex plane for a running from

-3 to 3. The discriminant −a2 + 4 is also shown, in grey. One sees that when

it is negative, for a between -2 and 2, there is a pair of  complex conjugate roots

and one real root. When it is positive, for a greater than 2 or less than −2 there

are three real roots. And when it vanishes there is a double root.

In[3]:= Do[ CubicRoots[ f, x, PlotRange->{{-6,6},
{-1,1}} ], {a,-3,3,0.2} ]
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Out[3]= - Graphics -

This animation looks best when run cyclically. There is a QuickTime version

available at the web site.

Mathematica has a built-in function EulerPhi[n] which computes φ(n):

In[4]:= EulerPhi[105]

Out[4]= 48
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The function Cyclotomic[n, x] calculates the nth cyclotomic polynomial

Φn(x). Here is the example given in 16.13:

In[5]:= Cyclotomic[105,x]

Out[5]= 1+x+x2−x5−x6−2 x7−x8−x9+x12+x13+x14

+ x15 + x16 + x17 − x20 − x22 − x24 − x26 − x28

+ x31 + x32 + x33 + x34 + x35 + x36 − x39 − x40

− 2x41 − x42 − x43 + x46 + x47 + x48

16.9 Exercises

1. • Show that if f ∈ C[x] has degree 2, then f splits in C. Conclude that C has

no quadratic extensions, and that every quadratic extension ofR is isomorphic

to C.

2. Find the splitting field of x3 + 2 ∈ Q[x].

3. Find the minimal polynomial of
√
2 +

√
2 over Q.

4. • What is the minimal polynomial of cos(2π/5) over Q?

5. DescribeQ( 3
√
2, ω)/Q, whereω ̸= 1 is a cube root of 1, as a simple extension.

6. Show that the cyclotomic field E8 = Q(i,
√
2).

7. • Find the roots of x4 − 2x2 − 2 ∈ Q[x]. Determine its splitting field E/Q.

What is [E : Q]?

8. • Let E/F be a field extension.
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a) If E/F is a finite extension prove that every element of E is algebraic

over F .

b) Let

K = {ζ ∈ E | ζ algebraic over F} .

Prove that K is a field.

c) Set

Q̄ = {ζ ∈ C | ζ algebraic over Q} .

Is Q̄/Q a finite extension? The field Q̄ is called the field of  algebraic

numbers.

9. • Let E/R be a finite extension.

a) Suppose that ζ ∈ E. Show that [R(ζ) : R] is even or 1.

b) Prove that [E : R] is even or 1.

10. • Let

f(x) = xn + an−1 x
n−1 + · · ·+ a0 ∈ F [x] ,

where the characteristic of F does not divide n and n ≥ 2. Show that the

substitution

x = y − an−1/n

transforms f into a polynomial of  the form

g(y) = yn + bn−2 y
n−2 + · · ·+ b0 ∈ F [y] .

Compute the coefficients of  the transformed polynomial g in the cases n = 2

and n = 3. This substitution is called a (linear) Tschirnhausen transformation.

11. • Show that the discriminant of

g(y) = y3 + b1 y + b0

is

−4b31 − 27b20 .
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12. • Let f ∈ R[x] be a cubic polynomial with distinct roots. Prove that

a) f has 3 real roots if  and only if ∆ > 0 ;

b) f has 1 real root and a pair of  complex conjugate roots if  and only if

∆ < 0 .

13. Compute Φn(x) for n ≤ 12 .

14. If p > 2 is prime, show that

Φ2p(x) = xp−1 − xp−2 + · · ·+ x2 − x+ 1 .

15. Prove that the discriminant of Φp is (−1)p(p−1)/2pp−2. Suggestion: write

xp − 1 = (x− 1)Φp(x) ,

and differentiate to obtain

pxp−1 = Φp(x) + (x− 1)Φ′
p(x) .

Then apply the result of  exercise 15.12.

16. Prove that ∑
d|n

φ(d) = n .

17. Show that if Fps is an extension of Fpr , then r | s.

18. Verify the formula in theorem 16.16 for p = 2 and s = 4 directly.
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19. a) Let F be a finite field. An element ζ ∈ F is an mth root of 1 if

ζm = 1 .

Show that F contains m, mth roots of 1, in other words that xm − 1

splits in F , if  and only if

m | (|F | − 1) .

b) Show that the splitting field of xm − 1 ∈ Fp[x] is Fpr , where r is the

smallest number such that

m | (pr − 1) .

20. The Fibonacci numbers f(n) , are given by the recursion formula

f(n+ 1) = f(n) + f(n− 1), f(0) = 0, f(1) = 1.

In matrix notation this may be written(
f(n+ 1)
f(n)

)
=

(
1 1
1 0

)(
f(n)

f(n− 1)

)
,

(
f(1)
f(0)

)
=

(
1
0

)
.

This definition makes sense in Fp. Compute the Fibonacci numbers mod p

for a few primes p. Notice that they seem to be periodic. They can also be

given by the closed formula

f(n) =
ζn − (−ζ)−n

ζ + ζ−1
,

where ζ2 − ζ − 1 = 0 . This holds over the integers and the integers mod

p. Explain why the Fibonacci numbers mod p are periodic. Determine their

period. (Mathematica has a function Fibonacci which you may find useful.

You can produce a list of  the first n Fibonacci numbers mod p with

Mod[ Table[ Fibonacci[k], {k,1,n} ], p ] ).





17
Galois Groups

17.1 Introduction

In chapter 7, we looked at some examples of  symmetry groups of  equations. A

symmetry of  an equation was defined as a permutation of  its roots which pre-

served any algebraic relations among them. We were not very exact about what

we meant by ``algebraic relations among the roots''. In the last chapter, we made

this more precise, and saw that the structure of  the splitting field of  an equation

reflects these algebraic relations. So a natural way to define what a symmetry of

an equation should be is to say that it should be a mapping of  the splitting field

to itself  which preserves the structure of  the field and fixes the coefficients of

the equation. As we shall show shortly, this implies that it will permute the roots.

To put it more succinctly: if  we have a polynomial f with coefficients in a field

F , with a splitting field E/F , then a symmetry is an automorphism of E which

fixes F .

Let's look at the examples from chapter 7 again from this point of  view. Take

f(x) = x4 + x3 + x2 + x+ 1 .

As we saw in example 16.1(ii) the splitting field of f is Q(ω), where ω is a prim-

itive 5th root of 1. The other roots are ω2, ω3, and ω4. Suppose that α is an

automorphism of Q(ω). Since every element of  this field can be written as a

polynomial in ω, α(ω) determines α(ζ) for any ζ in the field. So what can α(ω)

309
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be? Notice that if ζ is a root of f then

0 = α(ζ4 + ζ3 + ζ2 + ζ + 1) = α(ζ)4 + α(ζ)3 + α(ζ)2 + α(ζ) + 1 .

So α(ζ) is also a root of f . Therefore α(ω) must be one of ω, ω2, ω3, or ω4.

Define automorphisms αj by

αj(ω) = ωj ,

for j = 1, 2, 3, 4. Then as we saw in chapter 7,

α2
2 = α4 , α3

2 = α3 , α4
2 = α1 = 1 .

Thus the group of  automorphisms of  the splitting field is cyclic of  order 4.

Next take

f(x) = x4 − 10x2 + 1 ∈ Q[x] .

In example 16.8 we saw that the splitting field of f is Q(
√
2,
√
3). Since any

element of  this field can be expressed in terms of
√
2 and

√
3, an automorphism

α is determined by α(
√
2) and α(

√
3). Now

0 = α
(
(
√
2)2 − 2

)
= α(

√
2)2 − 2 .

Therefore

α(
√
2) = ±

√
2 .

Similarly, we must have that

α(
√
3) = ±

√
3 .

So there are four possibilities for α:

α α(
√
2) α(

√
3)

α1

√
2

√
3

α2 −
√
2

√
3

α3

√
2 −

√
3

α4 −
√
2 −

√
3
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We see that

α1 = 1 and α4 = α2α3 .

Thus, the group of  symmetries is isomorphic to V , as we saw in chapter 7.

Let's do one more example:

Example 17.1. Set f(x) = x4− 2x2− 2 ∈ Q[x] (see exercise 7.12). In exercise

16.7, you saw that the roots of f are

ζ1 =

√
1 +

√
3 ζ2 =

√
1−

√
3

ζ3 = −ζ1 = −
√

1 +
√
3 ζ4 = −ζ2 = −

√
1−

√
3 ,

and that the splitting field is

E = Q(ζ1, ζ2) .

..E

.Q(ζ1) .Q(ζ2)

.Q(
√
3)

.Q

Figure 17.1: Splitting field of x4 − 2x2 − 2

Now ζ1 and ζ2 satisfy the relation

ζ21 + ζ22 = 2 .
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In terms of E, this means that E has two subfields, Q(ζ1) and Q(ζ2), with

Q(ζ1) ∩Q(ζ2) = Q(ζ21 ) = Q(ζ22 ) = Q(
√
3) .

Any automorphism α of E is determined by α(ζ1) and α(ζ2), and must

satisfy

α(ζ1)
2 + α(ζ2)

2 = 2 .

This gives us eight possibilities for α. The last column gives the corresponding

permutation of  the four roots.

α α(ζ1) α(ζ2) permutation

α1 ζ1 ζ2 (1)
α2 −ζ1 ζ2 (1 3)
α3 ζ1 −ζ2 (2 4)
α4 −ζ1 −ζ2 (1 3)(2 4)
α5 ζ2 ζ1 (1 2)(3 4)
α6 −ζ2 ζ1 (1 4 3 2)
α7 ζ2 −ζ1 (1 2 3 4)
α8 −ζ2 −ζ1 (1 4)(2 3)

The list of 8 permutations on the right is the list in the table at the beginning

of  chapter 3! So the group of  automorphisms of E is isomorphic to D4.

Remark 17.2. We have been using the following principle. Suppose that f ∈ F [x],

and E is an extension of F containing a root ζ of f . Let α be an automorphism

of E which fixes F . Then α(ζ) is also a root of f . Why is this so? Write f out:

f(x) = anx
n + · · ·+ a1x+ a0 ,

where an, . . . , a1, a0 ∈ F . So

0 = anζ
n + · · ·+ a1ζ + a0 .
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Applying α to this equation gives us

0 = α (anζ
n + · · ·+ a1ζ + a0)

= α(an)α(ζ)
n + · · ·+ α(a1)α(ζ) + α(a0)

= anα(ζ)
n + · · ·+ a1α(ζ) + α(a0)

= f
(
α(ζ)

)
.

Thus α permutes the roots of f .

17.2 Definition

We now are ready to make a formal definition of  the group of  symmetries of

an equation. Following the discussion above, we shall define it as the group of

automorphisms of  its splitting field, which leave the field of  coefficients invariant.

In fact we can look at this group for any extension. If E/F is a field extension,

then we say that an automorphism α ofE fixes F if α(a) = a for all a ∈ F . The

set of  all automorphisms of E which fixes F forms a subgroup of  the group of

automorphisms of E.

Definition 17.3. Let E/F be a field extension. Then the Galois group of E/F ,

written Gal(E/F ), is the group of  automorphisms of E which fix F , in other

words

Gal(E/F ) = {α | α is an automorphism of  E, α(a) = a for all a ∈ F} .

If E is the splitting field of  a polynomial f ∈ F [x], then Gal(E/F ) is called the

Galois group of f , and written Gal(f).

So for f(x) = x4 + x3 + x2 + x+ 1,

Gal(f) = Gal
(
Q(ω)/Q

) ∼= Z/4Z ,

and for f(x) = x4 − 10x2 + 1,

Gal(f) = Gal
(
Q(

√
2,
√
3)
/
Q
) ∼= V .
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Here is an example where E is not the splitting field of  a polynomial: take

E = Q( 3
√
2). Any automorphism of E must map 3

√
2 to a cube root of 2. But

as we saw in 16.5, the other two cube roots of 2 do not lie in E. Therefore

Gal(E/Q) = {1} .

As we noted in exercise 14.10 ifE is an extension ofQ, then every automorphism

of E fixes Q.

Example 17.1 Continued. We computed that if f(x) = x4 − 2x2 − 2, then

Gal(f) = Gal(E/Q) ∼= D4 .

We can also look at the extensionsE/Q(ζ1),E/Q(ζ2) andE/Q(
√
3), and com-

pute their Galois groups. Every automorphism of E which fixes Q(ζ1), Q(ζ1)

or Q(
√
3) fixes Q and therefore belongs to Gal(E/Q). So Gal

(
E/Q(ζ1)

)
,

Gal
(
E/Q(ζ2)

)
and Gal

(
E/Q(

√
3)
)

are subgroups of Gal(E/Q). Looking at

the table, we see that

Gal(E/Q(ζ1)) = ⟨α3⟩ ,

which is cyclic of  order 2. Similarly,

Gal(E/Q(ζ2)) = ⟨α2⟩ .

Now elements of Gal(E/Q(
√
3)) are automorphisms which fix ζ21 . The table

tells us then that

Gal(E/Q(
√
3)) = {α1, α2, α3, α4} ∼= V .

Figure (17.2) shows the inclusions of  these subgroups.

We have gone from diagram 17.1 to this one. You can also start from this

diagram and construct diagram 17.1, as we shall soon see. △
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..V

.⟨α3⟩ .⟨α2⟩

.{(1)}

.D4

Figure 17.2: Symmetries of x4 − 2x2 − 2

Let's compute one example that is a little more sophisticated. We shall calcu-

late the Galois group of  the cyclotomic field En/Q , the splitting field of Φn. In

the introduction we looked at the case n = 5. Pick a primitive nth root of 1, ω.

So En = Q(ω). Any element α ∈ Gal(Q(ω)/Q) is determined by α(ω), which

must be another primitive nth root of 1. Thus for each j, (j, n) = 1, 1 ≤ j < n,

there is an automorphism αj , defined by

αj(ω) = ωj .

For j, k relatively prime to n,

αj
(
αk(ω)

)
=
(
ωk
)j

= ωjk = αl(ω) ,

where 1 ≤ l < n, l ≡ jk (mod n). Therefore we can define a homomorphism

h : (Z/nZ)× → Gal(En/Q) = Gal(Φn)

by

h(j) = αj .
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Since the αj 's are all the automorphisms of En, h is surjective. For different j 's

the αj 's are different. So h is injective, and therefore an isomorphism. Recall that

we discussed the structure of (Z/nZ)× in chapter 13, page 216ff. In particular,

if n is prime, then Gal(Φn) is cyclic of  order n− 1.

17.3 How Large is the Galois Group?

These calculations also suggest that there is a connection between [E : F ] and

|Gal(E/F )|. In every example, we see that

|Gal(E/F )| ≤ [E : F ] ,

with equality when E is the splitting field of  a polynomial f ∈ F [x]. This is in

fact true if f has distinct roots. To prove it, we have to construct automorphisms

ofE which fix F . Such an automorphism can be regarded as an extension of  the

identity map on F to E. More generally we can look at extending an arbitrary

automorphism of F to E, or extending an isomorphism between two fields.

Theorem 17.4. Let F1 and F2 be fields, and

ψ : F1 → F2

an isomorphism. Suppose that f1 ∈ F1[x] is a monic polynomial (not constant), and f2 ∈
F2[x] the corresponding polynomial under ψ. Let E1/F1 be the splitting field of f1, and

E2/F2, the splitting field of f2.

Then ψ extends to an isomorphismE1 → E2. The number of  such extensions is at most

[E1 : F1], and is exactly [E1 : F1] if  the roots of f1 in E1 are distinct .

Before starting the proof, we should clarify some points. First, if

f1(x) = anx
n + · · ·+ a1x+ a0 ,

with an, . . . , a1, a0 ∈ F1, let

bj = ψ(aj) , 0 ≤ j ≤ n .
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Then

f2(x) = ψ∗(f1) := bnx
n + · · ·+ b1x+ b0 ∈ F2[x] ,

as discussed in exercise 14.12. Secondly, as indicated above, the inequality for

|Gal(E/F )| will follow from the special case where F1 = F2 = F , ψ is the

identity on F and E1 = E2 = E. But the proof  of  the theorem is by induction,

and for the induction step, we need the more general result. Thirdly, if  we take

F1 = F2 = F , and ψ the identity on F , and let E1 and E2 be two splitting fields

of f over F , then the theorem shows that E1 and E2 are isomorphic. In other

words, splitting fields are unique up to isomorphism. We begin with a lemma:

Lemma 17.5. Suppose that f1 (and therefore f2) is irreducible. Let ζ1 be a root of f1 in

E1. Then ψ can be extended to a homomorphism

χ : F1(ζ1) → E2 ,

and the number of  such extensions is the number of  distinct roots of f2 in E2.

Proof. From exercise 14.12, we have a ring isomorphism

ψ∗ : F1[x]
∼=−−−→ F2[x] ,

which induces an isomorphism of  fields

ψ̄∗ : F1[x]/(f1)
∼=−−−→ F2[x]/(f2) .

Let ζ2 be a root of f2 in E2. As we saw in 14.23, evaluation at ζ1 and ζ2 define

isomorphisms:

ϵ̄ζ1 : F1[x]/(f1)
∼=−−−→ F1(ζ1) , ϵ̄ζ2 : F2[x]/(f2)

∼=−−−→ F2(ζ2) .

Putting all these together, we get a homomorphism

χ : F1(ζ1)
ϵ̄−1
ζ1−−−→ F1[x]/(f1)

ψ̄∗−−−→ F2[x]/(f2)
ϵ̄ζ2−−−→ F2(ζ2) ↩→ E2 ,

which extends ψ : F1 → F2. Different roots ζ2 in E2 give different homomor-

phisms.
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..E1 .E2

.F1(ζ1) .F2(ζ2)

.F1 .F2

.χ

.ψ

The theorem is proved by adjoining roots of f1 in steps and extending ψ step

by step, as in the proof  of  the existence of  splitting fields.

Proof. We argue by induction on n := [E1 : F1]. If f1 is linear, then there is

nothing to prove. Assume that the result holds for splitting fields of  degree less

than n. We want to use the lemma to extend ψ to F1(ζ1), for some root ζ1 of f1.

Then we can use the induction assumption to extend further toE1. However the

lemma requires that f1 be irreducible. So let g1 be an irreducible factor of  degree

> 1 of f1, and let g2 be the corresponding factor of f2. Pick a root ζ1 of g1 inE1.

As shown in the lemma we can extend ψ to a homomorphism from F1(ζ1) into

E2, and the number of  such homomorphisms is the number of  distinct roots of

g2 in E2. As g1 splits in E1, this is at most

deg g2 = deg g1 = [F1(ζ1) : F1] ,

and is equal to [F1(ζ1) : F1] if  the roots are distinct.

Let ψ̃ be one such homomorphism. Set F̃1 = F1(ζ1), and F̃2 = ψ̃(F1(ζ1)).

Regard f1 as a polynomial in F̃1[x]. Then E1 is a splitting field for f1 over F̃1,

and E2 a splitting field for f2 over F̃2. As [E1 : F̃1] < [E1 : F1], the induction

assumption applies. So ψ̃ extends to an isomorphism E1 → E2. Furthermore,

the number of  such extensions is at most [E1 : F̃1], and is equal to [E1 : F̃1]

if  the roots of f1 are distinct. Now we can count the number of  extensions of
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..E1 .E2

.F̃1 .F̃2

.F1 .F2

.ψ̃

.ψ

ψ to E1. There are at most [F̃1 : F1] extensions to F̃1 and for each of  these, at

most [E1 : F̃1] extensions from F̃1 to E1. So there are at most

[F̃1 : F1][E1 : F̃1] = [E1 : F1]

extensions from F1 to E1. And if  the roots of f1 are distinct, then equality holds

everywhere. This completes the induction step. Therefore by the principle of

induction, the theorem is proved.

Corollary 17.6. Let F be a field and f a polynomial with coefficients in F . Suppose that

E1 and E2 are splitting fields for f over F . Then E1
∼= E2, in fact there is an isomorphism

from E1 to E2 which fixes F .

Proof. Take F1 = F2 = F and ψ = 1F in the theorem. It tells us then that there

exists an isomorphism from E1 to E2 which fixes F .

Corollary 17.7. Suppose E is the splitting field of  a polynomial f ∈ F [x]. Then

|Gal(E/F )| ≤ [E : F ] .

If  the roots of f are distinct, then

|Gal(E/F )| = [E : F ] .

Proof. Take F1 = F2 = F , E1 = E2 = E, and ψ = 1F in the theorem. Then

extensions of ψ to E are just automorphisms of E which fix F , in other words,

elements of  the Galois group.
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These results raise the question: when are the roots of  an irreducible polyno-

mial distinct? Exercise 14.20 shows that a polynomial f ∈ F [x] has a repeated

factor in F [x] if  and only if

(f, f ′) ̸= 1 .

If E/F is a splitting field for f , we can regard f as a polynomial in E[x]. Then

the same criterion tells us whether f has a multiple root. We can apply this to

answer our question.

The answer depends on whether the characteristic of F is positive or not,

because in positive characteristic a polynomial can have derivative 0without being

constant. So to begin with, assume that f is irreducible and not constant, and

that chrF = 0. Then

deg f ′ < deg f .

But if (f, f ′) ̸= 1, then

(f, f ′) = f ,

since f is irreducible. It follows that f ′ = 0. This implies that f would have to be

constant. So in characteristic 0, an irreducible polynomial cannot have multiple

roots.

If chrF = p, then it can happen that an irreducible polynomial which is not

constant has a multiple root. However, this does not happen if F is finite.

Theorem 17.8. Let F be a finite field. Then an irreducible polynomial f ∈ F [x] does

not have repeated roots in its splitting field.

Proof. Suppose that chrF = p, and that f has a multiple root in its splitting field.

Then applying the criterion as before, we see that

f ′ = 0 .

Write out f :

f(x) = anx
n + · · ·+ a1x+ a0 ,

for some n > 0, and some a0, a1, . . . , an ∈ F . Therefore

0 = f ′(x) = nanx
n−1 + · · ·+ a1 .
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So for all j > 0,

jaj = 0 ,

which means that if aj ̸= 0 then j ≡ 0 (mod p). Thus f is of  the form

f(x) = akpx
kp + · · ·+ apx

p + a0 .

Now exercise 14.22 tells that since F is finite every element of F is a pth power.

Therefore for every j ≤ k, there exists a bjp ∈ F such that

ajp = bpjp .

This gives us

f(x) = bpkpx
kp + · · ·+ bppx

p + bp0 = (bkx
k + · · ·+ bpx+ b0)

p

(see exercise 14.22). But f is irreducible. So this is impossible. Therefore f does

not have a repeated root.

This discussion is worth summarizing. First we make a definition.

Definition 17.9. A polynomial f ∈ F [x] is separable if  none of  its irreducible

factors has a repeated root.

Theorem 17.10. Let F be a field of  characteristic 0 or a finite field. Then every polynomial

in F [x] is separable.

17.4 The Galois Correspondence

As the examples earlier suggest, if  we have a field extension E/F and an inter-

mediate field K , E ⊃ K ⊃ F , then

Gal(E/K) < Gal(E/F )
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since an automorphism of E which fixes K , fixes F . On the other hand, if

H < Gal(E/F ), then it is easy to see that

Fix(H) := {a ∈ E | α(a) = a, for all α ∈ H} ,

is a subfield of E containing F . For a subgroup H and an intermediate field K ,

there are the obvious relations:

Gal
(
E/Fix(H)

)
⊃ H

Fix
(

Gal(E/K)
)
⊃ K .

Example 17.1 Concluded. Let's continue the discussion of  example 17.1. We

can compute Fix(H) for the subgroups of Gal(E/Q) in diagram (17.2). First,

we need one more simple remark. Suppose E/F is the splitting field of  a sepa-

rable polynomial f ∈ F [x], and K is an intermediate field. Then E is also the

splitting field of f regarded as a polynomial overK . Therefore by corollary 17.7,

|Gal(E/K)| = [E : K].

Now let's begin our calculations. Clearly, for H = Gal(E/Q) itself,

Fix(H) = Q. Next, take H = ⟨α2, α3⟩ ∼= V . We already know that α2 and α3

fix Q(
√
3). So

Fix(H) ⊃ Q(
√
3) ,

and

[E : Fix(H)] ≤ [E : Q(
√
3)] = 4 .

Therefore by the remark,

|Gal
(
E/Fix(H)

)
| = [E : Fix(H)] ≤ 4 .

But

Gal
(
E/Fix(H)

)
⊃ H,

which has order 4. So

4 = |Gal
(
E/Fix(H)

)
| = [E : Fix(H)] = [E : Q(

√
3)] ,
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and

Fix(H) = Q(
√
3) .

We now do the two subgroups of  order 2. The automorphism α3 fixes ζ1. We

know that

|⟨α3⟩| = 2 = [E : Q(ζ1)] ,

and applying the argument used for V , we get that

Fix(⟨α3⟩) = Q(ζ1) .

Similarly, α2 fixes ζ2, and

Fix(⟨α2⟩) = Q(ζ2) .

Lastly, for H = {(1)}, Fix(H) = E. So we have recovered diagram 17.1 from

the lattice 17.2.

This discussion can be extended to all the subgroups of Gal(E/Q), since we

know what the subgroups of D4 are. Here is the subgroup lattice of Gal(E/Q)

(see exercise 10.3). Diagram 17.2 is embedded on the right side.

..Gal(E/Q)

.⟨α5, α8⟩ .⟨α2, α3⟩.⟨α7⟩

.⟨α4⟩.⟨α5⟩ .⟨α8⟩ .⟨α2⟩ .⟨α3⟩

.{(1)}

Figure 17.3: Complete lattice of  subgroups
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We can compute Fix(H) for the other two subgroups of  order 4 in the same

way as we did for V . The subgroup ⟨α5, α8⟩ fixes

ζ1ζ2 =

√
1 +

√
3

√
1−

√
3 =

√
−2 .

Since

[E : Q(
√
−2)] = 4 ,

the discussion above shows that

Fix(⟨α5, α8⟩) = Q(
√
−2) .

The automorphism α7 fixes

(ζ1ζ2)(ζ
2
1 − 1) =

√
−2

√
3 =

√
−6 .

Therefore

Fix(⟨α7⟩) = Q(
√
−6) .

For the remaining subgroups of  order 2, notice that α5 fixes ζ1 + ζ2, and α8

fixes ζ1 − ζ2. Since

⟨α4⟩ = ⟨α2, α3⟩ ∩ ⟨α5, α8⟩ ,

α4 fixes both
√
3 and

√
−2. Therefore, we have

Fix(⟨α5⟩) = Q(ζ1 + ζ2)

Fix(⟨α8⟩) = Q(ζ1 − ζ2)

Fix(⟨α4⟩) = Q(
√
3,
√
−2)

We can put these fields in a diagram which extends diagram 17.1:
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..Q

.Q(
√
−2) .Q(

√
3).Q(

√
−6)

.Q(
√
3,
√
−2).Q(ζ1 + ζ2) .Q(ζ1 − ζ2) .Q(ζ2) .Q(ζ1)

.E

Figure 17.4: Complete lattice of  subfields

This is just the lattice of  subgroups 17.3 turned upside down! △

In our discussion, we have found that for each subgroup H ,

Gal
(
E/Fix(H)

)
= H .

It is easy to see that for any intermediate field,

Fix
(

Gal(E/K)
)
= K .

These two statements imply that there is a one-to-one correspondence between

subgroups and intermediate fields. This is the Galois correspondence. The key to

proving these results in general is the following theorem.

Theorem 17.11. Let E be a field and G a finite group of  automorphisms of E. Set

F = Fix(G). Then

[E : F ] ≤ |G| .

Proof. Set m = |G|. What we shall do is to show that any n elements of E are

linearly dependent over F , if n > m. First list the elements of G:

G = {α1 = 1, α2, . . . , αm} .
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Pick n elements ζ1, . . . , ζn ∈ E, and consider the system of m equations in n

unknowns in E: α1(ζ1) · · · α1(ζn)
...

...
αm(ζ1) · · · αm(ζn)


x1...
xn

 = 0 .

Notice that since α1 = 1, the first equation is just

x1ζ1 + · · ·+ xnζn = 0 .

What we want is a solution of  this equation which lies in F . Now since the

number of  unknowns exceeds the number of  equations, there exists a non-trivial

solution inE. Pick one with as few non-zero entries as possible, say (ξ1, . . . , ξn).

We can re-order the entries so that ξ1 ̸= 0. Since the system is linear,

ξ−1
1 (ξ1, . . . , ξn)

is also a solution, with the minimal number of  non-zero entries. So we can assume

that ξ1 = 1. The system then looks like this:
α1(ζ1) · · · α1(ζn)
α2(ζ1) · · · α2(ζn)

...
...

αm(ζ1) · · · αm(ζn)




1
ξ2
...
ξn

 = 0 .

What we want to do, is to show that this solution lies in F , in other words that it

is invariant under G.

Suppose it is not. Then one of  the non-zero entries is not invariant, say ξ2.

This means that there exists an element αj ∈ G such that

αj(ξ2) ̸= ξ2 .

Apply αj to the system:
αjα1(ζ1) · · · αjα1(ζn)
αjα2(ζ1) · · · αjα2(ζn)

...
...

αjαm(ζ1) · · · αjαm(ζn)




1
αj(ξ2)

...
αj(ξn)

 = 0 .
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Since G is a group,

{αjα1, αjα2, . . . , αjαm} = {α1, α2, . . . , αm} .

So this system is just the original one with the equations permuted. Therefore

(1, αj(ξ2), . . . , αj(ξn)) is also a solution of  our system. It follows that(
1, αj(ξ2), . . . , αj(ξn)

)
−
(
1, ξ2, . . . , ξn

)
=
(
0, αj(ξ2)− ξ2, . . . , αj(ξn)− ξn

)
is a solution. It is non-trivial since the second entry is not 0. But it has one

less non-zero entry than the original solution. This is impossible. Therefore the

original solution is invariant under G. In other words, {ζ1, . . . , ζn} is linearly

dependent over F . This proves that

[E : F ] ≤ |G| .

We can now prove the fundamental theorem about the Galois correspon-

dence. It will allow us to translate questions about polynomials and their roots

into questions about their Galois groups.

Theorem 17.12 (Fundamental Theorem of  Galois Theory). Let E/F be the split-

ting field of  a separable polynomial in F [x]. Then there is a one-to-one correspondence between

subgroups of Gal(E/F ) and intermediate fields between E and F given by

H ↔ Fix(H) and Gal(E/K) ↔ K ,

where H is a subgroup and K an intermediate field, such that

Gal
(
E/Fix(H)

)
= H and Fix

(
Gal(E/K)

)
= K .

Proof. Suppose that E/F is the splitting field of f ∈ F [x], which is separable.

First we show that

Gal
(
E/Fix(H)

)
= H ,
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for any subgroup H . Now by corollary 17.7

|Gal
(
E/Fix(H)

)
| = [E : Fix(H)] ,

since E is the splitting field for f over Fix(H). And by theorem 17.11, we know

that

[E : Fix(H)] ≤ |H| .

Therefore

|Gal
(
E/Fix(H)

)
| ≤ |H| .

On the other hand, as we remarked earlier,

Gal
(
E/Fix(H)

)
⊃ H ,

so that

|Gal
(
E/Fix(H)

)
| ≥ |H| .

Hence |Gal
(
E/Fix(H)

)
| = |H| , and

Gal
(
E/Fix(H)

)
= H .

Next we prove that

Fix
(

Gal(E/K)
)
= K .

Set H := Gal(E/K), and K ′ := Fix(H) ⊃ K . We have just shown that

Gal(E/K ′) = H = Gal(E/K) .

Again, since E is the splitting field for f regarded as a polynomial over K or K ′,

[E : K] = |Gal(E/K)| = |Gal(E/K ′)| = [E : K ′] .

But since K ′ ⊃ K ,

[E : K] = [E : K ′][K ′ : K] ,

and therefore [K ′ : K] = 1 and

Fix
(

Gal(E/K)
)
= K ′ = K .
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Corollary 17.13. Fix
(

Gal(E/F )
)
= F .

Corollary 17.14. Let H be a subgroup of G =: Gal(E/F ), and let K = Fix(H).

Then

[K : F ] = [G : H] .

Proof. By the theorem we have

H = Gal(E/K) ,

and by corollary 17.7

[E : K] = |Gal(E/K)| .

Therefore

[K : F ] = [E : F ]
/
[E : K] = |Gal(E/F )|

/
|Gal(E/K)| = [G : H] .

Here is a diagram with the degrees of  the extensions:

..E

.K

.F

.|H|

.[G : H]

.|G|

Example 17.15. Let E be the splitting field of xp − 2, p prime, as in example

16.10. So E = Q(
p
√
2, ω), where ω is a primitive pth root of 1. Again, an

automorphism α of E is determined by α( p
√
2) and α(ω). Now α(

p
√
2) must

be another pth root of 2 by 17.2. These are p
√
2ωj , where 0 ≤ j < p. And
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α(ω) must be a primitive pth root of 1. So the automorphisms of E are αi,j ,

1 ≤ i < p, 0 ≤ j < p, where

αi,j(ω) = ωi and αi,j(
p√
2) =

p√
2ωj .

To see what the group structure is, let's compute αi,j αk,l :

αi,j
(
αk,l(ω)

)
= αi,j(ω

k) = ωik

αi,j
(
αk,l(

p√
2ω)

)
= αi,j

( p√
2ωl
)
=

p√
2ωjωil =

p√
2ωj+il .

Therefore

αi,jαk,l = αik,j+il .

But this is just the group Fp(p−1) as discussed in exercise 8.23 . So

Gal(E/Q) ∼= Fp(p−1) .

It has the two interesting subgroups

T := {α1,j | 0 ≤ j < p} ∼= Fp

and

K := {αi,0 | 1 ≤ j < p} ∼= F×
p .

Here is the lattice:

..Fp(p−1)

.T

.K

.{1}
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What are the corresponding intermediate fields between E and Q? Well T

fixes Q(ω) since

α1,j(ω) = ω ,

for all j. And since

αi,0(
p
√
2) =

p
√
2 ,

for all i,K fixes Q( p
√
2). So by the fundamental theorem (or a direct calculation),

Gal
(
E/Q(ω)

) ∼= T and Gal
(
E/Q(

p
√
2)
) ∼= K .

The diagram of  field extensions is

..E

.Q(ω)

.Q(
p
√
2)

.Q

We can also compute the Galois groups Gal(Fpr/Fp):

Theorem 17.16. The groups Gal(Fpr/Fp) are cyclic of  order r, generated by the Frobenius

homomorphism.

Proof. Let

ψ : Fpr → Fpr ,

given by

ψ(a) = ap ,
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be the Frobenius homomorphism. As was shown in exercise 14.22, it is an au-

tomorphism of Fpr , and it does fix Fp (see exercise 14.10). So ψ belongs to

Gal(Fpr/Fp). Now

ψs(a) = ap
s

.

Suppose that s | r. We saw on page 299 that Fps is the splitting field of xp
s − x

over Fp . This means that ap
s
= a for all a ∈ Fps , but for a ̸∈ Fps , ap

s ̸= a. In

other words,

Fix⟨ψs⟩ = Fps .

In particular for s = r, we have

|ψ| = r .

But

|Gal(Fpr/Fp)| = [Fpr : Fp] = r .

Therefore

Gal(Fpr/Fp) = ⟨ψ⟩ .

..Fpr

.Fps

.Fp

.{1}

.⟨ψs⟩

.Gal(Fpr/Fp)

The Galois correspondence reflects further properties of  the structure of  the

Galois group.
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Theorem 17.17. (i) LetK/F be the splitting field of  a separable polynomial in F [x],

and let E/K be a field extension. Then Gal(E/K) is a normal subgroup of

Gal(E/F ). (This holds in particular if E/F is also the splitting field of  a sepa-

rable polynomial.)

(ii) Let E/F be the splitting field of  a separable polynomial in F [x], and set G =

Gal(E/F ) . Suppose that H is a normal subgroup of G, and set K = Fix(H).

Then

Gal(K/F ) ∼= G/H .

..E

.K

.F

.H

.G/H

.G

Proof. (i) Suppose that K is the splitting field of f ∈ F [x]. Take α ∈
Gal(E/F ). By 17.2, α permutes the roots of f . Therefore, for any root ζ

of f , α(ζ) ∈ K . Since every element of K is a rational expression in the

roots of f , it follows that α(K) ⊂ K .

Now let β ∈ Gal(E/K) and ζ ∈ K . Thenα−1(ζ) ∈ K . So β
(
α−1(ζ)

)
=

α−1(ζ). Therefore

(αβα−1)(ζ) = α
(
α−1(ζ)

)
= ζ .

Thus, αβα−1 ∈ Gal(E/K), and Gal(E/K) is a normal subgroup of

Gal(E/F ).
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(ii) We first show that any α ∈ G maps K = Fix(H) into itself. Take ζ ∈ K

and β ∈ H . Then since H is normal,

βα = αβ′ ,

for some β′ ∈ H , and

β
(
α(ζ)

)
= α

(
β′(ζ)

)
= α(ζ) .

Therefore α(ζ) ∈ K . Now we can define a homomorphism res : G →
Gal(K/F ) by setting

res(α) = α|K ,

for α ∈ G. Since H = Gal(E/K), H = ker(res).

It remains to show that res is surjective. This means that anyβ ∈ Gal(K/F )

should extend to an automorphism of E. Since E is the splitting field of

a polynomial in F [x], it is the splitting field of  the same polynomial re-

garded as an element of K[x]. Therefore by theorem 17.4, β extends to

an automorphism of E, and res is surjective.

..E .E

.K .K

.F .F

.β

.1

So res induces an isomorphism

G/H
∼=−−−→ Gal(K/F ) .
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In example 17.1, all the subgroups ofD4 of  order 4 are normal. For example

take H = ⟨α2, α3⟩. We calculated that Fix(H) = Q(
√
3). Now

α5(ζ
2
1 ) = ζ22 .

Since

ζ21 = 1 +
√
3 , ζ22 = 1−

√
3 ,

it follows that

α5(
√
3) = −

√
3 .

Thus α5 restricted to Q(
√
3) generates Gal

(
Q(

√
3)/Q

)
. And

⟨α5⟩ ∼= Gal(E/Q)
/
H .

Instead of α5, we could have just as well used α6 or α7 or α8. The calculations

for the other two groups of  order 4 are similar.

There is only one normal subgroup of  order 2:

⟨α4⟩ = Z
(

Gal(E/Q)
)
.

We computed that Fix(⟨α4⟩) = Q(
√
3,
√
−2). Now

α5 :

{√
3 7→ −

√
3√

−2 7→
√
−2

α2 :

{√
3 7→

√
3√

−2 7→ −
√
−2

So α5 and α2 restricted to Q(
√
3,
√
−2) generate its automorphism group. And

indeed,

⟨α5, α2⟩ ∼= Gal(E/Q)
/
⟨α4⟩ .

17.5 Discriminants

In chapter 15, the discriminant of  a polynomial was introduced. In this section

we discuss its connection with Galois theory.
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Let F be a field, f ∈ F [x] a separable polynomial of  degree n, and E/F the

splitting field of f . Denote by ζ1, . . . , ζn , the roots of f in E. Then

∆ :=
∏
i<j

(ζi − ζj)
2 ∈ E

is the discriminant of f . As we saw, it is invariant under all permutations of  the

roots. In particular, it is fixed by Gal(f) ⊂ Sn. Therefore by corollary 17.13,

∆ ∈ F .

Now set

δ =
∏
i<j

(ζi − ζj) ∈ E .

So ∆ = δ2. From exercise 15.11, we see that

α(δ) = (sgnα)δ ,

for α ∈ Sn. This means that δ is fixed by all even permutations, but not nec-

essarily by all elements in Gal(f). It is the invariant which determines whether

Gal(f) ⊂ An or not.

Theorem 17.18. Suppose that f is a separable polynomial of  degree n in F [x]. Then

δ ∈ F if  and only if Gal(f) ⊂ An.

Proof. Suppose that δ ∈ F , and that α ∈ Gal(f), but α ̸∈ An. Then α is an odd

permutation of  the roots and

α(δ) = −δ .

This is impossible since δ ̸= 0. So Gal(f) ⊂ An.

Conversely, if Gal(f) ⊂ An then as we saw above, δ is fixed by Gal(f). So

δ ∈ F by corollary 17.13.

For example, if

f(x) = x3 − x2 − 2x+ 1 ∈ Q[x] ,
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then it is easy to check that f has no root in Q and is therefore irreducible. Its

discriminant is 49. So the Galois group of f is A3. In the next chapter we will

use δ in our analysis of  quartics via Galois theory.

17.6 Exercises

1. The field C is the splitting field of x2 + 1 ∈ R[x]. Compute Gal(C/R).

2. • Suppose that f ∈ R[x]. By the fundamental theorem of  algebra, we can

assume that the splitting field of f is a subfield of C. Show that complex

conjugation defines an element of Gal(f).

3. Calculate the Galois group of x3 + 2x+ 1 ∈ Q[x].

4. Compute the Galois group of x4 − 4x2 + 2 ∈ Q[x].

5. Find the Galois group of x6 − 4x3 + 1 ∈ Q[x] (see Chapter 11.2, 'Groups

of  Small Order').

6. Let h(x) = xp−x−a ∈ Fp, and letE be its splitting field. What is [E : Fp]?
Calculate Gal(h).

7. • Let F be a field of  characteristic different from 2 or 3, and let f ∈ F [x] be

an irreducible cubic. In Chapter 16, p.293, it was shown that the splitting field

E of f is of  degree 3 over F (δ). Prove that

Gal
(
E/F (δ)

) ∼= A3 .

8. • Let f ∈ F [x] be an irreducible polynomial with distinct roots ζ1, . . . , ζn .

Prove that the Galois group of f acts transitively on {ζ1, . . . , ζn} .
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9. Let F be a finite field. For any f ∈ F [x] regard Gal(f) as a group of  permu-

tations of  the roots of f .

a) Suppose that f is irreducible of  degree n. Show that Gal(f) is generated

by an n-cycle.

b) Suppose that f is a product of  distinct irreducible factors of  degrees

n1, . . . , nl. Show that Gal(f) is generated by an element of  cycle type

(n1, . . . , nl).

10. Suppose that E/F is a simple extension. Prove that if

|Gal(E/F )| = [E : F ]

then E is the splitting field of  a separable polynomial in F [x].

11. • Let ω be a primitive nth root of 1. Let θ := ω + ω−1.

a) Show that [Q(ω) : Q(θ)] = 2 ;

b) Identify Gal
(
Q(ω)/Q(θ)

)
as a subgroup of Gal

(
Q(ω)/Q

)
.

12. Let E/F be a field extension, and H < Gal(E/F ). Verify that

Fix(H) := {a ∈ E | α(a) = a, for all α ∈ H} ,

is a subfield of E containing F .

13. Verify the Galois correspondence explicitly for Q(
√
2,
√
3), the splitting field

for x4 − 10x2 + 1 ∈ Q[x], and its Galois group. In other words, write down

the lattice of  subfields ofQ(
√
2,
√
3) and the lattice of  subgroups of  its Galois

group, and show which intermediate field corresponds to which subgroup.

14. Verify the Galois correspondence explicitly for the splitting field of

x3 − 2 ∈ Q[x] and its Galois group.
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15. Compute the Galois group of x4 − 2 ∈ Q[x] and verify the Galois corre-

spondence.

16. Let Q̄ ⊂ C be the field of  algebraic numbers (see exercise 16.8), and let

G = Gal(Q̄/Q). For any f ∈ Q[x], show that there is a surjective homo-

morphism

G→ Gal(f) .

17. Let f be a separable polynomial in F [x], and let E be its splitting field. Sup-

pose that H < Gal(f), with K = Fix(H). Prove that for α ∈ Gal(f), the

field

αK = Fix(αHα−1) .

If K = F (η), for some η ∈ E, show that

F (αη) = Fix(αHα−1) .





18
Quartics

18.1 Galois Groups of  Quartics

In this chapter we look at what Galois theory says about quartic equations. First

let's recall what we know about cubics. According to exercise 17.8 the Galois

group of  an irreducible polynomial acts transitively on its roots. The only transi-

tive subgroups of S3 are A3 and S3 itself. So these are the only possible Galois

groups if  the cubic f is irreducible. (What if f is reducible?) Furthermore, its

Galois group is A3 if  and only if  the discriminant ∆ is a square in F .

If

f(x) = x3 + a2x
2 + a1x+ a0 , a2, a1, a0 ∈ F ,

and chrF ̸= 3, then we saw in exercise 16.10 and 16.11 that the substitution

x = y − a2/3 transforms f into a cubic of  the form

g(y) = y3 + b1 y + b0 ,

where

b1 = a1 −
a22
3
, b0 = a0 −

a1a2
3

+
2a32
27

,

and the discriminant is

∆ = −4b31 − 27b20 .

In terms of a2, a1, a0, we have

∆ = −27a20 − 4a21 + 18a0a1a2 + a21a
2
2 − 4a0a

3
2 . (18.1)

341
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Now suppose that f ∈ F [x] is an irreducible quartic with distinct roots

ζ1, ζ2, ζ3, ζ4 in its splitting fieldE. Then Gal(f), which we will denote byG, can

be identified with a subgroup of S4, the group of  permutations of  the roots. We

saw in exercise 8.17 that the transitive subgroups of S4 are

(i) S4

(ii) A4

(iii) D4 = {(1 2 3 4), (1 3)(2 4), (1 4 3 2), (1), (2 4), (1 3), (1 2)(3 4),
(1 4)(2 3)} and its 3 conjugates

(iv) V = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1)}

(v) C4 := {(1 2 3 4), (1 3)(2 4), (1 4 3 2), (1)} and its 3 conjugates

So these are the possibilities for the Galois group of f . We need invariants which

will help us decide which one of  these it is.

Recall that a composition series for S4 is given by

S4 ◃ A4 ◃ V ◃ Z/2Z ◃ {1}(
see (12.1)

)
. We know that δ or ∆ will tell us whether G is a subgroup of A4.

So it is natural to look for an invariant associated with V next.

Let ζ1, ζ2, ζ3, ζ4 ∈ E be the 4 roots of f and set

η1 = (ζ1 + ζ2)(ζ3 + ζ4)

η2 = (ζ1 + ζ3)(ζ2 + ζ4)

η3 = (ζ1 + ζ4)(ζ2 + ζ3) .

It is easy to see that

(i) η1, η2, and η3 are all invariant under V ;

(ii) no element of S4 outside V fixes these 3 quantities ;
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(iii) S4 permutes η1, η2, and η3 .

To verify (ii) you need only check what a 2-cycle, 3-cycle and 4-cycle do. To verify

(iii) it's enough to note that (1 2) and (1 2 3 4) permute η1, η2, and η3 . Now let

r(x) = (x− η1)(x− η2)(x− η3) .

Then since the coefficients of r are symmetric in η1, η2, and η3, they are sym-

metric in ζ1, ζ2, ζ3, ζ4. Therefore they must be invariant under G. This means

that they lie in F by corollary 17.13. The polynomial r ∈ F [x] is called the cubic

resolvent of f . The splitting field of r is

K := F (η1, η2, η3) .

So K ⊂ Fix
(
V ∩G

)
. Since no element of S4 outside V fixes these 3 elements,

we know that

Gal(E/K) = V ∩G ,

and therefore

K = Fix
(
V ∩G

)
.

..E

.K

.F

.G ∩ V

.G/G ∩ V

As V is a normal subgroup of S4, V ∩ G is normal in G. So by theorem

17.17,

G/
(
V ∩G

) ∼= Gal(K/F ) . (18.2)
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Also notice that the discriminant of r is the same as the discriminant of f .

We have namely,

η1 − η2 = ζ1ζ3 + ζ2ζ4 − ζ1ζ2 − ζ3ζ4 = −(ζ1 − ζ4)(ζ2 − ζ3)

Similarly,

η2 − η3 = −(ζ1 − ζ2)(ζ3 − ζ4)

η1 − η3 = −(ζ1 − ζ3)(ζ2 − ζ4) .

Therefore

δ =
∏
i<j

(ζi − ζj) = −
∏
i<j

(ηi − ηj) .

and the discriminants of f and r are the same.

Let's use what we know about cubics to analyze quartics. Suppose first that

r is irreducible. Then there are two possibilities: either δ ∈ F and [K : F ] = 3

or δ ̸∈ F and [K : F ] = 6. In the first case,

3 | [E : F ] = |G|

and G ⊂ A4. Looking at the list of  transitive subgroups of S4, we see that we

must have G = A4. Similarly, in the second case,

6 | [E : F ] = |G|

and G ̸⊂ A4. Therefore G = S4.

Next, suppose that r is reducible. The first possibility is that r splits into

linear factors in F , in other words, η1, η2, η3 ∈ F and K = F . By (18.2), this

is equivalent to saying that that G ⊂ V . The only transitive subgroup of V is V

itself. So G = V .

The second possibility is that r splits in F into an irreducible quadratic and

a linear factor. So δ ̸∈ F and [K : F ] = 2. Since [E : F ] ̸= 2, [E : K] ̸= 1 and

|G ∩ V | = 2 or 4 .
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In the first case, [E : F ] = 4 and G ∼= C4. In the second case, [E : F ] = 8 and

Gal(f) ∼= D4. Summarizing,

δ r Gal(r) Gal(f)

δ ̸∈ F r irreducible S3 S4

δ ∈ F r irreducible A3 A4

δ ∈ F r reducible {1} V
δ ̸∈ F r reducible Z/2Z D4 or C4

In practice you compute the discriminant of f and then check whether it has

a square root in F . So we just need a formula for the discriminant of f . Since

this is the same as the discriminant of r, we can use our formula (18.1) for the

discriminant of  a cubic, if  we know what the coefficients of r are. By applying

a Tschirnhausen transformation to f (see exercise 16.10) we can arrange that it

has the form

f(x) = x4 + b2x
2 + b1x+ b0 .

Then by exercise 15.6

r(x) = x3 − 2b2x
2 + (b22 − 4b0)x+ b21 .

With software to do the calculations for you, it is easy to decide what the Galois

group of  a quartic is, apart from the ambiguity in the last case in the table.

18.2 The Geometry of  the Cubic Resolvent

This section requires some understanding of  the geometry of  conics in C2.

Suppose we are given a quartic

f(x) = x4 + b2x
2 + b1x+ b0 ,
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with b2, b1, b0 ∈ C. Let's introduce a new variable

y := x2 .

Substituting into the quartic gives us a quadratic polynomial in 2 variables,

q0(x, y) := y2 + b2y + b1x+ b0 .

If  we set

q1(x, y) := x2 − y ,

then solving f = 0 is equivalent to solving the pair of  equations

q0 = 0

q1 = 0

simultaneously. We can interpret this geometrically. Each of  these equations

defines a conic in C2. They intersect in 4 points. If ζ1, ζ2, ζ3, ζ4 ∈ C are the

roots of f , then the points of  intersection are

Q1 = (ζ1, ζ
2
1 ) , Q2 = (ζ2, ζ

2
2 ) ,

Q3 = (ζ3, ζ
2
3 ) , Q4 = (ζ4, ζ

2
4 ) .

The two conics determine a pencil of  conics, given by

qt := q0 + tq1 = 0 , t ∈ C ,

which all pass through the 4 points Q1 , Q2 , Q3 , Q4 , the basis points of  the

pencil.

To any quadratic in two variables one can associate a symmetric 3×3 matrix.

If

q(x, y) = ax2 + 2bxy + 2cx+ dy2 + 2ey + f ,

set

Aq =

a b c
b d e
c e f

 .
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Then detAq = 0 if  and only if q is degenerate, that is, splits into a product of

linear factors. Equivalently, the conic q = 0 is a pair of  lines.

For what values of t is our pencil of  conics degenerate? Well,

detAqt =

∣∣∣∣∣∣
t 0 b1/2
0 1 (b2 − t)/2

b1/2 (b2 − t)/2 b0

∣∣∣∣∣∣
=

(
− t3 + 2b2t

2 + (−b22 + 4b0)t− b21
)
/4

= −r(t)/4 .

So the pencil degenerates when t = ηi, i = 1, 2, 3. Each of  these degenerate

conics is a pair of  lines passing through the 4 points Q1, Q2, Q3, Q4. It is not

hard to identify exactly which lines belong to each degenerate value.

The line through Q1 and Q2 is given by

y − ζ21
x− ζ1

=
ζ22 − ζ21
ζ2 − ζ1

= ζ1 + ζ2 ,

or equivalently, by

l12(x, y) := y − (ζ1 + ζ2)x+ ζ1ζ2 = 0 .

Similarly, the line through Q3 and Q4 has equation

l34(x, y) := y − (ζ3 + ζ4)x+ ζ3ζ4 = 0 .

The product of  the two linear forms l12 and l34 is the degenerate quadratic form

l12l34(x, y) =
(
y − (ζ1 + ζ2)x+ ζ1ζ2

)(
y − (ζ3 + ζ4)x+ ζ3ζ4

)
= y2 + (ζ1ζ2 + ζ3ζ4)y + (ζ1 + ζ2)(ζ3 + ζ4)x

2

−
(
ζ1ζ2(ζ3 + ζ4) + ζ3ζ4(ζ1 + ζ2)

)
x+ ζ1ζ2ζ3ζ4

= y2 + (b2 − η1)y + η1x
2 + b1x+ b0

= qη1(x, y) .
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Similarly,

l13l24 = qη2

l14l23 = qη3 .

Here is a diagram showing the configuration of  the 3 degenerate conics.

Q1

2

3

4

Q

Q

Q

l   l12 34

l    l13 24

l    l14 23

Figure 18.1: The three degenerate conics

The picture below is a plot of  the pencil of  real conics for the polynomial

x4 − 10x2 + 1. Its roots are all real. The 3 degenerate conics are the 3 pairs of

dashed lines. You can also see the 4 basis points Q1, Q2, Q3, and Q4.
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Figure 18.2: Pencil of  real conics

18.3 Software

This picture of  the pencil of  conics was drawn by a package called ``Quartics''. It

also can compute the Galois group of  a quartic. First you must load the package:

In[1]:= << Quartics.m;

A function CubicResolvent is defined which computes the cubic resolvent of

a quartic, and then applies the criteria in the table above to determine the Galois

group (though it cannot distinguish between D4 and C4). For example, let

In[2]:= f = x^4 - 10x^2 + 1
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Out[2]= 1− 10x2 + x4

In[3]:= CubicResolvent[f]

Out[3]= The cubic resolvent is 96x− 20x2 + x3

Its discriminant is 147456

The square root of the discriminant is
384

The cubic resolvent factors.

So the Galois Group is V4.

If  the quartic has real roots, the function QuarticPlot will draw the asso-

ciated pencil of  conics.

In[4]:= QuarticPlot[f]

18.4 Exercises

1. What are the possible Galois groups of  a reducible cubic?

2. What are the possible Galois groups of  a reducible quartic?

3. Compute the Galois groups of  the following rational polynomials:

a) x4 + x2 + x+ 1 ,

b) x4 + 5x+ 5 ,

c) x4 + 8x+ 12 .
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4. Suppose that g(x) = x4 + ax2 + b ∈ F [x] is irreducible. What are the

possible Galois groups of g? Give an example of  a polynomial g for each.

5. Let F be a subfield of R, and h an irreducible quartic in F [x]. Suppose that

h has exactly 2 real roots. Prove that Gal(h) is either S4 or D4.

6. Let f(x) = x4 − x2 + 4 ∈ Q[x].

a) Show that f splits into the product of  two quadratic polynomials over

Q(
√
5). Suggestion: f(x) = (x2 + 2)2 − 5x2

b) Find the splitting field E of f .

c) What is the Galois group of f?

d) Verify the Galois correspondence for Gal(f) and E/Q.

7. Let f(x) = x4 + ax3 + bx2 + ax + 1 ∈ Q[x] be a reciprocal quartic (see

exercise 15.9). Assume that f is irreducible.

a) Find the quadratic g ∈ Q[x] such that

1

x2
f(x) = g

(
x+

1

x

)
.

b) Let E/Q be the splitting field of f . Show that g splits in E.

c) What are the possible Galois groups of f? Give an example of  a quartic

f for each.

8. Let

ζ =
√
2
√
3(1 +

√
2)(

√
2 +

√
3) .

Verify that ζ is a root of 36− 144x+108x2− 24x3+x4 . (You may find the

Mathematica functions Expand and Simplify useful). Show that Q(
√
2,
√
3)

is a splitting field for the polynomial over Q. What are its other three roots?
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9. Let η be the positive square root of ζ . So η satisfies the equation

36− 144x2 + 108x4 − 24x6 + x8 = 0 .

Determine the other seven roots and show that the polynomial splits in Q(η).

What is its Galois group?

10. • Compute the Galois groups of  randomly chosen irreducible quartics.



19
The General Equation of the nth

Degree

19.1 Examples

Suppose that f ∈ F [x] is an irreducible polynomial of  degree n with distinct

roots in its splitting field. If f is a 'generic' polynomial, or one chosen at random,

then we would not expect there to be any algebraic relations among its roots,

apart from those given by the elementary symmetric polynomials. So the group

of  symmetries of  the roots should be the full permutation group of  degree n. In

exercise 18.10, you saw that the Galois group of  an irreducible quartic, chosen

at random, always seems to be S4. In fact you probably noticed that it is hard to

come up with a quartic whose Galois group is not S4. If  you had a suitable test

you would find the same for n > 4. In this chapter we want to give a family of

examples of  degree p, p prime, with Galois group Sp, and prove that indeed the

general polynomial of  degree n has Galois group Sn. We shall also give a proof

of  the fundamental theorem of  algebra using Galois theory.

Theorem 19.1. Let f ∈ Q[x] be irreducible of  degree p. Suppose that f has precisely 2

non-real roots. Then Gal(f) ∼= Sp.

Proof. By the fundamental theorem of  algebra, f splits in C. So we can assume

that the splitting field of f , E ⊂ C. Let ζ1, . . . , ζp be the roots of f in E.

Suppose that ζ1 and ζ2 are the two non-real roots. Since the coefficients of f are

real, complex conjugation permutes its roots, and therefore defines an element of

353
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Gal(f) (see exercise 17.2). It fixes all the real roots and interchanges the two non-

real roots. Thus conjugation corresponds to the transposition (1 2) ∈ Gal(f).

Now Q(ζ1) ⊂ E, so that

[Q(ζ1) : Q]
∣∣ [E : Q] = |Gal(f)| .

But

[Q(ζ1) : Q] = deg f = p .

Therefore

p
∣∣ |Gal(f)| .

It follows then from the first Sylow theorem (see exercise 11.9) there is an element

of  order p in Gal(f). But by exercise 6.10, a transposition and an element of  order

p generate Sp. Therefore Gal(f) ∼= Sp.

Instead of  using the first Sylow theorem you can also use exercise 8.18 since

Gal(f) is transitive by exercise 17.8.

Examples 19.2. (i) A cubic with ∆ < 0 has only one real root (see exercise

16.12) and therefore has Galois group S3.

(ii) Let

f(x) = x5 − 6x+ 2 ∈ Q[x] .

By the Eisenstein criterion (theorem 14.13), f is irreducible. And

f ′(x) = 5x4 − 6 ,

which has exactly 2 real roots. Thus f has at most 3 real roots. Checking

a few values of f shows that it does in fact have 3 real roots, and therefore

2 non-real roots. So

Gal(f) ∼= S5 .

Remark 19.3. Suppose that f is a monic polynomial with integer coefficients, and

suppose that the reduction of f modulo a prime p, f̄ ∈ Fp[x], is a product of
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irreducible factors of  degrees n1, . . . , nl. Then Gal(f) contains an permutation

of  cycle type (n1, . . . , nl) (see [11], §4.16, and cf. exercise 17.9). This can often

help to determine the Galois group of  a polynomial over Q. Here is a simple

example.

Example 19.4. Let f(x) = x4+2x3+x+3 ∈ Q[x]. Modulo 2, f̄ is irreducible.

Therefore Gal(f) contains a 4-cycle. Modulo 3, f̄ factors as

f̄(x) = x(x3 + 2x+ 1) .

So Gal(f) contains a 3-cycle. Hence

Gal(f) ∼= S4 .

19.2 Symmetric Functions

In this section, we are going to prove that in a sense, if  there are no non-trivial

algebraic relations among the roots of  a polynomial, then its Galois group is

indeed Sn.

Set M := F (x1, . . . , xn), the field of  rational functions in the variables

x1, . . . , xn, and let

f(x) := (x− x1) · · · (x− xn) ∈M [x] .

Then

f(x) = xn − s1xn−1 + · · ·+ (−1)nsn ,

so that its coefficients actually lie in F (s1, . . . , sn) ⊂ M . Clearly there are no

algebraic relations among the roots of f except those given by the elementary

symmetric polynomials. Furthermore, f is separable and M is the splitting field

of f over F (s1, . . . , sn). Now the full symmetric group acts on M : for α ∈ Sn

and g ∈M ,

(αg)(x1, . . . , xn) := g(xα(1), . . . , xα(n)) .
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AndL := Fix(Sn) is the field of  symmetric functions, which containsF (s1, . . . , sn).

So we have the diagram

..M

.L

.F (s1, . . . , sn)

But then corollary 17.13 tells us that

L = Fix(Sn) ⊂ Fix
(

Gal
(
M/F (s1, . . . , sn)

))
= F (s1, . . . , sn) .

Therefore

L = F (s1, . . . , sn) ,

in other word, F (s1, . . . , sn) is the field of  symmetric functions. Furthermore,

Gal(f) = Sn .

As we saw in corollary 15.4, s1, . . . , sn are algebraically independent. Tradition-

ally an equation like

f = 0

where the coefficients are algebraically independent, is called a general equation

of  the nth degree.

Remark 19.5. (i) As in exercise 15.11, let

δ(x1, . . . , xn) =
∏
i<j

(xi − xj) .

Then L(δ) ⊂M is invariant under An, and in fact,

Gal
(
M/L(δ)

)
= An .
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(ii) Suppose n = 4. Set

y1 = (x1 + x2)(x3 + x4)

y2 = (x1 + x3)(x2 + x4)

y3 = (x1 + x4)(x2 + x3) ,

Then it is not hard to see that

Gal
(
M/L(y1, y2, y3)

)
= V .

So we have the chain of  field extensions with the corresponding subgroups

of S4:

..M

.L(y1, y2, y3)

.L(δ)

.L

.{1}

.V

.A4

.S4

19.3 The Fundamental Theorem of  Algebra

There are many proofs of  the fundamental theorem of  algebra, some algebraic,

some analytic, and some topological. In this section we shall give a proof  which

uses Galois theory.

Theorem 19.6. Any polynomial f ∈ C[x] splits in C.
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Proof. First of  all, notice that we can assume that f has real coefficients. If  not,

then consider ff̄ ∈ R[x]. If ζ ∈ C is a root of ff̄ , then it must be a root of f or

of f̄ . In the latter case, ζ̄ is a root of f . So if ff̄ splits in C, then f does as well.

Thus we can always replace f by ff̄ . We can also assume that deg f > 1.

Now letE be the splitting field of f over R. By exercise 16.9, [E : R] is even.

So Gal(f) has a non-trivial Sylow 2-subgroup, H1. Let K1 = Fix(H1). Then

[K1 : R] is odd. Therefore by exercise 16.9 again, K1 = R and Gal(f) = H1.

In other words, Gal(f) is a 2-group.

..E

.K1

.R

.H1

As we saw in exercise 11.8, a 2-group has a subgroup of  index 2. So let H2

be of  index 2 in Gal(f). The intermediate field K2 = Fix(H2) is a quadratic

extension of R. But according to exercise 16.1 the only quadratic extension of R
is C. Therefore K2 = C.

..E

.K3

.K2 = C

.R

.H3

.2

.2

.H2

.H1
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Suppose that |Gal(f)| > 2. Then H2 is a 2-group, and it too has a subgroup

H3 of  index 2. So K3 = Fix(H3) is a quadratic extension of C. But there are no

quadratic extensions of C. Therefore |Gal(f)| = 2 and E = C. In other words,

f splits in C.

19.4 Exercises

1. Let

h(x) = (x2 + 12)(x+ 4)(x+ 2)x(x− 2)(x− 4)− 2 ∈ Q[x] .

a) Show that h is irreducible. (Suggestion: use Eisenstein's criterion)

b) Plot h in the interval [−5, 5].

c) Prove that h has exactly 2 non-real roots and therefore Gal(h) ∼= S7.

2. Generalize the construction above to other primes p. You may find it useful

to plot examples to get a feel for what is going on.

3. Show that in 19.5(i)

Gal
(
M/L(δ)

)
= An .

4. Prove that in 19.5(ii)

Gal
(
M/L(y1, y2, y3)

)
= V .

5. Let G be a group of  order n. Show that there exists a subfield K ⊂M

= F (x1, . . . , xn) such that

G ∼= Gal(M/K) .

6. Let F be an infinite field.
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a) Let n = 2. Show that for some a ∈ F ,

M = L(x1 + ax2) .

Suggestion: First note that there are only finitely many intermediate

fields between M and L. Conclude that for some a, b ∈ F , a ̸= b,

L(x1 + ax2) = L(x1 + bx2) .

b) Prove that for any n, there exists a rational function θ ∈M such that

M = L(θ) ,

in particular, that M/L is a simple extension.

c) Let E/F be a finite extension. Prove that it is a simple extension.



20
Solution by Radicals

In the 16th century, formulas which express the solutions of  a cubic equation and

a quartic equation in terms of  radicals were discovered. For two hundred years,

mathematicians wondered whether the same could be done for quintics. Around

1800 it was shown that this is impossible. In this chapter, we shall first see how

to write the solutions of  a cubic in terms of  radicals. Then we shall prove that for

an equation of  degree 5 or greater, no such formulas exist in general. All fields

are assumed to be of  characteristic 0.

20.1 Formulas for a Cubic

There are several ways to derive the formulas for the roots of  a cubic. We shall

use Lagrange resolvents because they will come up again when we discuss equations

with cyclic Galois groups.

SupposeF is a field and f ∈ F [x] an irreducible cubic. According to exercise

16.10, we can assume that it is of  the form

f(x) = x3 + a1x+ a0 .

If a1 = 0, then the roots are just the cube roots of −a0. So we will also assume

that a1 ̸= 0. We saw in Chapter 16, p.293, that the splitting field E of f is of

degree 3 over F (δ). We would like to express the roots of f in terms of  the cube

roots of  an element of F (δ). A Lagrange resolvent does this, at least up to a cube

root of  unity.

361
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Let

ω = e2πi/3 = −1

2
+

√
−3

2
,

and let ζ1, ζ2 and ζ3 be the roots of f . Then the Lagrange resolvents are

ξ1 := ζ1 + ζ2 + ζ3 = 0

ξ2 := ζ1 + ωζ2 + ω2ζ3 (20.1)

ξ3 := ζ1 + ω2ζ2 + ωζ3 .

Then

ξ32 = ζ31 + ζ32 + ζ33

+ 3ω(ζ21ζ2 + ζ22ζ3 + ζ23ζ1)

+ 3ω2(ζ1ζ
2
2 + ζ2ζ

2
3 + ζ3ζ

2
1 )

+ 6ζ1ζ2ζ3 .

By exchanging ω for ω2, we get a similar expression for ξ33 . Now

δ = (ζ1 − ζ2)(ζ2 − ζ3)(ζ1 − ζ3)

= (ζ21ζ2 + ζ22ζ3 + ζ23ζ1)− (ζ1ζ
2
2 + ζ2ζ

2
3 + ζ3ζ

2
1 ) .

Since we can write

ξ32 = ζ31 + ζ32 + ζ33

+
3

2
(ω + ω2)

[
(ζ21ζ2 + ζ22ζ3 + ζ23ζ1) + (ζ1ζ

2
2 + ζ2ζ

2
3 + ζ3ζ

2
1 )
]

+
3

2
(ω − ω2)

[
(ζ21ζ2 + ζ22ζ3 + ζ23ζ1)− (ζ1ζ

2
2 + ζ2ζ

2
3 + ζ3ζ

2
1 )
]
+ 6ζ1ζ2ζ3

and

ω + ω2 = −1 , ω − ω2 =
√
−3 ,

we have

ξ32 =
∑
j

ζ3j −
3

2

∑
j ̸=k

ζ2j ζk + 6ζ1ζ2ζ3 +
3

2

√
−3 δ . (20.2)
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The first three terms above are symmetric in ζ1, ζ2 and ζ3. We can therefore

express them in terms of  the elementary symmetric polynomials, whose values

are −a2 = 0, a1 and −a0 :∑
j

ζ3j = −a32 + 3a1a2 − 3a0 = − 3a0∑
j ̸=k

ζ2j ζk = −a1a2 + 3a0 = 3a0 .

Substituting into (20.2) gives

ξ32 = −27

2
a0 +

3

2

√
−3 δ .

Similarly,

ξ33 = −27

2
a0 −

3

2

√
−3 δ .

So we can take cube roots of  the right-hand sides of  these two equations to obtain

ξ2 and ξ3.

ξ2 =
3
√
−27

2
a0 +

3

2

√
−3 δ (20.3)

ξ3 =
3
√
−27

2
a0 −

3

2

√
−3 δ

There are three choices for each cube root. But we must keep in mind that

ξ2ξ3 = (ζ21 + ζ22 + ζ23 ) + (ω + ω2)(ζ1ζ2 + ζ2ζ3 + ζ1ζ3)

= (ζ21 + ζ22 + ζ23 )− (ζ1ζ2 + ζ2ζ3 + ζ1ζ3)

= −3a1 ,

which we have assumed not to be 0. So each value of ξ2 determines a value of ξ3.

Lastly, we can recover the roots of f by inverting the system of  linear equations
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(20.1) :

ζ1 =
1

3
(ξ2 + ξ3)

ζ2 =
1

3
(ω2ξ2 + ωξ3) (20.4)

ζ3 =
1

3
(ωξ2 + ω2ξ3) .

Choosing a different cube root in (20.3) means multiplying ξ2 by ω (or ω2) and

ξ3 by ω2 (or ω). This does not change {ζ1, ζ2, ζ3}. These are Cardano's formulas

for the roots of  a cubic. Notice that if ω ∈ F , then

E = F (δ, ξ2) = F (δ, ξ3) .

As was pointed out in exercise 17.7,

Gal
(
E/F (δ)

) ∼= A3 ,

which is cyclic of  order 3.

Example 20.1. Take f(x) = x3 + x− 2. Then by exercise 16.11, δ = 4
√
−7,

which gives

ξ32 = 27 + 6
√
21 and ξ33 = 27− 6

√
21 .

Taking the real cube roots, we have

ξ2 =
3

√
27 + 6

√
21 and ξ3 =

3

√
27− 6

√
21 .

Formulas (20.4) then give us the roots of f :

3

√
27 + 6

√
21 +

3

√
27− 6

√
21 ,

ω2 3

√
27 + 6

√
21 + ω

3

√
27− 6

√
21 ,

ω
3

√
27 + 6

√
21 + ω2 3

√
27− 6

√
21 .

But obviously 1 is a root of f , and since

x3 + x− 2 = (x− 1)(x2 + x+ 2) ,
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the other two roots are just

−1

2
±

√
−7

2
.

This makes it clear that Cardano's formulas can easily produce expressions for

the roots which are rather obscure.

20.2 Cyclic Extensions

In example 17.15 we calculated the Galois group of xp− 2 over Q. The result is

that after adjoining the pth roots of 1 to Q, the Galois group is cyclic of  order p.

This is typical.

Theorem 20.2. Let F be a field of  characteristic 0 and let f(x) = xn − a ∈ F [x].

Suppose that F contains the nth roots of 1. Then Gal(f) is cyclic and its order divides n.

Proof. Let E = F [x]/(xn − a). If ζ ∈ E is a root of f , then so is ωζ , if ω ∈ F

is an nth root of 1. Thus E is the splitting field of f over F .

Ifα ∈ Gal(E/F ), thenα is determined byα(ζ). Furthermore,α(ζ)must be

of  the form ωζ for some nth root of 1, ω. Therefore let us define αω ∈ Gal(f)

by

αω(ζ) = ωζ ,

where ω is an nth root of 1. This defines a mapping

µn → Gal(f) ,

(see example 6.8(iii)), which we already know is surjective. It is a homomorphism:

suppose that ω1 and ω2 are nth roots of 1. Then

αω1ω2(ζ) = (ω1ω2)ζ = αω1

(
αω2(ζ)

)
.

So

αω1ω2 = αω1αω2 .

Therefore Gal(f) is a quotient of  a cyclic group of  order n. So it too is cyclic,

and its order divides n.
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An extension E/F , where E is the splitting field of  a separable polynomial

in F [x], is called cyclic if Gal(E/F ) is cyclic. If E/F is the splitting field of  an

irreducible cubic as in the previous section, then E/F (δ) is a cyclic extension.

We showed there thatE = F (δ, ξ2) with ξ32 ∈ F (δ). In general if E/F is cyclic,

then E = F ( n
√
a) for some a ∈ F . This can be proved as above by finding a

Lagrange resolvent ξ with ξn ∈ F and E = F (ξ).

Definition 20.3. Suppose that E/F is a cyclic extension, and α is a generator

of  its Galois group. Assume that F contains n distinct nth roots of 1. Then for

ζ ∈ E and ω ∈ F , an nth root of 1, we define the Lagrange resolvent

(ω, ζ) := ζ + ωα(ζ) + · · ·+ ωn−1αn−1(ζ) . (20.5)

Equations (20.1) give Lagrange resolvents for n = 3.

Theorem 20.4. Let F be a field of  characteristic prime to n, containing the nth roots of 1.

Suppose that E/F is a cyclic extension. Then

E = F (
n
√
a) ,

for some a ∈ F .

Proof. Let ω be a primitive nth root of 1. First notice that

α
(
(ω, ζ)

)
= α(ζ) + ωα2(ζ) + · · ·+ ωn−1ζ

= ω−1(ω, ζ) .

This implies that if (ω, ζ) ̸= 0 and 1 ≤ i < n then

α
(
(ω, ζ)i

)
= ω−i(ω, ζ)i ̸= (ω, ζ)i ,

and therefore

(ω, ζ)i ̸∈ F .

However,

α
(
(ω, ζ)n

)
= (ω, ζ)n ,
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so that

(ω, ζ)n ∈ F .

Thus if (ω, ζ) ̸= 0,

E = F
(
(ω, ζ)

)
,

and we can take

a = (ω, ζ)n .

It remains to show that ζ can be found with (ω, ζ) ̸= 0.

Now for each i, 0 ≤ i < n, we can replace ω by ωi in (20.5). This gives us a

system of n equations:


(1, ζ)
(ω, ζ)

...
(ωn−1, ζ)

 =


1 1 . . . 1
1 ω . . . ωn−1

...
...

...
1 ωn−1 . . . (ωn−1)n−1




ζ
α(ζ)

...
αn−1(ζ)


It is easy to see that∣∣∣∣∣∣∣∣∣

1 1 . . . 1
1 ω . . . ωn−1

...
...

...
1 ωn−1 . . . (ωn−1)n−1

∣∣∣∣∣∣∣∣∣ =
∏
j>k

(ωj − ωk) ̸= 0 .

Therefore the matrix is invertible and we can write
ζ

α(ζ)
...

αn−1(ζ)

 =


1 1 . . . 1
1 ω . . . ωn−1

...
...

...
1 ωn−1 . . . (ωn−1)n−1


−1

(1, ζ)
(ω, ζ)

...
(ωn−1, ζ)


It follows that if ζ ̸= 0, then for some i, (ωi, ζ) ̸= 0. Replacing ω by ωi if

necessary, we then have what we want.
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20.3 Solution by Radicals in Higher Degrees

The formulas (20.3) and (20.4) express the solutions of  the cubic in terms of  the

square roots of ∆ ∈ F and the cube roots of −(27/2)a0 + (3/2)
√
−3

√
∆ ∈

F (
√
∆) . Can one find similar formulas for equations of  higher degree? In other

words, can one build up an expression for the solutions by starting with an mth

root of  an element a ∈ F , then taking an nth root of  an element b ∈ F ( m
√
a),

and so on? In terms of  the splitting field of  the equation, this means that it should

be built up as a sequence of  'radical' extensions:

..E

.F ( m
√
a)( n

√
b)

.F ( m
√
a)

.F

Example 20.5. Let f(x) = x6 − 4x3 + 1 ∈ Q[x]. First note that g(y) =

y2 − 4y + 1 has roots 2 ±
√
3. Therefore the roots of f are the cube roots of

2 +
√
3 and 2−

√
3. Now

2−
√
3 =

1

2 +
√
3

and
3
√
2−

√
3 =

1
3
√
2 +

√
3

(cf. exercise 15.9). Therefore the splitting field of f is Q
( 3√

2 +
√
3, ω
)

, where

ω is a primitive cube root of 1. This can be built up as
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..Q
(

3
√

2 +
√
3, ω
)

.Q
(

3
√

2 +
√
3
)

.Q(
√
3)

.Q

As mentioned at the beginning of  this chapter, this can be done in general for

quartics, but not for equations of  degree greater than 4. More precisely, we shall

prove that for the general equation of  degree greater than 4, that is one whose

Galois group is Sn, no such formulas can exist. In fact, it can be shown that if

such formulas do exist for a specific equation of  degree p, where p ≥ 5 is prime,

then its Galois group must be a subgroup of  the Frobenius group F(p−1)p. Since

the Frobenius group is a rather small subgroup of Sp, this result suggests that

the general equation of  degree 5, say, is very far from being solvable by radicals.

First we need to know that we can assume that the base field F contains all

the roots of  unity that we need.

Lemma 20.6. Suppose f ∈ F [x] and letE be the splitting field of f . Let ω be a primitive

mth root of 1. Then

Gal
(
E(ω)/F (ω)

) ∼= Gal
(
E/E ∩ F (ω)

)
and

Gal
(
E/E ∩ F (ω)

)
▹ Gal(E/F ) .

Proof. Here is a picture of  the field extensions:
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..E(ω)

.E

.F (ω)

.E ∩ F (ω)

.F

Since E/F is the splitting field of f we have a surjective homomorphism

res : Gal
(
E(ω)/F

)
→ Gal(E/F )

by theorem 17.17. It is defined by restricting an element of Gal
(
E(ω)/F

)
toE,

and thus its kernel consists of  automorphisms whose restriction to E is trivial.

Now Gal
(
E(ω)/F (ω)

)
⊂ Gal

(
E(ω)/F

)
and the composed mapping

Gal
(
E(ω)/F (ω)

)
↩→ Gal

(
E(ω)/F

)
→ Gal(E/F ) ,

is injective: an automorphism of E(ω) which is trivial on F (ω) and on E, is

trivial. Furthermore, the image H lies in Gal
(
E/E ∩ F (ω)

)
. We want to see

that it is all of Gal
(
E/E ∩ F (ω)

)
. Suppose ζ ∈ E is fixed by H . If  we regard

ζ as an element of E(ω) this means that it is fixed by Gal
(
E(ω)/F (ω)

)
, and

therefore lies in F (ω). So ζ ∈ E ∩ F (ω) and

FixH = E ∩ F (ω) .

It follows that

H = Gal
(
E/E ∩ F (ω)

)
.

To see that it is a normal subgroup of Gal(E/F ), take β ∈ Gal
(
E/E ∩

F (ω)
)

and α ∈ Gal(E/F ). Choose β′ ∈ Gal
(
E(ω)/F (ω)

)
and
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α′ ∈ Gal(E(ω)/F ) such that

res(α′) = α and res(β′) = β .

Then

α′β′α′−1 ∈ Gal
(
E(ω)/F (ω)

)
since Gal

(
E(ω)/F (ω)

)
▹ Gal(E(ω)/F ). Therefore

αβα−1 ∈ Gal
(
E/E ∩ F (ω)

)
,

and

Gal
(
E/E ∩ F (ω)

)
▹ Gal(E/F ) .

Corollary 20.7. If E ̸⊂ F (ω) and if Gal(E/F ) is a simple group, then

Gal
(
E(ω)/F (ω)

) ∼= Gal(E/F ) .

We can now prove the theorem itself. The heart of  the proof  is the fact that

An is a simple group if n ≥ 5.

Theorem 20.8. Let f ∈ F [x] be an irreducible polynomial of  degree n ≥ 5 with Galois

group Sn. Then f cannot be solved by taking radicals.

Proof. Let E be the splitting field of f over F . Suppose that f can be solved by

radicals. First we adjoin δ, the square root of  the discriminant, to F . By theorem

17.18 we know that

Gal
(
E/F (δ)

)
= An .

So we have the diagram:
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..E

.F (δ)

.F

.An

.Sn

Suppose that the next step is to adjoin m
√
a to F (δ). Thus F (δ, m

√
a) is

a subfield of E. We can assume that F contains m distinct mth roots of 1.

Otherwise we adjoin ω, a primitive mth root of 1 and replace F and E by F (ω)

and E(ω) respectively. Then by the lemma, Gal
(
E(ω)/F (δ, ω)

) ∼= An. Set

H = Gal
(
E/F (δ,

m
√
a)
)
.

Since F ( m
√
a, δ) is the splitting field of xm− a over F (δ), by theorem 17.17, H

is a normal subgroup of An, and

Gal
(
F (δ,

m
√
a)/F (δ)

) ∼= An/H .

Here is the diagram:

..E

.F
(
δ, m

√
a
)

.F (δ)

.H

.An/H

.An

But as we saw in theorem 12.7,An is simple for n > 4. This means that either

H = An andF (δ, m
√
a)/F (δ) is trivial, orH is trivial andAn = Gal

(
F (δ, m

√
a)/F (δ)

)
,
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which is cyclic. Both are impossible. Therefore f cannot be solved by taking rad-

icals.

Corollary 20.9 (Corollary to Proof). If Gal(f) ∼= An, n ≥ 5, then f is not solvable

by radicals.

One can go further and characterize algebraically the Galois groups of  poly-

nomials which can be solved by radicals. They are a class of  groups called solvable

groups.

Definition 20.10. A group G is solvable if  it has a composition series

G = H0 ◃ H1 ◃ · · · ◃ Hn−1 ◃ Hn = {1}

where Hi/Hi+1 is a cyclic group of  prime order, for 0 ≤ i < n.

These turn out to be of  great significance in group theory as well.

20.4 Calculations

Mathematica has a built-in function Solve for solving equations (algebraic or oth-

erwise). It manages to avoid some of  the foibles of  Cardano's formulas.

Examples 20.11. (i) In[1]:= Solve[ x^3 - 3x + 5
== 0, x ]

Out[1]=
{{

x → −
(

2
5−

√
21

)1/3

−
(
1
2
(
5−

√
21
))1/3 }

,{
x → 1

2
(
1+ i

√
3
)(1

2
(
5−

√
21
))1/3

+
1− i

√
3

22/3
(
5−

√
21
)1/3

}
,

{
x → 1

2
(
1− i

√
3
)(1

2
(
5−

√
21
))1/3

+
1+ i

√
3

22/3
(
5−

√
21
)1/3

}}
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(ii) In[2]:= Solve[ x^4 - 3x + 3 == 0, x ]

Out[2]=
{{

x → i
√
3

2
− 1

2
√
3− 2i

√
3
}
,{

x → i
√
3

2
+

1
2
√
3− 2i

√
3
}
,{

x → −i
√
3

2
− 1

2
√
3− 2i

√
3
}
,{

x → −i
√
3

2
+

1
2
√
3− 2i

√
3
}}

20.5 Exercises

1. Find the roots of x3 − 3x+ 3.

2. Let ω be a primitive nth root of 1. Show that∣∣∣∣∣∣∣∣∣
1 1 . . . 1
1 ω . . . ωn−1

...
...

...
1 ωn−1 . . . (ωn−1)n−1

∣∣∣∣∣∣∣∣∣ =
∏

n≥k>j≥1

(ωk − ωj) .

3. Suppose that E is an extension field of F and that E does not contain any

mth roots of 1. Let ω be a primitive mth root of 1 in some extension of F .

Prove that

[F (ω) : F ] = [E(ω) : E] .

4. Find the minimal polynomial of cos(2π/11). Show that its Galois group is

cyclic of  degree 5. Prove that it can be solved by radicals.
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5. Let f(x) = x8 − 2x4 − 2 ∈ Q[x]. Determine the splitting field E of f .

Prove that f can be solved by radicals by showing how E can be built up as a

sequence of  radical extensions.

6. Find the Galois group of f(x) = x6 − 3x2 + 1 ∈ Q[x]. Show that f can be

solved by radicals.

7. A normal series for a group G is a sequence of  subgroups

G = H0 ◃ H1 ◃ · · · ◃ Hn−1 ◃ Hn = {1} .

Prove that a finite group G is solvable if  and only it has a normal series where

all the factors Hj/Hj+1, 0 ≤ j < n, are cyclic. Prove that this also holds if

and only it has a normal series where all the factors Hj/Hj+1 are abelian.





21
Ruler-and-Compass Constructions

21.1 Introduction

In this chapter we are going to look at geometric constructions you can make

with a ruler and compass. To be more precise, we should say straight edge and

compass, because we are only using the ruler to draw straight lines, not to make

measurements. It is not hard to bisect a line segment or an angle. You can also

construct an equilateral triangle or a square. But can you trisect an angle? What

other regular polygons can you construct?

Such geometric constructions can be translated into algebraic problems in-

volving the solution of  polynomial equations. As an example, let's look at the

question of  trisecting an angle. Suppose we want to trisect an angle τ , 0 < τ <

π/2 . We put the vertex of  the angle at the point (0, 0) and one arm along the

x-axis. The other arm then passes through the point (cos τ, sin τ). Since

sin τ =
√
1− cos2 τ ,

the angle is determined by the real number cos τ . Similarly, the angle τ/3 can be

measured from the x-axis and then it is determined by cos(τ/3).

Now we have the well-known triple angle formula:

cos τ = cos 3(τ/3) = 4 cos3(τ/3)− 3 cos(τ/3) .

In other words, cos(τ/3) is a solution of  the real cubic

4x3 − 3x− cos τ = 0 .

377
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.

.(cos τ, sin τ)

.
(

cos(τ/3), sin(τ/3)
)

.τ
.τ/3

Figure 21.1: Trisection of  an angle

Trisecting the given angle τ is equivalent to solving this equation.

We are going to see that with ruler and compass we can perform construc-

tions which solve sequences of  quadratic equations, but not cubic equations. For

this reason, trisecting an angle with such constructions is in general impossible.

Of  course there are special angles, like π/2, which you can trisect in this way.

The fundamental criterion for constructibility in the next section only uses

the results on field extensions from chapter 16. It does not need any Galois the-

ory. The discussion of  periods and explicit equations arising in the construction

of  regular polygons in the following section does use Galois theory.

21.2 Algebraic Interpretation

We imagine that to start, we are given some points in the plane and some lengths.

Given a point we can construct its projections on the x- and y-axes, in other

words, its coordinates. Conversely we can construct a point from its x- and y-

coordinates. So we can assume that our given data simply consists of  some real

numbers a1, . . . , ar. For the same reasons, when we ask what can be constructed

from this data, we need only look at the lengths that can be constructed. We
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assume that we have chosen a unit length. Then let L ⊂ R be the set of  all

lengths that can be constructed with ruler and compass.

Theorem 21.1. L is a field containing Q(a1, . . . , ar). If b ∈ L, then
√
b ∈ L.

Proof. It is clear how to add two given lengths using a compass, or how to subtract

one from the other. How can one multiply two lengths b1 and b2? Mark the unit

length on the x-axis, and the length b1 on the y-axis. Join the two points.

.
.1 .b2

.b1

.b1b2

Now mark the length b2 on the x-axis. Draw a line through this point parallel to

the first line. It will meet the y-axis at the point b1b2. To construct b1/b2, switch

the roles of 1 and b2. Therefore L is a field. Since it contains a1, . . . , ar and

contains Q , it contains Q(a1, . . . , ar) .

To construct the square root of  a given length b, mark 1 and 1 + b on a line.

Draw a semi-circle with diameter 1 + b. Draw the perpendicular from the point

1 to the semi-circle, and let its length be c.

The hypotenuses of  the two right-angled triangles on the diameter are
√
1 + c2

and
√
b2 + c2 as shown. But the large triangle is also right-angled. Therefore

(1 + c2) + (b2 + c2) = (1 + b)2 ,
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.
.0 .1 .1 + b

.c.
√
1 + c2 .

√
b2 + c2

.

which implies that

c =
√
b .

For example, in exercise 16.4 you saw that the minimal polynomial of cos(2π/5)

is

4x2 + 2x− 1 .

Therefore

cos(2π/5) =

√
5− 1

4
,

and we can construct cos(2π/5) with ruler and compass. This is the essential

step in constructing a regular pentagon. In [6], chapter 2, there is a more direct

construction.

This theorem can be interpreted in the following way. Suppose F ⊂ L is

a subfield and b ∈ F . Then any length in F (
√
b) is constructible. So if  a real

number ζ lies in an extension field of Q(a1, . . . , ar) which can be built up as

a sequence of  quadratic extensions, then ζ is constructible. On the other hand,

suppose that we have a construction that starts with a1, . . . , ar and gives us a

length ζ ∈ L. It is built up out of  three basic steps:

(i) intersect two lines;

(ii) intersect a line with a circle;
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(iii) intersect two circles.

From an algebraic point of  view, we are beginning with the base fieldQ(a1, . . . , ar)

and each step gives us a field extension. Let's analyze what sort of  extension we

get in each case.

Let F be a subfield of R containing a1, . . . , ar. Suppose we have a line

passing through two points whose coordinates lie in F . Then its equation will be

of  the form

ax+ by + c = 0 ,

where a, b, c ∈ F . If  we have a second such line,

dx+ ey + f = 0 ,

then the solution (x, y) of  the pair of  equations is the point of  intersection. And

x and y belong to F . So when we intersect two lines we make no field extension.

Next suppose we are given a circle whose radius is in F , and whose centre is

a point with coordinates in F . Then it has an equation of  the form

x2 + y2 + dx+ ey + f = 0 ,

where d, e, f ∈ F . If  it meets a line

ax+ by + c = 0 ,

a, b, c ∈ F , then to find the coordinates of  the two points of  intersection, we

solve the linear equation, for x say (assuming that a ̸= 0), and substitute into the

quadratic. This gives us a quadratic equation in one variable y. If  we adjoin a

square root of  its discriminant ∆ to F then the two solutions for y, and the cor-

responding values of x lie in F (
√
∆). So constructing the points of  intersection

of  a circle and a line corresponds to making a quadratic extension.

Lastly, suppose we are given two circles, determined by data inF , which meet:

x2 + y2 + ax+ by + c = 0

x2 + y2 + dx+ ey + f = 0 ,
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a, b, c, d, e, f ∈ F . Subtracting, we get the equation

(a− d)x+ (b− e)y + (c− f) = 0 .

A common solution of  the two quadratic equations is a solution of  the linear

equation. Therefore the linear equation gives the line passing through the points

of  intersection of  the two circles. So finding the points of  intersection of  two

circles can be reduced to finding the intersection of  a circle and a line. Therefore,

the coordinates of  the points of  intersection will lie in a quadratic extension of

F too.

Summarizing, we have the following result:

Theorem 21.2. Given a1, . . . , ar ∈ R, we can construct a real number ζ from a1, . . . , ar
using ruler and compass if  and only if ζ lies in an extension E/Q(a1, . . . , ar) which can be

built up as a sequence of  quadratic extensions.

Corollary 21.3. If ζ is constructible, then [Q(a1, . . . , ar, ζ) : Q(a1, . . . , ar)] is a

power of 2.

Proof. If ζ is constructible, then ζ ∈ E, whereE is an extension ofQ(a1, . . . , ar),

which can be built up as a sequence of  quadratic extensions. Thus

[Q(a1, . . . , ar, ζ) : Q(a1, . . . , ar)]
∣∣ [E : Q(a1, . . . , ar)] = 2k ,

for some k ≥ 0.

Examples 21.4. (i) Suppose that we want to trisect the angle π/3. As dis-

cussed in the introduction, we begin with cos(π/3) = 1/2 ∈ Q. We want

to construct cos(π/9), which is a root of

4x3 − 3x− 1/2 = 0 .

It is not hard to see that this polynomial is irreducible over Q. Therefore[
Q
(

cos(π/9)
)
: Q
]
= 3 .

The theorem then tells us that cos(π/9) is not constructible.
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(ii) Suppose we want to duplicate the cube. This means that we begin with a

cube with unit volume, and want to construct one with volume 2. So the

sides of  the new cube must have length 3
√
2, and this is the number we

want to construct. But [
Q
(

3
√
2
)
: Q
]
= 3 .

Therefore 3
√
2 is not constructible, and it is not possible to duplicate the

cube with a ruler-and-compass construction.

21.3 Construction of  Regular Polygons

If  we inscribe a regular n-gon Pn in the unit circle about the origin in R2, with

one vertex at the point (1, 0), then the other vertices lie at the points{ (
cos(2πk/n), sin(2πk/n)

) ∣∣ 0 < k < n
}
.

If  we can construct
(

cos(2π/n), sin(2π/n)
)

then we can construct the other

vertices from it. This is the case precisely when its components are constructible.

Since

sin(2π/n) =
√

1− cos2(2π/n) ,

we see that sin(2π/n) is constructible if  and only if cos(2π/n) is. In exercise

17.11 you saw that

[Q(cos(2π/n)) : Q] = φ(n)/2 .

Therefore by corollary 21.3, if Pn is constructible, φ(n) must be a power of 2.

Conversely, suppose that φ(n) is a power of 2. Since

φ(n) = [En : Q] = |Gal(Φn)| ,

and

Gal(Φn) ∼= (Z/nZ)×
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this tells us that Gal(Φn) is an abelian 2-group (see p.315). Therefore

Gal
(
Q(cos(2π/n))/Q

)
is as well. Then it follows from the first Sylow theo-

rem (see exercise 11.8) or from the classification of  finite abelian groups, that

there is a chain of  subgroups

{1} =: G0 < G1 < · · · < Gr := Gal
(
Q(cos(2π/n))/Q

)
,

where Gj/Gj−1 has order 2, for all j ≥ 1. Corresponding to this is a tower of

quadratic extensions

Q(cos(2π/n)) ⊃ Fix(G1) ⊃ · · · ⊃ Q .

Therefore by our criterion for constructibility, cos(2π/n) is constructible.

So when is φ(n) a power of 2? In exercise 5.24 , we found that if

n = pj11 · · · pjrr ,

with p1, . . . , pr distinct primes, then

φ(n) = pj1−1
1 (p1 − 1) · · · pjr−1

r (pr − 1) .

So φ(n) is a power of 2 if  and only if n factors as

n = 2jp1 · · · pr ,

where pk − 1 is a power of 2 for each k. The question is then: for which primes

p is p−1 a power of 2? It is not hard to show that if 2l+1 is prime, then l = 2m

for some m. Primes of  the form

22
m

+ 1 ,

m > 0, are called Fermat primes. Here is a table of  the first five:

m 22
m
+ 1

0 3
1 5
2 17
3 257
4 65537
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For m = 5, we do not get a prime:

22
5

+ 1 = 641 · 6700417 .

Constructions of  the corresponding regular polygons are known form = 1, 2, 3, 4.

One for the regular 17-gon is given in [6], chapter 2, as well as a pretty proof  that

641 divides 22
5
+ 1.

21.4 Periods

By looking closely at the cyclotomic extension E17/Q one can give an explicit

sequence of  quadratic extensions which start with Q and end at Q(cos(2π/17)).

This is done by looking at the periods of  a primitive 17th root of 1 in E17.

In general let p be a prime, p > 2, and let ω be a primitive pth root of 1. We

know that

Φp(x) = xp−1 + · · ·+ x+ 1 ,

and that

G := Gal(Φp) ∼= (Z/pZ)× ,

which is cyclic. Let H be a subgroup of G of  order h. Define the period

ωH :=
∑
β∈H

β(ω) ∈ Ep .

If α ∈ G is a generator with

α(ω) = ωj ,

and αk a generator of H , where hk = p− 1, then

ωH =
h∑
l=1

ωj
kl

.

For convenience we shall set

ωk := ω⟨αk⟩ = ωH .
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Theorem 21.5.

Fix(H) = Q(ωH)

Proof. First, if γ ∈ H , then

γ(ωH) =
∑
β∈H

γβ(ω) =
∑
β∈H

β(ω) = ωH .

Therefore

Q(ωH) ⊂ Fix(H) .

On the other hand, suppose γ ̸∈ H . The set {β(ω) | β ∈ G} is just the set of

all primitive pth roots of 1, which is linearly independent over Q. Since

γH ∩H = ∅ ,

it follows that

γ(ωH) =
∑
β∈H

γβ(ω) ̸=
∑
β∈H

β(ω) = ωH .

Therefore

Gal
(
Ep/Q(ωH)

)
⊂ H ,

which implies that

Q(ωH) ⊃ Fix(H) .

So we have

Q(ωH) = Fix(H) .

Now let f ∈ Q[x] be the minimal polynomial of ωH . It has degree

[G : H]. For γ ∈ G, γ(ωH) is a root of f . Therefore as γ runs through a

set of  representatives of  the cosets of H in G, we get a complete set of  roots of

f . They are of  the form

γ(ωH) =
∑
β∈H

γβ(ω) ,

and are called the h - fold periods of  the cyclotomic field.
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Examples 21.6. (i) Take p = 7. So Gal(Φ7) is cyclic of  order 6. It has

two non-trivial subgroups, one of  order 2 and one of  order 3. Let ω be a

primitive 7th root of  unity. A generator of Gal(Φ7) is

α : ω 7→ ω3 .

The subgroup H of  order 2 is generated by α3. We have

ω3 := ω + α3(ω) = ω + ω6 = 2 cos(2π/7) .

It satisfies a cubic equation over Q :

(ω + ω6)2 = 2 + ω2 + ω5

(ω + ω6)3 = 3(ω + ω6) + ω3 + ω4 ,

and therefore

(ω + ω6)3 + (ω + ω6)2 − 2(ω + ω6)− 1 = 0 .

The other roots of x3 + x2 − 2x− 1 are

α(ω) + α4(ω) = ω3 + ω4 and α2(ω) + α5(ω) = ω2 + ω5 ,

corresponding to the cosets αH and α2H . These are the three 2-fold

periods of E7.

The subgroup of  order 3 is generated by α2, and the 3-fold periods are

ω + α2(ω) + α4(ω) = ω + ω2 + ω4

α(ω) + α3(ω) + α5(ω) = ω3 + ω6 + ω5 .

They are the roots of  the quadratic equation:

x2 + x+ 2 = 0 .
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(ii) Take p = 17. Then G := Gal(Φ17) is cyclic of  order 16. It has non-trivial

subgroups of  order 2, 4, and 8. If ω is a primitive 17th root of 1, then

α : ω 7→ ω3

is a generator ofG. Here is the chain of  subgroups with the corresponding

tower of  quadratic field extensions.

. .Q(ω)

.Q(ω8)

.Q(ω4)

.Q(ω2)

.Q

.{1}

.⟨α8⟩

.⟨α4⟩

.⟨α2⟩

.G

Now

ω2 = ω + ω9 + ω13 + ω15 + ω16 + ω8 + ω4 + ω2 ,

which is a root of

x2 + x− 4 ∈ Q[x] .

The other 8-fold period is

α(ω2) = ω3 + ω10 + ω5 + ω11 + ω14 + ω7 + ω12 + ω6 .

Next,

ω4 = ω + ω13 + ω16 + ω4 ,

which is a root of

x2 − ω2x− 1 ∈ Q(ω2) ,
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together with

α2(ω4) = ω9 + ω15 + ω8 + ω2 .

The fieldQ(ω4) also containsα(ω4) andα3(ω4). (These four are the roots

of  the minimal polynomial of ω4 over Q). Thirdly,

ω8 = ω + ω16 = 2 cos(2π/17)

is a root of

x2 − ω4x+ α(ω4) ∈ Q(ω4) .

Lastly, ω is a root of

x2 − ω8x+ 1 .

By theorem 21.2, cos(2π/17) can be constructed with ruler and compass,

and therefore so can the regular 17-gon.

21.5 Exercises

1. a) Prove that

cosnτ = f(cos τ) ,

for some f ∈ Q[x].

b) Show that the equation

f(x) = y

can be solved by radicals:

x =
1

2

n

√
y +

√
y2 − 1 +

1

2

n

√
y −

√
y2 − 1 .

2. Beginning with a unit length, use ruler and compass to construct lengths

a)
√

1 +
√
2
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b) 4
√
7

3. Prove that 4x3 − 3x− 1/2 ∈ Q[x] is irreducible.

4. Show that it is not possible to construct a regular 9-gon or 11-gon with ruler

and compass.

5. Find the minimal polynomial of cos(2π/7) over Q.

6. Prove that if 2l + 1 is prime, then l = 2m for some m.

7. Show how to construct a regular hexagon with ruler and compass. Suppose

you can construct a regular n-gon, for some n. Give a construction for a

regular 2n-gon.

8. Give a ruler and compass construction for a regular 15-gon. Can you gener-

alize this?

9. Calculate the periods of  the subgroups of Gal(Φ13). Compute their minimal

polynomials over Q.

10. What is the minimal polynomial of ω4 over Q in example 21.6(ii)?

11. Let ω be a primitive pth root of 1, where p is an odd prime.

a) Show that Q(ω)contains exactly one quadratic extension K/Q.

b) Prove that L ∼= Q(
√
p) if p ≡ 1 (mod 4).

c) Prove that L ∼= Q(
√
−p) if p ≡ 3 (mod 4).
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Mathematica Commands

Here is a list of  the Mathematica commands introduced in the packages 'Groups.m'

and 'Quartics.m' with their usage statements.

M M[a1,. . . ,an] is the permutation which maps
1 to a1, . . . , n to an.

page 40

Dot Dot[a,b], or a .b, where a and b are matrices or
permutations (of  the same type), returns the per-
mutation mapping i to a(b(i)).
Dot[X,Y], where X and Y are lists of  permuta-
tions, returns all products a .b as a ranges over X
and b over Y.
Dot[a,G], or a .G, where a is a permutation and
G is a group returns the list of  elements of  the left
coset. Similarly, G.a returns the right coset.

page 40

391
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Inverse Inverse[a] is the inverse of  the permutation or
matrix a.

page 41

P P[{a1,. . . ,am},{b1,. . . ,bn},. . . ] is
a permutation in cycle form.

page 41

Group Group[a,b,. . . ] returns the group generated
by the elements {a, b, . . . } .

page 43

Elements Elements[G], where G is a group, returns the list
of  elements in G.

page 43

Generators Generators[G], where G is a group, returns the
list of  generators defining G.

page 43

Order Order[a] returns the order of  the matrix or per-
mutation a, i.e., the smallest positive integer such
that an is the identity.

page 43

ChoosePrime ChoosePrime[p] sets p to be the current ambi-
ent prime.

page 56

L L[{a11,. . . ,a1n},. . . {an1,. . . ,ann}]
is a matrix over Fp, where p is the current prime
chosen (see ChoosePrime).

page 57

Orbit Orbit[a,x], where a is a permutation and x is
an integer, or a is a matrix and x is a vector, returns
the orbit of x under a.

page 122
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Stabilizer Stabilizer[G,x] returns the subgroup of G
fixing x.

page 123

CycleTypes CycleTypes[G] returns a table of  frequencies of
cycle types in G.

page 124

ConjugacyClass ConjugacyClass[G,a] returns the conjugates
of a by elements of G.

page 124

Centre Centre[G] returns the centre of  the group G. page 125

LFTPermutation LFTPermutation[a], where a is a matrix over
Fp , returns the corresponding linear fractional
transformation of P (Fp) as a permutation of
(0, . . . , p− 1,∞).

page 126

LeftCosets LeftCosets[G, K], where G is a group with
subgroup K, returns a list of  the left cosets of K
in G with K itself  as the first coset.

page 162

LeftCosetReps LeftCosetReps[G, K], where G is a group with
subgroup K, returns a list of  representatives of  the
left cosets K in G. It consists of  the first elements
in each coset as given by LeftCosets.

page 163

RightCosets RightCosets[G, K], where G is a group with
subgroup K, returns a list of  the right cosets of K
in G with K itself  as the first coset.

page 162

RightCosetReps RightCosetReps[G, K], where G is a group
with subgroup K, returns a list of  representatives
of  the right cosets K in G. It consists of  the first el-
ements in each coset as given by RightCosets.

page 163
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Conjugate Conjugate[a,b] returns a.b.Inverse[a]. page 164

ConjugateSubgroups ConjugateSubgroups[G,H], where G is a
group with subgroup H, returns the number of
subgroups of G conjugate to H.

page 185

CubicResolvent CubicResolvent[f] returns the cubic resol-
vent of  a quartic f and determines its Galois
group.

page 349

QuarticPlot QuarticPlot[f] plots the pencil of  conics as-
sociated to a quartic f whose roots are real.

page 350
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right, 150, 155, 162

cubic equations, 292, 293, 301, 341,

344, 350, 354, 361, 373

cubic resolvent, 343, 349

cycle, 25

cycle notation, 27, 41

cycle type, 116, 124, 134, 338, 355

cyclic extension, 366

cyclic group, 36, 53, 82

cyclotomic field, 298, 315, 385

cyclotomic polynomial, 294, 304

decimal expansion

of 1/n, 5, 16, 20
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degree

of  a field extension, 284

of  a polynomial, 224, 265

of  an element, 282

dihedral group, 98, 128, 141

direct product

of  groups, 73

of  rings, 262

discriminant, 273, 292, 293, 301, 306,

336, 344

divisibility tests, 3--7

doubly transitive group action, 121

Eisenstein criterion, 234

elementary divisors, 210

elementary matrix, 206

elementary operations, 205

elementary symmetric polynomial, 267

Euclidean algorithm, 7, 84

for polynomials, 226

evaluation map, 131, 149, 246, 282

extension field, 281

finite, 284

simple, 281, 360

Fermat primes, 384

Fermat's little theorem, 153, 298

Fibonacci numbers, 307

field, 15, 239, 243

automorphism, 241, 260, 313, 316

characteristic of, 241

cyclotomic, 298, 315, 385

finite, 260, 298

fixed, 313, 322

intermediate, 321

multiplicative group, 64, 230, 261

prime, 241, 260

rational functions, 242, 266

splitting, 288, 313, 319

symmetric functions, 266

finite extension, 284

finitely generated group, 201

First isomorphism theorem, 160

fixed field, 313, 322

fixed points, 141

fractional linear transformation, 117,

126

free abelian group, 201

Frobenius group, 61, 123, 130, 170,

369

Frobenius homomorphism, 262, 332

Fundamental theorem

of  algebra, 279, 353, 357

of  arithmetic, 232

of  Galois theory, 327

of  symmetric polynomials, 269

Galois correspondence, 325

Galois group, 108, 313

general linear group, 50

generators

An, 45, 47, 192

Bn, 87
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F(p−1)p, 61

GL(2, F ), 53

GL(2,F5), 55

GL(2,Fp), 55

SL(2, F ), 61

SL(2,Z), 84

SL(2,Fp), 194

Sn, 37

of  a group, 37, 53, 83

greatest common divisor, 7

of  polynomials, 226, 254

group, 63

abelian, 68, 157, 201

free, 201

torsion subgroup, 202

action, 111

alternating, 35

automorphism, 78

braid, 66, 87

centre of, 115, 125

commutative, 68

cyclic, 36, 53, 82, 152, 230

dihedral, 98, 128, 141

direct product, 73

finitely generated, 201

Frobenius, 61, 123, 130, 170, 369

Galois, 108, 313

general linear, 50

generators, 37, 53

Heisenberg, 129, 171

homomorphism, 71

isomorphism, 72

linear, 50, 64, 79

of  units of  a ring, 239

order, 35, 50, 70

orthogonal, 80

permutation, 64, 79

transitive, 114, 129, 341

projective linear, 162

quaternion, 61, 169

quotient, 157

simple, 190, 372

solvable, 373

special linear, 50

special orthogonal, 80

symmetric, 34

trivial, 66

Heisenberg group, 129, 171

homomorphism

group, 71

image, 88

kernel, 88

ring, 239

hyperbolic plane, 121

ideal, 261

image, 88

improper symmetry, 103

index, 151

integers modulo n, 13

intermediate field, 321

irreducibility tests, 234--238
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irreducible polynomial, 231

isometry, 65, 80, 121

isomorphism

canonical, 158

group, 72

ring, 240

kernel, 88

group action, 122

Lagrange resolvents, 361

Lagrange's theorem, 151, 153, 173

lattice of  subgroups, 152

leading coefficient, 224

least common multiple, 10

lexicographical order, 268

linear group, 50

mapping notation, 23, 40

minimal polynomial, 282

monic polynomial, 226

multiplicative group of  a field, 64, 230,

261

Newton's identities, 272

normal subgroup, 155, 164

normalizer, 177

orbit, 113, 122, 131

order

GL(2,Fp), 52

SL(2,Fp), 161

element, 36, 52, 70, 152

group, 35, 50, 70

orthogonal group, 80

orthogonal matrix, 80

p-adic expansion, 217

p-group, 137, 173

partition, 117

period

length, 6, 70

of 1/n, 6, 16, 20

periods, 385

permutation, 23

even, 29

odd, 29

sign of, 29

permutation group, 34, 122

transitive, 114, 129, 341

polynomial, 224, 265

common divisor, 226

cyclotomic, 294, 304

degree, 224, 265

Euclidean algorithm, 226

greatest common divisor, 226, 254

irreducible, 231, 233, 243

leading coefficient, 224

long division, 225

minimal, 282

monic, 226

reducible, 231

root of, 229

separable, 321
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symmetric, 266

power sums, 272

prime field, 241, 260

projective line, 117

projective linear group, 162

proper symmetry, 99

quartic equations, 276, 373

quaternion group, 61, 169

quotient group, 157

quotient ring, 242, 261

rank, 202, 210

rational function, 241, 266

reciprocal polynomial, 277

reducible polynomial, 231

reflection, 33, 81, 103

relatively prime, 10

polynomials, 229

rigid motion, 65

ring, 239

commutative, 239, 265

group of  units, 239

homomorphism, 239

quotient, 242, 261

root

of  a polynomial, 229

root of  unity, 89, 294, 385

primitive, 294

rotatory reflection, 105

Second isomorphism theorem, 172

separable polynomial, 321

sieve, 237

sign

of  a permutation, 29

simple extension, 281, 360

simple group, 190, 372

solvable group, 373

special linear group, 50

special orthogonal group, 80

splitting field, 288, 313, 319

stabilizer, 113, 123, 131

subfield, 281

subgroup, 79

commutator, 221

index, 151, 156

lattice, 152

normal, 155, 157, 164

Sylow, 173, 358

Sylow p-subgroup, 173, 358

symmetric function, 266

symmetric group, 34

symmetric polynomial, 266

elementary, 267

symmetry

improper, 103

proper, 99

torsion, 202

transcendental, 283

number, 283

transitive group action, 114
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transposition, 28

Tschirnhausen transformation, 305,

345

word, 83
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