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Abstract: Background. Recently, attention has been focused

on molecular targeted cancer therapy in various tumors.

Although there is no single consistent molecular target specific

for oral squamous cell carcinoma (OSCC) and salivary gland

cancer (SGC), there are a number of promising candidate pro-

teins. The aim of this review is to introduce the basic evidences

to support the molecular targeting for OSCC and SGC.

Methods. We focused on the 4 molecules, epidermal growth

factor receptor (EGFR), cyclooxygenase-2 (COX-2), peroxisome

proliferator-activated receptor g (PPARg), and progesterone re-

ceptor, that are, respectively, associated with the proliferation

and the differentiation of OSCC and SGC.

Results. Gefitinib (‘‘Iressa,’’ ZD1839), a small molecule

EGFR tyrosine kinase inhibitor, can inhibit the proliferation of

OSCC cell lines in a dose- and time-dependent manner and

lead to cell cycle arrest with accumulation of cells in the G1

phase, and a decrease of cells in S phase. The agent sup-

pressed tumor metastasis in the animal model. Furthermore, a

cooperative antiproliferative effect was obtained when cancer

cells were treated with radiation followed by gefitinib. While radi-

ation alone did not significantly affect p38 mitogen-activated

protein kinase and MAP kinase kinase (MEK)1/2 autophospho-

rylation, the combination of gefitinib and radiation completely

inhibited the downstream signaling of EGFR. Gefitinib enhanced

tumor radioresponsiveness by multiple mechanisms, including

the growth inhibition and effects on DNA repair after exposure to

radiation. Next, the level of COX-2 expression correlated inver-

sely with increased tumor radiation sensitivity. Treatment with

celecoxib, a COX-2 selective inhibitor, enhanced the radiore-

sponsiveness of HSC-2 cells, which constitutively expressed

COX-2. Another promising molecular target is the PPARg, which
is a member of the nuclear receptor superfamily of ligand-acti-

vated transcription factors. Recent studies have demonstrated

that PPARg ligands induce cellular differentiation and inhibit cell

growth in carcinomas of various types. These data suggest that

synthetic PPARg ligands may be useful for molecular targeting

of oral cancer. Finally, the possibility of using molecular targeted

therapy directed at hormone receptors in the treatment of

advanced SGCs was described.
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Conclusion. The basic data strongly suggested the possibil-

ity of tumor suppression by targeting these molecules. Studies

of different targeted agents alone or with more conventional

treatment modalities are needed to fully determine what role the

targeted therapy will play in the management of patients with

OSCC and SGC. VVC 2008 Wiley Periodicals, Inc. Head Neck

30: 800–809, 2008
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vated receptor g; thiazolidinedione; salivary gland cancer

Despite multidisciplinary treatment with sur-
gery, chemotherapy, and radiation, the overall
survival rate has not improved significantly in
patients with oral cancer. Novel therapeutic alter-
natives to standard therapy need to be established
to improve the prognosis for patients with
advanced oral cancer. Molecular targeted therapy
is a treatment modality that targets molecules
and proteins that are selectively expressed by can-
cer cells. These include growth factors and their
receptors, signal transduction molecules, onco-
genes, hormones, apoptosis-related molecules,
angiogenesis-related factors, as well as inhibitors
of cell motility, invasion, and proteolysis. Molecu-
lar targeted therapy has several potential advan-
tages compared with conventional anticancer
agents as summarized in Table 1. Some of the mo-
lecular targeted agents that are currently avail-
able are listed in Table 2. Here we review molecu-
lar targeted therapy and offer several examples of
promising molecular targets in oral squamous cell
carcinoma (OSCC) and salivary gland cancer
(SGC), including the epidermal growth factor re-
ceptor (EGFR), cyclooxygenase-2 (COX-2), peroxi-
some proliferator-activated receptor g (PPARg),
and the progesterone receptor (PR).

EPIDERMAL GROWTH FACTOR RECEPTOR

Targeting the EGFR Inhibits OSCC Proliferation. The
EGFR and the cell cycle have been independently

evaluated as targets for therapy, and there is evi-
dence supporting a role for the inhibition of cell cy-
cling through blockade of EGFR-mediated signals
via small-molecule tyrosine kinase inhibitors
(TKIs) of the cytosolic kinase domain or antibody
targeting of the extracellular portions of the
EGFR.1–4 Gefitinib (‘‘Iressa,’’ ZD1839), a small-
molecule EGFR TKI, can inhibit the proliferation
of OSCC cell lines in a dose- and time-dependent
manner and lead to cell cycle arrest with accumu-
lation of cells in the G1 phase, and a decrease of
cells in S phase as determined by flow cytometric
analysis.5

C225, an anti-EGFR antibody, induces G1
arrest in human OSCC cell lines, via an upregula-
tion of p27KIP1 cyclin-dependent kinase inhibitor.6

Gefitinib has also been shown to induce G1 arrest
via levels of p27KIP1 throughmodulation of ubiqui-
tin-dependent protein degradation.7,8 Cell growth
is inhibited by an increase of the cell cycle inhibitor
p27KIP1 and a decrease of its ubiquitin ligase
subunit.5

Blocking the EGFR can lead to inhibition of re-
gional lymph node metastasis in OSCC, and the
effect of gefitinib treatment on OSCC cells has
also been examined in an orthotopic nude mouse
model. Using an OSCC cell line with a high level
of green fluorescent protein, (GFP)-SAS-L1,
lymph node metastasis could be readily detected
visually after orthotopic injection in the tongues
of nude mice.9 Using this model, treatment
with gefitinib reduced the identification from all
of 12 mice with metastases in the control group to
6 of 13 of gefitinib-treated animals with metasta-
ses (46.2%).10

Cell adhesion to the extracellular matrix
(ECM) is a step involved in invasion and metasta-
sis. The ability of stable transfectants to adhere to
the ECM proteins has been investigated. Cells
treated with gefitinib reduced attachment to fibro-
nectin but not laminin, and it was also suggested

Table 1. Comparison of conventional agent and molecular targeting therapy.

Conventional agent Molecular targeting therapy

Target DNA, protein Specific molecule of cancer cell

Acting mechanism Cytotoxic Each/both of cytotoxic and cytostatistic

Optimal dose Close to MTD Not necessarily compatible to MTD

Endpoint of therapy CR or PR of the tumor CR or PR of the tumor, improvement of QOL

Accumulation High Little

Profile of toxicity Characteristic to the structure of the agent Characteristic to the target molecule

Bone marrow suppression Frequent Rare (depends on the target molecule)

Nausea, vomiting Frequent Rare (depends on the target molecule)

Abbreviations: MTD, maximum-tolerated dose; CR, complete remission; PR, partial remission; QOL, quality of life.
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that the reduction of cell adhesion in OSCC is sec-
ondary to downregulation of integrin a3, av, b1,
b4, b5, b6 and focal adhesion kinase (FAK) phos-
phorylation by EGFR blockade therapy with gefi-
tinib.10 Previous reports described that some
integrins, such as avb6, a5b1, avb1, contribute to
SCC migration.11,12 FAK is associated with integ-
rins within focal adhesions, and integrin activa-
tion by ECM ligands is associated with increased
tyrosine phosphorylation and kinase activity of
FAK.13,14

In summary, several studies confirm that sys-
temic administration of EGFR targeting inhibits
metastasis of human OSCC implanted in the
tongues of athymic nude mice. There are data to
support that the selective downregulation of
integrin expression and FAK phosphorylation by
the tumor cells after gefitinib therapy leads to the
reduction of cell adhesion to the ECM, thus con-
tributing to the reduction in spontaneous metas-
tasis from these highlymetastatic tumors.10

Enhancement of Tumor Radiosensitivity by Combined

Treatment with EGFR Targeted Agents. Recent
studies have shown that molecular blockade of
EGFR with either an EGFRmonoclonal antibody
or an EGFR TKI enhances the radiosensitivity of
human squamous cell carcinomas.15–17 There are
extensive data showing that cetuximab (Erbitx,
mC225) can sensitize OSCC to external beam
radiation and this can lead to decreased clono-
genic survival of tumor cells in vitro assays, and
decreased tumor growth in vivo models. These
observations have led to a series of clinical inves-
tigations that culminated in a phase III clinical
trial for patients with locoregionally advanced
OSCC, who were randomized to treatment with
radiotherapy alone versus radiotherapy plus
cetuximab. This landmark clinical trial showed
statistically significant benefits in locoregional
control and survival for patients who received

the investigational agent, and subsequently led
to the Food and Drug Administration approval of
cetuximab for the treatment of locoregionally
advanced OSCC.

The combination of radiotherapy given along
with small-molecule TKIs has also been investi-
gated. It was found that when the EGFR-TKI,
gefitinib (‘‘Iressa,’’ ZD1839), was given in combi-
nation with radiation in vitro, a cooperative anti-
proliferative effect was obtained when cancer cells
were treated with radiation followed by gefitinib.
Cells treated with a combination of radiation and
gefitinib were arrested in G1 and G2-M phases
with a decrease in the S phase population.18While
radiation alone did not significantly affect p38
mitogen-activated protein kinase andMAP kinase
kinase (MEK)1/2 autophosphorylation, the combi-
nation of gefitinib and radiation completely inhib-
ited the downstream signaling of EGFR. Results
from DNA damage repair analysis in cultured
OSCC cells demonstrated that gefitinib had a
strong inhibitory effect on the DNA-dependent
protein kinase complex pathways after radiation.
Tumor xenograft studies demonstrated that the
combination of gefitinib and radiation caused
growth inhibition and tumor regression of well-
establishedOSCC tumors in athymicmice (Figure
1). Immunohistochemical analysis of OSCC xeno-
grafts revealed that gefitinib caused a striking
decrease in tumor cell proliferation when com-
bined with radiotherapy. Overall, the investiga-
tors concluded that gefitinib enhances tumor
radioresponsiveness by multiple mechanisms
that involve antiproliferative growth inhibition
and effects on DNA repair after exposure to radia-
tion (Figure 2).18

CYCLOOXYGENASE-2

COX is a key enzyme in the conversion of arachi-
donic acid to prostaglandins (PGs). COX-1 is con-

Table 2. Agents for molecular targeting therapy.

Generic name Product name (manufacturer) Molecular target Indication

Imatinib Glivec (Novartis Pharmaceuticals) Bcr-Abl/TK CML

Gefitinib Iressa (AstraZeneca) EGFR/TK NSCLC

Erlotinib Tarceva (Genentech, OSI Pharmaceuticals) EGFR/TK NSCLC, pancreatic cancer

Cetuximab Erbitux (Bristol-Myers Squibb, ImClone Systems) EGFR Colon cancer

Trastuzumab Herceptin (Genentech) HER2 Breast cancer

Bevacizumab Avastin (Genentech) VEGF Colon cancer

Rituximab Rituxan (Genentech, Biogen Idec) CD20 NHL

Gemtuzumab Mylotarg (Wyeth Ayerst) CD33 AML

Abbreviations: TK, tyrosine kinase; CML, chronic myelogenous leukemia; EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer;
VEGF, vascular endothelial growth factor; CD, cluster of differentiation; NHL, non-Hodgkin’s lymphoma; AML, acute myelogenous leukemia.
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stitutively expressed for the maintenance of
homeostatic function in most of the cells, whereas
COX-2 is induced during pathologic conditions
such as inflammation and cancers. COX-2 levels
have been found to be elevated in head and neck,
esophageal, gastric, pancreatic, hepatocellular,
colorectal, breast, and lung cancers, relative to
the normal epithelia from which these tumors de-
velop. COX-2 activation has been found to be an
early event during carcinogenesis, and its

increased expression has been associated with the
development of genomic instability. COX-2 plays an
important role in tumor growth and spread of
tumors by affecting mitogenesis, cellular adhesion,
immune surveillance, apoptosis, and angiogenesis.
In addition, inhibition of COX-2 increases radiation
sensitivity without influencing normal tissue
response to radiation. Terakado et al19 have shown
that the level of the COX-2 expression correlated
inversely with increased tumor radiation sensitiv-
ity. Furthermore, treatment with celecoxib, a COX-
2 selective inhibitor, enhanced the radioresponsive-
ness of HSC-2 cells, which constitutively expressed
COX-2. The authors concluded that COX-2 expres-
sion levels correlate with radiation tolerance and
COX-2 selective inhibition may be a potent
enhancer of radiation therapy inOSCC.

There is an increasing amount of evidence
revealing that a combined administration of non-
selective COX1/COX-2 inhibitor and EGFR inhib-
itor prevents tumor progression in preclinical
models. The molecular pathway of signal cross-
talk between EGFR and COX-2 is becoming
clearer. PGE2 transactivates and phosphorylates
EGFR and triggers the extracellular signal-regu-
lated kinase (ERK) 2-mitogenic signaling
pathway.20 PG E2 also activates the phosphatidyl
inositol 3-kinase/Akt pathway and causes migra-

FIGURE 1. Tumor suppression by radiotherapy (RT) and gefitinib. Oral squamous cell carcinoma (OSCC) cells (HSC2 and HSC3)

were treated with radiation (4 Gy), gefitinib (Gef; 1.0 lM), or a combination of the two treatments. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

FIGURE 2. Epidermal growth factor receptor (EGFR) pathway.

[Color figure can be viewed in the online issue, which is avail-

able at www.interscience.wiley.com.]
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tion, invasion, and proliferation of cancer cells.21

Tortora et al22 reported that a combination of the
COX-2 inhibitor, SC-236, ZD1839, and DNA/
RNA-mixed backbone antisense oligonucleotide
targeted against the RIa regulatory subunit of
protein kinase A, showed prolonged tumor sup-
pression of transplanted human colon cancer in
nude mice. This method seems to be a promising
treatment modality in the future, but the efficacy
of combined molecular targeting therapy should
be confirmed in the clinical setting.

PEROXISOME PROLIFERATOR-ACTIVATED

RECEPTOR c

PPARg is a member of the nuclear hormone recep-
tor superfamily of ligand-activated transcription
factors, functioning as a regulator of lipid metabo-
lism and adipocyte differentiation23,24 and exists in
2 isoforms produced by the alternative splicing at
the 50 end of the gene. Compared with PPARg1,
PPARg2 contains an N-terminal extension of
28 amino acids. Many tissues express PPARg1 at a
low level, but in adipose tissue PPARg2 is expressed
at unusually high levels.25 PPARg forms hetero-
dimers with the retinoid X receptor26 and can be
activated by ligands. Synthetic PPARg ligands are
used clinically as orally active antidiabetic agents,
for example, thiazolidinediones (TZDs) such as tro-
glitazone (TRO), pioglitazone (PIO), and ciglita-
zone27 or nonsteroidal anti-inflammatory drugs
such as indomethacin and ibuprofen.28 On the
other hand, natural ligands are 15-deoxy-D12,14-
prostaglandin J2 (15d-PGJ2),

29,30 polyunsaturated
fatty acids and fish oil components, docosahexae-
noic acid, and eicosapentaenoic acid.31

Numerous studies indicate that PPARg
ligands can induce the differentiation of human
liposarcoma32 and breast cancer cells,33 and they
can inhibit the cell growth of various carcinomas
arising from the breast,34 prostate,35 lung,36 co-
lon,37 stomach,38 bladder,39 and pancreas.40 In a
human colon cancer, mutations found in the
PPARg gene were associated with its loss of func-
tion.41 PPARg ligands can also significantly sup-
press the growth of human bladder carcinoma
cells, and the loss of PPARg expression is associ-
ated with the progression of this cancer.42 These
observations suggest that PPARgmay function as
a tumor suppressor gene, and it is therefore a
potential molecular target for cancer treatment.

In salivary gland tumors, the expression of
PPARg was demonstrated using reverse tran-
scriptase-polymerase chain reaction (RT-PCR)

and immunohistochemistry. PPARg protein was
detected in 3 of 5 pleomorphic adenomas, all of
7 adenoid cystic carcinomas, and in the 1 carci-
noma in pleomorphic adenoma but not in 5 normal
salivary gland tissues. Furthermore, the function
of PPARg in human SGC cells was investigated
using 2 classes of ligands for this protein: (1) the
naturally occurring ligand 15d-PGJ2, and (2) the
synthetic TZD derivatives, TRO and PIO. Both
the synthetic ligands induced the transcriptional
activity of intrinsic PPARg, but the natural
ligand, 15d-PGJ2, could not activate PPARg in
human SGC cells.43 Mutations within the ligand-
binding domain of PPARg can affect ligand-de-
pendent transcriptional activity.41,44 In a human
colon cancer, 2 missense mutations have been
detected in the ligand-binding domain of PPARg,
which impaired the function of the protein.41 One
of these mutations maintained the normal
response to synthetic ligands, but transcription
decreased on exposure to natural ligands. How-
ever, no mutations were detected in the total cod-
ing region of the PPARg1 gene in human SGC
cells.43 The lack of response to 15d-PGJ2 by
human SGC cells may be associated with their
expression profile of coactivators for PPARg. Syn-
thetic ligands can activate PPARg regardless of
coactivators, whereas natural ligands require
some coactivators to achieve PPARg activation.45

The synthetic ligands, TRO and PIO, both in-
hibit the growth of human SGC cells. Furthermore,
overexpression of PPARg1 or PPARg2 suppressed
significantly the growth of cancer cells regardless of
the presence of synthetic ligands. Treatment of
PPARg1 or PPARg2 transfectants with synthetic
ligands had an additive inhibitory effect on
growth.43 Therefore, the antiproliferative effects of
synthetic PPARg ligands in human SGC cells were
mediated at least in part by PPARg.

The molecular mechanisms underlying the in-
hibitory effect on growth of PPARg and its syn-
thetic ligands are largely unknown. Several
reports have indicated that PPARg and its ligands
can induce the expression of p21, p16, or p27
cyclin-dependent kinase inhibitor and thus in-
hibit cell growth.39,40 In human SGC cells, syn-
thetic PPARg ligands arrested the cell cycle at G1
phase and induced the downregulation of S-phase
kinase-associated protein (Skp) 2 protein and
accumulation of p27kip1 protein (Figure 3).
Because SGC is generally resistant to chemother-
apy and radiotherapy, the synthetic PPARg
ligands may be a useful molecular targeting drug
for treatment of this cancer.

804 Basic Evidence of Molecular Targeted Cancer Therapy HEAD & NECK—DOI 10.1002/hed June 2008



In OSCC, PPARg mRNA was detected in 17 of
28 cases using RT-PCR.46 The function of PPARg in
human OSCC cells was also investigated using the
synthetic TZD derivatives, TRO and PIO. Although
the synthetic ligands, particularly TRO, signifi-
cantly suppressed the growth of OSCC cells, they
did not induce transcriptional activity of PPARg
even in human OSCC cells expressing PPARg
mRNA.46 Loss of PPARg expression and function
may be associated with OSCC progression. It is pos-
sible that mutations in the PPARg gene may affect
ligand-dependent transcriptional activity.41,44 How-
ever, no mutations were detected in the total coding
region of the PPARg1 gene in human OSCC cells.46

According to a recent study, the antiproliferative
effect of the TZDs is independent of PPARg and
mediated instead by the inhibition of translation ini-
tiation.47 Furthermore, Nikitakis et al48 have
reported that neither rosiglitazone nor ciglitazone
inhibits cell growth in other human OSCC cells.
These results suggest that the growth-inhibiting
action of synthetic ligands may depend on some
other mechanism without affecting PPARg activa-
tion. Xin et al49 reported that vascular endothelial
cells express PPARg and its ligands are potent
inhibitors of angiogenesis both in vitro and in vivo.49

Based on these observations, we suggest that the

synthetic PPARg ligands, especially TRO, may be
useful agents for the treatment of OSCC regardless
of PPARg expression (Figure 4).

HORMONE THERAPY

In the reproductive organs, hormonal stimulation
is critically involved in carcinogenesis. For

FIGURE 3. Cell cycle analysis for human salivary gland cancer (SGC) cells treated with thiazolidinediones (TZDs). (A) Cells were

treated with troglitazone (TRO) or pioglitazone (PIO) at the concentration of 20 mM for 48 hours, and then cell cycle was analyzed

using flow cytometry. Both induced G1 arrest. Expression of S-phase kinase-associated protein (Skp) 2 and p27kip1 proteins in human

SGC cells treated with TZDs. (B) After treatment of TRO or PIO (20 mM) for 48 hours, the expression of Skp2 and p27kip1 proteins

was examined using western blotting. Both reduced the expression of Skp2 protein and induced the accumulation of p27kip1.

FIGURE 4. Antitumor effect of synthetic peroxisome proliferator-

activated receptor (PPAR) g ligands (thiazolidinediones, TZDs).

PPARg is expressed in many cancers including salivary gland

and oral epithelium. Synthetic PPARg ligands such as TZDs are

generally antiproliferative in these cancers. TZDs can suppress

tumor growth via PPARg-dependent or -independent pathways.
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instance, the sex steroid hormones, estrogen and
progesterone, play an important role in normal
mammary gland development, and it is believed
that breast cancer progression is influenced by
these hormones and their receptors.50–53 Human
SGC has been reported to have some similarity

withmammary gland tumor with regard to its his-
tology and steroid hormone receptor status.54

Moreover, some studies have shown the possibil-
ity of the involvement of steroid hormone receptor
in SGC progression.55–58 On the other hand, it is
considered that these hormones basically do not
have a role in OSCC, although some studies sug-
gest the possibility of a response to steroid hor-
mones.59 Therefore, in this section, we focus on
the possibility of a hormonal therapy for SGC.

First, the progesterone–progesterone receptor
(Pg-PR) system plays an important role in various
gynecologic malignant tumors.60–62 In patients
with breast cancer, the level of these steroid hor-
mone receptors is a strong prognostic factor and
has been used in clinical management as an indi-
cator of endocrine responsiveness.52,53 However,
depending on the tissue type, progesterone is clas-
sified as a hormone involved in proliferation or dif-
ferentiation.63,64 It was already reported that in
human aggressive breast cancer cells without PR,
reintroduction of PR after progesterone treatment
is sufficient to reduce the malignant pheno-
types.65 Hence, it is hypothesized that PR also
plays an important role in SGC. This is because
some investigators have reported that SGC often
expressed PR.54,56–58 Following progesterone
treatment, the PR transfected SGC cells showed
drastic morphological change; the transfectants
appeared more flattened and spread out when
compared with the control cells.66 Furthermore, a
significant reduction in the proliferative activity
of the transfectants was also observed after Pg
treatment (Figure 5A). The percentage of labeled
nuclei reduced significantly in the PR transfec-
tants (Figure 5B). The growth-inhibitory effect of
progesterone in the PR-transfected SGC cells was
associated with dose-dependent reductions in the
percentage of the S-phase cells along with an
increase in the G0-G1 phase cells,66 the down-
regulation of Id-1 and c-myc proteins, and the
upregulation of p21 as shown in Figure 6.

Estrogen receptor (ER) also has a role in SGC
cells. Ohshiro et al67 reported that estrogen
induced cell migration of ER-positive SGC cells,
and this effect was blocked by the pure antiestro-
gen and MAP/ERK kinase inhibitor. Basically, the
Et-ER system is expected to possess the opposite
effects to Pg-PR system. This kind of phenomenon
is often observed in the cells derived from malig-
nant tumors of the reproductive organs in
females.

Moreover, the androgen-androgen receptor
(AR) systemwas also reported to offer a possibility

FIGURE 5. The effect of progesterone (Pg) on cell proliferation

in progesterone receptor (PR) transfectants. (A) The cells were

cultured in 5% serum with either control solvent (Et) or Pg for

48 hours. [3H]Thymidine was added during the last 16 hours.

The percent of labeled nuclei of all the cells treated with the

control solvent was normalized as 100%. ACCM-pSG5CL1

cells are ACCM cells, which are originated from human adenoid

cystic carcinoma, transfected with pSG5 empty vector. ACCM-

PRCL1, 2, 3, 4, and 5 cells are cell populations which express

PR. (B) The number of labeled nuclei is significantly decreased

in the Pg-treated PR-transfected clones, as seen in panel D.
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for hormonal therapy for SGC. It is reported that
some kinds of SGCs, such as carcinoma and pleo-
morphic adenomas, salivary duct carcinomas, and
basal cell adenocarcinomas, express AR. Locati
et al68 reported the complete remission with
androgen-deprivation therapy in a recurrent AR-
expressing adenocarcinoma of the parotid gland.
This report suggests that a similar mechanism to
prostate tumors may be implicated in AR-positive
SGC.

However, the expression of sex steroid hor-
mone receptor in clinical samples of SGC is
still controversial. The expression pattern of the
receptor is totally different between several
reports.69–72 These discrepancies have to be over-
come, and it is necessary to confirm the effect of
these hormones via its receptor by in vivo intro-
duction of the receptor using cultured SGTcells.

Some new strategies for the treatment of SGC
have been proposed. For example, it was reported
that differentiation therapy,73 adoptive immuno-
therapy,74 and gene therapy75 might be new
aspects in the treatment of SGC. There is a place
for new treatment modalities in patients with
SGC. Hormonal therapy based on sex steroid hor-
mones may be a completely new therapeutic
option for SGC.

CONCLUSION

EGFR inhibitors (gefitinib, erlotinib, and
cetuximab), COX-2 inhibitors (celecoxib), syn-
thetic PPARg ligands, and hormonal therapy
have been demonstrated to be promising molecu-

lar targeting agents against oral malignant
neoplasms.

Combined therapies using these molecules
may improve the outcome of these patients. How-
ever, more translational research, and subse-
quently, randomized clinical trials are needed
before these therapies can indeed be introduced in
the clinical practice.
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