A full satisfaction class on an \mathcal{L}-structure \mathcal{M} with sufficient coding apparatus decides the ‘truth’ of every \mathcal{L}-formula with parameters in \mathcal{M}, including the nonstandard formulas in \mathcal{M}, while obeying the usual recursive Tarski conditions for a satisfaction predicate. In this tutorial we present a robust technique for building a wide variety of full satisfaction classes using model-theoretic ideas, in the setting of a flexible notion of ‘base theory’ that encompasses base theories as weak as bounded arithmetic and as strong as Zermelo-Fraenkel set theory. Our model-theoretic construction is also shown to be implementable in the fragment WKL_0 of Second Order Arithmetic, which in turn implies that the conservativity of $\mathcal{B} + \text{“$S$ is a full satisfaction class”}$ over \mathcal{B} can be verified in Primitive Recursive Arithmetic for every r.e. base theory \mathcal{B}. We also investigate interpretability issues connected to satisfaction classes. In particular, we show that $\mathcal{B} + \text{“$S$ is a full satisfaction class”}$ is interpretable in \mathcal{B} for all inductive base theories \mathcal{B}, such as $\mathcal{B} = \text{Peano arithmetic}$, or $\mathcal{B} = \text{Zermelo-Fraenkel set theory}$.