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ARM big.LITTLE Architecture
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ARM big.LITTLE Schematic



  

big.LITTLE Architecture: Strategy

● Run on the LITTLE by default
● Run on big if heavy processing power is required
● In other words, if feasible, run on LITTLE for efficiency, but run on big if 

necessary to preserve user experience
● Use big CPUs for media processing, rendering, etc.
● This suggests that RCU callbacks should run on LITTLE CPUs, possibly also 

for timers and other low-priority asynchronous events
● Key point: Goal of big.LITTLE scheduling is to distribute tasks unevenly to 

handle different energy-efficiency and performance goals
● Unlike traditional SMP, it now matters where a task is scheduled



  

SMP OS (Morten Rasmussen)



  

big.LITTLE OS (Morten Rasmussen)



  

Morten Rasmussen Approach

● Leverage Paul Turner's Entity Load Tracking 
work

● Policy: Keep all tasks on LITTLE cores unless:
● The task load is above a fixed threshold, and
● The task priority is default or higher



  

What Is RCU?
(AKA Read-Copy Update)

● For an overview, see http://lwn.net/Articles/262464/ or 
http://doi.acm.org/10.1145/2488364.2488549

● For the purposes of this presentation, think of RCU as something that 
defers work, with one work item per callback
● Each callback has a function pointer and an argument
● Callbacks are queued on per-CPU lists, invoked after “grace period”
● Deferring the work a bit longer than needed is OK, deferring too long is bad (splat 

after 20 seconds) – but failing to defer long enough is fatal
● RCU allows extremely fast & scalable read-side access to shared data

rcu_datarcu_datarcu_datarcu_data

rcu_head

    ->next

    ->func

rcu_head

    ->next

    ->func

rcu_head

    ->next

    ->func



  

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Very Unlikely to be the Right Tool For The Job, But it Can:

(1) Provide Existence Guarantees For Update-Friendly Mechanisms
(2) Provide Wait-Free Read−Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Use the right tool for the job!!!



  

RCU Applicability to Linux Kernel



  

ARM big.LITTLE Without RCU Callback Offloading
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1: ARM big.LITTLE With RCU Callback Offloading
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2: ARM big.LITTLE With Reduced Wakeups
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Results Summary



  



  

Which is Better?

● Both produce real benefits
● Offloading gives slightly better wall-clock time
● Enforced idle gives slightly better energy efficiency
● Combining them does not help

● Both are needed
● Offloading for real time and reduced OS jitter
● Enforced idle for SMP energy efficiency
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