A note on the total domination number of a tree

1Mustapha Chellali and 2Teresa W. Haynes

1Department of Mathematics, University of Blida.
B.P. 270, Blida, Algeria.
E-mail: m_chellali@yahoo.com

2Department of Mathematics, East Tennessee State University
Johnson City, TN 37614 USA
E-mail: haynes@mail.etsu.edu

Abstract
A set \(S \) of vertices is a total dominating set of a graph \(G \) if every vertex of \(G \) is adjacent to some vertex in \(S \). The minimum cardinality of a total dominating set is the total domination number \(\gamma_t(G) \). We show that for a nontrivial tree \(T \) of order \(n \) and with \(\ell \) leaves, \(\gamma_t(T) \geq (n + 2 - \ell)/2 \), and we characterize the trees attaining this lower bound.

Keywords: total domination, trees.
AMS subject classification: 05C69

1 Introduction
In a graph \(G = (V, E) \), the open neighborhood of a vertex \(v \in V \) is \(N(v) = \{u \in V \mid uv \in E\} \), and the closed neighborhood is \(N(v) \cup \{v\} \). The degree of a vertex \(v \) denoted by \(\text{deg}_G(v) \) is the cardinality of its open neighborhood. A leaf of a tree \(T \) is a vertex of degree one, while a support vertex of \(T \) is a vertex adjacent to a leaf.

A subset \(S \subseteq V \) is a dominating set of \(G \) if every vertex in \(V - S \) has a neighbor in \(S \) and is a total dominating set, abbreviated TDS, if every vertex in \(V \) has a neighbor in \(S \). The domination number \(\gamma(G) \) (respectively, total domination number \(\gamma_t(G) \)) is the minimum cardinality of a dominating set (respectively, total dominating set) of \(G \). A total dominating set of \(G \) with
minimum cardinality is called a \(\gamma_t(G) \)-set. Total domination was introduced by Cockayne, Dawes and Hedetniemi [2]. For a comprehensive survey of domination in graphs and its variations, see [3, 4].

Recently, the authors [1] showed that every tree \(T \) of order \(n \geq 3 \) and with \(s \) support vertices satisfies \(\gamma_t(T) \leq (n + s)/2 \). In this note we give a lower bound on the total domination number of a tree \(T \) in terms of the order \(n \) and the number of leaves \(\ell \), namely, \(\gamma_t(T) \geq (n + 2 - \ell)/2 \), and we characterize the extremal trees. Note that Lemańska [5] proved that \(\gamma(T) > (n + 2 - \ell)/3 \) for every tree \(T \) of order at least three.

2 Main results

Before presenting our main results, we make a couple of straightforward observations.

Observation 1 If \(v \) is a support vertex of a graph \(G \), then \(v \) is in every \(\gamma_t(G) \)-set.

Observation 2 For any connected graph \(G \) with diameter at least three, there exists a \(\gamma_t(G) \)-set that contains no leaves of \(G \).

In order to characterize extremal trees attaining our lower bound, we define the family \(T \) of trees to consist of all trees \(T \) that can be obtained from a sequence \(T_1, T_2, \ldots, T_k \) (\(k \geq 1 \)) of trees such that \(T_1 \) is the path \(P_4 \) with support vertices \(x \) and \(y \), \(T = T_k \), and, if \(k \geq 2 \), \(T_{i+1} \) can be obtained recursively from \(T_i \) by one of the following operations. Let \(A(T_1) = \{x, y\} \) and \(H \) be a path \(P_4 \) with support vertices \(u \) and \(v \).

- **Operation** \(O_1 \): Attach a vertex by adding an edge to any vertex of \(A(T_i) \). Let \(A(T_{i+1}) = A(T_i) \).
- **Operation** \(O_2 \): Attach a copy of \(H \) by adding an edge from a leaf of \(H \) to any leaf in \(T_i \). Let \(A(T_{i+1}) = A(T_i) \cup \{u, v\} \).
- **Operation** \(O_3 \): Attach a copy of \(H \) by adding a new vertex \(w \) and edges \(uw \) and \(wz \), where \(z \) is a leaf of \(T_i \). Let \(A(T_{i+1}) = A(T_i) \cup \{u, v\} \).

Lemma 3 If \(T \in T \), then \(A(T) \) is a \(\gamma_t(T) \)-set of size \((n + 2 - \ell)/2 \).

Proof. We use the terminology of the construction for the tree \(T = T_k \), the set \(A(T) \), and the graph \(H \) with support vertices \(u \) and \(v \). To show
that $A(T)$ is a $\gamma_t(T)$-set of cardinality $(n + 2 - \ell)/2$, we use induction on the number of operations k performed to construct T. The property is true for $T_1 = P_4$. Suppose the property is true for all trees of T constructed with $k - 1 \geq 0$ operations. Let $T = T_k$ with $k \geq 2$, D be a $\gamma_t(T)$-set, and $T' = T_{k-1}$. Assume that T' has order n' and ℓ' leaves.

If T was obtained from T' by Operation O_1, then $\gamma_{pr}(T) = \gamma_{pr}(T')$, $n = n' + 1$, and $\ell = \ell' + 1$. By induction on T', $A(T') = A(T)$ is a $\gamma_t(T)$-set of cardinality $(n + 2 - \ell)/2$.

Assume now that T was obtained from T' using Operation O_2 or O_3. Then we have $n = n' + 4$ and $\ell = \ell'$ or $n = n' + 5$ and $\ell = \ell' + 1$, respectively. Since $A(T) = A(T') \cup \{u, v\}$ is a TDS of T, $\gamma_t(T) \leq |A(T)| = \gamma_t(T') + 2$. Now by Observations 1 and 2, D contains u and v, and, without loss of generality, D contains no neighbor of u besides v, for otherwise it can be replaced by a vertex of T'. Thus, $D - \{u, v\}$ is a TDS of T' and $\gamma_t(T') \leq \gamma_t(T) - 2$. It follows that $\gamma_t(T) = \gamma_t(T') + 2$ and $A(T)$ is a $\gamma_t(T)$-set. By induction on T', it is routine matter to check that $|A(T)| = (n + 2 - \ell)/2$.

We now are ready to establish our main result.

Theorem 4 If T is a nontrivial tree of order n and with ℓ leaves, then $\gamma_t(T) \geq (n + 2 - \ell)/2$ with equality if and only if $T \in T$.

Proof. If $T \in T$, then by Lemma 3, $\gamma_t(T) = (n + 2 - \ell)/2$. To prove that if T is a tree of order $n \geq 2$, then $\gamma_t(T) \geq (n + 2 - \ell)/2$ with equality only if $T \in T$, we perform by induction on the order n. If $diam(T) \in \{1, 2\}$, then $\gamma_t(T) = 2 > (n + 2 - \ell)/2$. If $diam(T) = 3$, then T is a double star where $T \in T$ and $\gamma_t(T) = (n + 2 - \ell)/2$. In this case if T is different from $T_1 = P_4$, then it can be obtained from T_1 by using Operation O_1. This establishes the base cases.

Assume that every tree T' of order $2 \leq n' < n$ and with ℓ' leaves satisfies $\gamma_t(T') \geq (n' + 2 - \ell'/2)$ with equality only if $T' \in T$. Let T be a tree of order n with ℓ leaves.

If any support vertex, say x, of T is adjacent to two or more leaves, then let T' be the tree obtained from T by removing a leaf adjacent to x. Then $\gamma_t(T') = \gamma_t(T), n' = n - 1$, and $\ell' = \ell - 1$. Applying the inductive hypothesis to T', we obtain the desired inequality. Further if $\gamma_t(T) = (n + 2 - \ell)/2$, then $\gamma_t(T') = (n + 2 - \ell)/2 = (n' + 2 - \ell')/2$, and $T' \in T$. Thus, $T \in T$ and is obtained from T' by using Operation O_1. Henceforth, we can assume that every support vertex of T is adjacent to exactly one leaf.

We now root T at a vertex r of maximum eccentricity $diam(T) \geq 4$. Let v be a support vertex at maximum distance from r, u be the parent of v,
and w be the parent of u in the rooted tree. Note that $\deg_T(w) \geq 2$. Let S be a $\gamma_t(T)$-set that contains no leaves. Denote by T_v the subtree induced by a vertex v and its descendants in the rooted tree T. We distinguish between two cases.

Case 1. $\deg_T(u) \geq 3$. Then either u has a child $b \neq v$ that is a support vertex or every child of u except v is a leaf.

Suppose first that u has a child $b \neq v$ that is a support vertex. Let $T' = T - T_v$. Then $n' = n - 2 \geq 4$ and $\ell' = \ell - 1$. By Observation 1, v and b are in S. Observation 2 and our choice of S imply that S contains u. Therefore $S - \{v\}$ is a TDS of T' and $\gamma_t(T') \leq \gamma_t(T) - 1$. Again by Observation 2, there is a $\gamma_t(T')$-set that contains b and u, and such a set can be extended to a TDS of T by adding v. Hence $\gamma_t(T) \leq \gamma_t(T') + 1$ implying that $\gamma_t(T') = \gamma_t(T) - 1$. By induction on T', we have $\gamma_t(T) = \gamma_t(T') + 1 \geq (n' + 2 - \ell')/2 + 1 = (n + 2 - \ell + 1)/2$. Thus $\gamma_t(T) > (n + 2 - \ell)/2$.

Now assume that every child of u except v is a leaf. Since u is adjacent to exactly one leaf, $\deg_T(u) = 3$. If $\deg_T(w) \geq 3$, then let $T' = T - T_u$. Then $n' = n - 4 \geq 3$, $\ell' = \ell - 2$, and $\gamma_t(T) \leq \gamma_t(T') + 2$ since any $\gamma_t(T')$-set can be extended to a TDS of T by adding the set $\{u, v\}$. Also since $\deg_T(w) \geq 3$, w is a support vertex or w has a descendant $x \neq u$ that is a support vertex. By our choice of v, the vertex x is at distance at most two from w. In any case Observation 1 and our choice S imply that w is total dominated by $S - \{u, v\}$, and hence $\gamma_t(T') \leq \gamma_t(T) - 2$. It follows that $\gamma_t(T) = \gamma_t(T') - 2$. By induction on T', we obtain $\gamma_t(T) = \gamma_t(T') + 2 \geq (n' + 2 - \ell')/2 + 2 = (n + 2 - \ell + 2)/2 > (n + 2 - \ell)/2$.

If $\deg_T(w) = 2$, then let $T' = T - T_w$. Then $n' = n - 5 \geq 1$. If $n' = 1$, then T is a corona of P_3, where $\gamma_t(T) = 3 > (n + 2 - \ell)/2$. Thus we assume that $n' \geq 2$ and so $\ell - 1 \geq \ell'$. Then S contains v and u, and without loss of generality, $w \notin S$ (else substitute w by a vertex from the closed neighborhood of the parent of w). Hence, $S - \{u, v\}$ is a TDS of T' and $\gamma_t(T') \leq \gamma_t(T) - 2$. Also $\gamma_t(T) \leq \gamma_t(T') + 2$ since every $\gamma_t(T')$-set can be extended to a TDS of T by adding $\{u, v\}$. It follows that $\gamma_t(T') = \gamma_t(T) - 2$. Now by induction on T', we obtain $\gamma_t(T) = \gamma_t(T') + 2 \geq (n' + 2 - \ell')/2 + 2 = (n + 2 - \ell)/2$.

Further if $\gamma_t(T) = (n + 2 - \ell)/2$, then we have equality throughout this inequality chain. In particular, $\gamma_t(T') = (n' + 2 - \ell')/2$ and $\ell - 1 = \ell'$, that is, the parent of w in T is a leaf in T'. Thus by the inductive hypothesis on T', $T' \in T$. Since T is obtained from T' by using Operation O_3, it follows that $T \in T$.

Case 2. $\deg_T(u) = 2$. If $\deg_T(w) \geq 3$, then let $T' = T - T_u$. Clearly, $n' = n - 3$ and $\ell' = \ell - 1$. Using an argument similar to one in Case 1, it is straightforward to show that $\gamma_t(T) = \gamma_t(T') + 2$. By induction on T', we
have $\gamma_t(T) = \gamma_t(T') + 2 \geq (n' + 2 - \ell')/2 + 2 = (n + 2 - \ell + 2)/2 > (n + 2 - \ell)/2$

Assume now that $\deg_T(w) = 2$. Let $T' = T - T_w$. Then $n' = n - 4$ and $\ell' \leq \ell$. Further we assume that $n' \geq 2$ else T is path P_5 where $\gamma_t(T) = 3 > (n + 2 - \ell)/2$. Also, as before it is straightforward to show that $\gamma_t(T) = \gamma_t(T') + 2$. Applying the inductive hypothesis to T', it follows that $\gamma_t(T) = \gamma_t(T') + 2 \geq (n' + 2 - \ell')/2 + 2 = (n + 2 - \ell)/2$.

Further if $\gamma_t(T) = (n + 2 - \ell)/2$, then we must have equality throughout this inequality chain. In particular, $\gamma_t(T') = (n' + 2 - \ell')/2$ and $\ell = \ell'$, that is, the parent of w is a leaf in T'. Thus by the inductive hypothesis, $T' \in T$. Since T is obtained from T' using Operation O_2, it follows that $T \in T$. □

References

