

Improving Energy Efficiency On
Asymmetric Multiprocessing

Systems

Paul E. McKenney (IBM Linux Technology Center assigned to Linaro)
Dietmar Eggeman (ARM Ltd. Cambridge)
Robin Randhawa (ARM Ltd. Cambridge)

ARM big.LITTLE Architecture

Cortex-A15 Cortex-A15

Cortex-A7 Cortex-A7 Cortex-A7

Twice as fast

~3 times more
energy efficient

big

LITTLE

ARM big.LITTLE Schematic

big.LITTLE Architecture: Strategy

● Run on the LITTLE by default
● Run on big if heavy processing power is required
● In other words, if feasible, run on LITTLE for efficiency, but run on big if

necessary to preserve user experience
● Use big CPUs for media processing, rendering, etc.
● This suggests that RCU callbacks should run on LITTLE CPUs, possibly also

for timers and other low-priority asynchronous events
● Key point: Goal of big.LITTLE scheduling is to distribute tasks unevenly to

handle different energy-efficiency and performance goals
● Unlike traditional SMP, it now matters where a task is scheduled

SMP OS (Morten Rasmussen)

big.LITTLE OS (Morten Rasmussen)

Morten Rasmussen Approach

● Leverage Paul Turner's Entity Load Tracking
work

● Policy: Keep all tasks on LITTLE cores unless:
● The task load is above a fixed threshold, and
● The task priority is default or higher

What Is RCU?
(AKA Read-Copy Update)

● For an overview, see http://lwn.net/Articles/262464/ or
http://doi.acm.org/10.1145/2488364.2488549

● For the purposes of this presentation, think of RCU as something that
defers work, with one work item per callback
● Each callback has a function pointer and an argument
● Callbacks are queued on per-CPU lists, invoked after “grace period”
● Deferring the work a bit longer than needed is OK, deferring too long is bad (splat

after 20 seconds) – but failing to defer long enough is fatal
● RCU allows extremely fast & scalable read-side access to shared data

rcu_datarcu_datarcu_datarcu_data

rcu_head

 ->next

 ->func

rcu_head

 ->next

 ->func

rcu_head

 ->next

 ->func

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Very Unlikely to be the Right Tool For The Job, But it Can:

(1) Provide Existence Guarantees For Update-Friendly Mechanisms
(2) Provide Wait-Free Read−Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Use the right tool for the job!!!

RCU Applicability to Linux Kernel

ARM big.LITTLE Without RCU Callback Offloading

big CPU
CB

Grace Period

LITTLE CPU

Busy

Busy Busy Busy

call_rcu()

1: ARM big.LITTLE With RCU Callback Offloading

CB

Busy Busy Busy

big CPU

CB

Grace Period

LITTLE CPU

Busy

call_rcu()

Slower...
But 3x better

energy efficiency

2: ARM big.LITTLE With Reduced Wakeups

big CPU
CB

Extended Grace Period

LITTLE CPU

Busy

Busy Busy Busy

call_rcu()

Must wait for fourth “jiffy”

Results Summary

Which is Better?

● Both produce real benefits
● Offloading gives slightly better wall-clock time
● Enforced idle gives slightly better energy efficiency
● Combining them does not help

● Both are needed
● Offloading for real time and reduced OS jitter
● Enforced idle for SMP energy efficiency

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

