
Snowbot: An empirical study of building
chatbot using seq2seq model with different

machine learning framework

Pinglei Guo
piguo@ucsc.edu

Yusi Xiang
yxiang12@ucsc.edu

Yunzheng Zhang
yzhan300@ucsc.edu

Weiting Zhan
wzhan83@ucsc.edu

Abstract

Chatbot is a growing topic, we built a open domain generative chatbot
using seq2seq model with different machine learning framework (Tensor-
flow, MXNet). Our result show although seq2seq is a successful method in
neural machine translation, use it solely on single turn chatbot yield pretty
unsatisfactory result. Also existing free dialog corpus lacks both quality and
quantity. Our conclusion it’s hard to build a useful open domain generative
bot using state of art technology.

1 Introduction

1.1 Chatbot

Chatbot can be generally divided into two types, open domain and close domain. Former can
answer a wide range of questions (though the answer itself could be very general with syntax
and semantic error), latter can solve particular problems from user, and user is not expecting
a close domain bot to chat freely as well. Based on how response is generated, it can be
divided to retrieval and generative, where answer is picked from clustered responses [5] or
generated on the fly. In theory, open domain chatbot has more potential1, and is harder
to build, in practice, most chatbot that gets work done is close domain, even those that
seems to be open domain (Siri, Cortana) are not implemented end to end, heuristic rules,
entity recognition, knowledge base, clustered response are inject into multiple stages in the
pipeline to produce good result.
At first (during proposal) we believe a close domain retrieval chatbot is the most easy one
in the total four combinations based on a blog post [4], Then we realize that this is the most
easy one in theory but the hardest one in practice, the other corner, open domain generative
is actually easiest because it’s end to end, just two RNN is enough. Thus we decided to
build a open domain generative chatbot in the limited time given.

1.2 Machine Learning Frameworks

Machine learning framework is now the competing spot for tech giants (Table 1), besides
they are using ML excessively in their own products, they want developers to use their
framework and run it on their cloud platform, (i.e. Tensorflow on Google Cloud, MXNet
on AWS, CNTK on Azure). Although there were many open source frameworks started by
individual and research organizations, most of them are deprecated in favor of those backed
by companies (i.e. Theano vs. Tensorflow)2

1if the domain is really open enough, generate random text might be the best algorithm
2https://groups.google.com/forum/#!msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ

https://groups.google.com/forum/#!msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ


Table 1: Popular Machine learning Frameworks

Name Star Company First Release
Tensorflow 81697 Google 2015-11-08
Keras 22872 N/A 2015-01-13
Caffe 21739 N/A 2014-03-19
CNTK 13366 Microsoft 2016-01-22
MXNet 12392 Amazon 2015-12-09
PyTorch 10142 Facebook 2016-08-31
Torch 7537 N/A 2015?

Tensorflow [1] and MXNet [2] are two widely used frameworks, while tensorflow is mostly
declarative, mxnet allows more imperative programming style. A simple example is in order
to debug the value of a matrix in tensorflow you need to write an op using tf.Print and put
it inside compute graph, while in mxnet you can just use print like it’s a normal python
variable, though in fact it might resides on GPU or other machines. Declarative style is
not very expressive, but make optimization on the framework side easier, mxnet chose to
detect patterns and only optimize critical path to gain flexibility while retain performance.
However, when it comes to most software engineers, the design and low-level API does not
matter much, community support and a wide range of up to date model is more important,
and tensorflow is the obvious winner. For researchers, mxnet might be a better choice, since
it has thinner wrapper and stricter requirement.
We chose to use two higher level seq2seq frameworks, sockeye (based on mxnet)3 and
OpenNMT-tf4 in the experiments, we did try to write a naive one based on newer seq2seq
API in tensorflow, however since both sockeye and OpenNMT-tf use state of art models and
yield unsatisfactory result, we abandoned it in the middle 5.
The rest of the report is organized as following, Section 2 describes the basic form of the
seq2seq model we are using. Section 3 shows how we process our dataset, and the problem
in it. Implementation detail is listed in section 4. Our result is shown in section 5. Section 6
concludes the report and workload distribution.

2 Model

We use seq2seq model, which is widely used in neural machine translation [9] and can be
applied to single turn dialog system (QA) as well. Its basic structure is two recurrent neural
networks (RNN) as shown in figure 1. The cell used in RNN is LSTM (long term short
memory), so we can learn implicit relation ship between words from data without explicit
pre-processing. seq2seq is one of many variants of RNN + LSTM. Based on the domain
and length of input, RNN + LSTM can be used for sequence classification, text generation,
translation, dialog system etc. as shown in table 2

Table 2: Variants of RNN + LSTM

Type Input Output Example
seq2one (classification) sentence class Sentiment analysis
seq2seq (text generation) sentence same sentence Shakespeare style text
seq2seq (translation) language A language B NMT A -> B
seq2seq (single turn QA) question answer chatbot
seq2seq (multi turn QA) conversation context answer chatbot

3https://github.com/awslabs/sockeye
4https://github.com/OpenNMT/OpenNMT-tf
5https://github.com/at15/snowbot/pull/23

2

https://github.com/tensorflow/tensorflow
https://github.com/keras-team/keras
https://github.com/BVLC/caffe
https://github.com/Microsoft/CNTK
https://github.com/apache/incubator-mxnet
https://github.com/pytorch/pytorch
https://github.com/torch/torch7
https://github.com/awslabs/sockeye
https://github.com/OpenNMT/OpenNMT-tf
https://github.com/at15/snowbot/pull/23


For many to many in RNN + LSTM (seq2seq), simply swap the input and output data, you
get a different application for free (Table 3) 6. So we can use neural machine translation
framework directly to build our chatbot.

Table 3: Input and Output of different seq2seq application

Type Train input Train output Test input Test output
text generation You are my foe You are my foe You are my <unk>
translation 你好 Hello 吃了么 Good morning
single turn QA Any idea I don’t know How’s the weather I don’t know
multi turn QA Got it?; No; Why? I don’t know Hi; Hey; What’s up? I don’t know

Figure 1: Sequence to Sequence model for single turn Dialog

From figure 1 we can see the main idea of seq2seq is to encode input words sequence into a
vector, and decode this vector until reaches max step or EOS (</s>). On the encoder side,
the output and hidden state are all discarded except the last hidden state, which certainly
lose some important information, and leads to optimization like attention [8].
On the decoder side, train and test (infer) is different. The first word is <s> instead of
real word in both case, but in training, the word feed into each step is from original data
while in testing, the word feed into each step is based on the output of previous step. The
output from projection layer (after softmax) is a vector indicating probability of each word
in vocabulary. In training, we calculate loss use cross entropy, note that due to the length
of sequences in a mini batch may not be the same, we use padding (<PAD>) to form a matrix
and we need to mask those padded part out when calculating loss. In test, we can pick the
word with max probability as word for this step, this is the greedy way, but we may not
pick the overall best sentence if we consider each word independently. A better way is to
use Beam Search, which is keep top-K words in each step, and take the path of top-1 as the
final output.
In sockeye and OpenNMT-tf, both attention and beam search are enabled by default, also
there can be more than one layer LSTM or combination of cells (bi-direction), in original

6not real data, for demonstration only

3



NMT paper they say feed input in reverse order increase performance [9], and with bi-
direction, a sentence is feed into encoder in two directions.

3 Dataset

3.1 Handling I don’t know in Cornell Movie Dialog Corpus

We start with Cornell Movie Dialog Corpus [3] because it is used by many publication
and blog posts for single turn dialog system. It contains 83097 conversations, and can be
converted to 221282 single turn QA, total file size is 22MB.
However, our first run using sockeye shows I don't know is the most popular response
(Table 4 left), which leads to a very simple questions. How many I don't know do we have
in training data, does the bot learn to know what it really knows, or there are just too many
I don't know in training data.
So we add counting and removing I don't know when processing text. There are 5114
response is just I don't know, which is 2.3%., excluding those with I don't know as
prefix. Considering the corpus is from movie with varies backgrounds, 2.3% is a relative
high percentile. After removing I don’t know, the responses (Table 4 right) become very
general questions like what do you mean.

Table 4: Cornell corpus before and after filtering out I don’t know

Raw text without processing After filtering out I don’t know
Q: hi
A: I don’t want to talk to you.
Q: do you know
A: I don’t know.
Q: you know what
A: I don’t know.
Q: oh say something other than I don’t know
A: What are you talking about?
Q: so this is all you got
A: I don’t want to talk about it.
Q: do you like cat
A: I don’t know.
Q: what do you know
A: I don’t know.
Q: where can I find the park
A: I don’t know.

Q: hi
A: hi.
Q: do you know
A: i don’t think so.
Q: you know what
A: what do you want?
Q: oh say something other than i don’t know
A: what do you want me to do?
Q: so this is all you got
A: i don’t know what it is.
Q: do you like cat
A: what do you mean?
Q: what do you know
A: what do you mean?
Q: where can i find the park
A: i don’t want to know what you want.

3.2 Twitter Chat log with emoji

Since Cornell Movie Dialog Corpus is quite dramatic, we decided to try more daily style
dialog corpus. The data is from Marsan-Ma/chart_corpus7, he wrote a crawler to scrape
twitter.8 It contains 377265 QA and there is just 6 pure I don't know, total size is 51MB.
One interesting to note is the data contains emoji 9, and we didn’t remove it when pre-
processing. We could just keep all the ASCII, but we thought it would be interesting to see
if emoji would show up in generated response, and they did, as show in Table 5

7https://github.com/Marsan-Ma/chat_corpus
8As for now, using Twitter API requires enterprise plan and share data on github has legal issues
9we use :heart: instead of real emoji in report due to there is no such font for latex

4

https://github.com/Marsan-Ma/chat_corpus


Table 5: Cornell Movie Dialog vs Twitter Chat

Cornell Movie Dialog Corpus Twitter Chat
Q: thank you
A: I don’t want to see you.
Q: Thank you
A: yeah.

Q: thank you
A: thank you so much :heart:.
Q: Thank you
A: thank you so much for the <unk>

4 Implementation

4.1 Data Pipeline

Because we decide to use different frameworks’s with different dataset, a lot work is done to
provide a unified interface for processing the data and feed into the graph. Each framework
has their own dataset wrapper and special data format (i.e. TfRecord). Instead of writing
ad-hoc code to adapt to different code and dataset, we generalize this procedure in package
snowbot.corpus10. So adding a new dataset just need to inherit the class and implement
some dataset specific logic like handling invalid input. It has a command line interface as
shown in figure 2. The total implementation of the data pipeline has around 1,000 lines of
python code, it’s not very efficient now, we plan to use C extension and allow short path
between phases instead of storing intermediate result on disk.

Figure 2: Data Pipeline command line interface

4.2 Text processing

In contrast with previous assignments, we removed a lot of text processing when building
the chatbot, just simply split word by space and ignore invalid codec that can crash the
program. For instance, stop words are not removed, because in a normal chat, we are
expecting words like I, a. Also we find converting words to lower case does not make much
difference (see section 5) because they will have similar word vector given enough data and
training time. Special characters are also not removed, so certain dataset can keep their
own feature, like emoji is widely used in twitter (see section 3.2).
However, we added an extra step of removing high frequency general dialogs from corpus
like I don't know, which gives use a better result, but the alternatives are still quite general.
Another addition formatting dataset into a standard format of question and answer. All of
the text processing are in our data pipeline tool (see section 4.1) with around 600 lines of
python code.

10https://github.com/at15/snowbot/tree/master/snowbot/corpus

5

https://github.com/at15/snowbot/tree/master/snowbot/corpus


4.3 Seq2Seq Frameworks

In our experiments we use existing seq2seq frameworks, there are plenty of them, as shown
in Table 6. We chose OpenNMT-tf and sockeye because we are interested in the rumor that
MXNet is more efficient on using GPU memory than Tensorflow.

Table 6: Seq2Seq Frameworks

Name Framework GitHub Star
OpenNMT-py PyTorch OpenNMT/OpenNMT-py 773
OpenNMT Torch OpenNMT/OpenNMT 1461
OpenNMT-tf Tensorflow OpenNMT/OpenNMT-tf 145
nmt Tensorflow tensorflow/nmt 2094
seq2seq Tensorflow google/seq2seq 3019
tensor2tensor Tensorflow tensorflow/tensor2tensor 2975
Sockeye MXNet awslabs/sockeye 290

Although most of them are built for neural machine translation, we can use them for chatbot
directly by swapping the input and output file as show in Table 3.

4.3.1 Sockeye (MXNet)

Sockeye only requires two text file, it was expecting two different language, but we replace
it with questions and answers in same language. It will generate the vocabulary on the fly,
it simply splits sentence into tokens by space, no conversion like remove special token is
performed. (But we did the pre-processing and joined the processed text with space.) It
supports attention and beam search.

4.3.2 OpenNMT-tf (Tensorflow)

OpenNMT-tf use a YAML file as config, which is similar across all OpenNMT implementa-
tion. It also supports attention and beam search, but its default configuration is not very
practical. It asks you to set train step instead of epoch, and seems don’t support auto stop
when there is no more improvement after k epoch.

5 Evaluation

We run our experiment on a normal desktop with a NVIDIA GTX 1080 8GB. We use 2
layer LSTM with 256 hidden units, (took around 5GB RAM and has 66157396 parameters),
vocabulary size is 50000 (covers 90%+). Attention is used and beam size is set to 5 for beam
search (there is no randomness injected, so the response is quite deterministic). Normally
it took 1h (around 7 epoch) for sockeye to reach the best result, it will continue 3 epoch
before stop training. For OpenNMT-tf, the default config would take 83.7h to finish training
(1000000 steps), so we force it to stop after 1h.
One thing to note is there is no hard metrics for evaluating a chatbot [6]. We use perplexity
like NMT, to represent how close we approach when training. For Cornell dataset, the best
perplexity in training on evaluation set is 90, for Twitter dataset, the best perplexity is 135.
However, the most popular way for testing a dialog system now is to employ human to give
judgement (i.e. is this a bot or a human), which is quite expensive, so we skipped it and
only tested it among team members.

5.1 Word embedding

We didn’t initialize our embedding matrix with pre-trained value from word2vec or GloVe,
and let they be part of the parameters and trained along. Although our data is not large,
but it’s big enough to capture the similarity of words, so even without careful text processing
(section 4.2), our eventual result won’t suffer much from that, because words like love and

6

https://github.com/OpenNMT/OpenNMT-py
https://github.com/OpenNMT/OpenNMT
https://github.com/OpenNMT/OpenNMT-tf
https://github.com/tensorflow/nmt
https://github.com/google/seq2seq
https://github.com/tensorflow/tensor2tensor
https://github.com/awslabs/sockeye


Love does not have very large distance as shown in figure 3 11. We did normalize text in
some runs, but since it’s hard to evaluate automatically, we find little difference for the
limited input we have tried.

Figure 3: Word embedding with random initialization

5.2 Entity recognition

Although we didn’t implement named entity recognition (which is a core part of industrial
strength chatbot). Some dialog can shows our naive end to end framework can capture
simple entity like refer to different person he, she, I (Table 7). However the grammar can
be very wrong i.e. I don't what I was, it’s likely to be caused by I was appers much
more than I am in training data.

5.3 Generic Response

There are a lot generic responses in the chats we have listed (Table 4, 5, 7). It’s a common
problem if look at all the chatbots using seq2seq only. Attention is said to be able to improve
this, but we didn’t see much difference when attention is applied. We believe this can’t be
solved easily if we stick to a simple end to end framework like seq2seq, extra knowledge
must be introduced, like named entity recognition. When training data is relative large, the
model will fit to the most common dialogs, which falls to I don't know, what do you mean.
Some people chose to train the already trained model with very small dataset to generate
more vivid dialog, which we believe is just a more advanced trick of using hard coded rules
to shrink the domain of response and is not a general solution.
Also, we believe the generic response also have a lot to do with our dataset. The Cornell
Movie Dialog Corpus we are using is quite dramatic, it’s script for movie after all. It would
be better to have corpus that covers people’s daily life. Ubuntu Corpus [7] might be a good
choice, it is very technical but more closer to daily life. Twitter no longer allows people to
scrap and share data, people doing that has legal issues. There are people sharing Reddit
data (1TB) but we haven’t tried that yet.

11you can also use tensorboard for mxnet based application https://github.com/dmlc/
tensorboard

7

https://github.com/dmlc/tensorboard
https://github.com/dmlc/tensorboard


Table 7: Simple entity recognition

Cornell Movie Dialog Twitter Chat
Q: what do you think about him
A: what do you mean?
Q: where is he
A: i don’t know what he is.
Q: where is she
A: she said she was a <unk>
Q: she said what?
A: she said she was a <unk>
Q: he said what?
A: he said he was a <unk>
Q: i said what?
A: what do you want?

Q: where is he
A: i think he is a <unk>
Q: where is she
A: i don’t know what she was in the <unk>
Q: where is him
A: i think he is a <unk>
Q: where is her
A: i don’t know what she was in the <unk>
Q: where am i
A: i don’t know what i was in the <unk>
Q: what is he doing
A: i think he is a <unk>
Q: what is she doing
A: i think she is a <unk>
Q: what am i doing
A: i don’t know what you want to do with the
<unk>

6 Conclusion

We built an open domain generative chatbot using seq2seq model with Tensorflow and
MXNet respectively. The bot is able to capture simple entity, but most responses are pretty
generic. End to end model using seq2seq is easy to implement, but using it alone can’t
yield good result. In the future we plan to try entity recognition and larger dataset with
distributed training, and might switch to retrieval based chatbot.
The workload in the project is distributed as following

• Pinglei Guo: Data Pipeline, Part of Tensorflow of MXNet based implementation
• Yusi Xiang: Twitter Data, Part of MXNet based implementation
• Yunzheng Zhang: Cornell Data, Part of Tensorflow based implementation
• Weiting Zhan: Twitter Data, Test, Report

The authors like to thank Tianyi Luo and Haiyu Yang for advice on the seq2seq model and
organizing python codebase.

References

[1] Mart ı́ n Abadi et al. “Tensorflow: Large-scale machine learning on heterogeneous dis-
tributed systems”. In: arXiv preprint arXiv:1603.04467 (2016).

[2] Tianqi Chen et al. “Mxnet: A flexible and efficient machine learning library for hetero-
geneous distributed systems”. In: arXiv preprint arXiv:1512.01274 (2015).

[3] Cristian Danescu-Niculescu-Mizil and Lillian Lee. “Chameleons in imagined conversa-
tions: A new approach to understanding coordination of linguistic style in dialogs.” In:
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics,
ACL 2011. 2011.

[4] Deep Learning for Chatbots, Part 1 - Introduction.
[5] Anjuli Kannan et al. “Smart reply: Automated response suggestion for email”. In: arXiv

preprint arXiv:1606.04870 (2016).
[6] Chia-Wei Liu et al. “How NOT to evaluate your dialogue system: An empirical study

of unsupervised evaluation metrics for dialogue response generation”. In: arXiv preprint
arXiv:1603.08023 (2016).

[7] Ryan Lowe et al. “The ubuntu dialogue corpus: A large dataset for research in unstruc-
tured multi-turn dialogue systems”. In: arXiv preprint arXiv:1506.08909 (2015).

8



[8] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. “Effective approaches
to attention-based neural machine translation”. In: arXiv preprint arXiv:1508.04025
(2015).

[9] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with
neural networks”. In: Advances in neural information processing systems. 2014, pp. 3104–
3112.

9


	Introduction
	Chatbot
	Machine Learning Frameworks

	Model
	Dataset
	Handling I don't know in Cornell Movie Dialog Corpus
	Twitter Chat log with emoji

	Implementation
	Data Pipeline
	Text processing
	Seq2Seq Frameworks
	Sockeye (MXNet)
	OpenNMT-tf (Tensorflow)


	Evaluation
	Word embedding
	Entity recognition
	Generic Response

	Conclusion

