K-Means Clustering For Acute Leukemia Blood Cells Image

Farah H. A. Jabar1, Waidah Ismail1, Khairi A. Rahim1, Rosline Hassan3

1Faculty of Science and Technology, Universiti Sains Islam Malaysia, Negeri Sembilan, Malaysia
2Hematology Department Universiti Hospital, Universiti Sains Malaysia, Kelantan, Malaysia,

1fsaj79@gmail.com, {waidah, khairiabdulrahim}@usim.edu.my, rosline@kb.usm.my

Abstract: Image segmentation is a major task and important steps in the blood cell image analysis due to the fact that it has significant effect of the next processing of images. Automated segmentation technique has become an interesting area in clinical practices for the blood cell diagnosis. Clustering is one of the most common automated segmentation techniques used for image segmentation analysis. Recently many scientists have performed tremendous research in helping the hematologists in the issue of segmenting the blood cells in the early of prognosis. This paper is focus on processing the blood cell images of patients suffering from acute leukemia via automated segmentation using an adaptive K-Means clustering algorithm. The experimental result has produced comprehensive output images without applying any filtering technique to remove the background scene.

Keywords: image segmentation, k-means, leukemia cells.

1. Introduction

Image processing has become significant to human life especially in medical, environmental and socioeconomic applications. By the increasing use of direct digital imaging systems for medical diagnostics, digital image processing becomes more important in biomedical diagnosis and health care. Image segmentation is among of the image processing methods that has been, and yet still a relevant area in digital image processing due to its wide spread usage and applications. Image segmentation is a complex process which is commonly used for images segmentation in medical analysis. The goal of image segmentation is to partition of an image into a set of image regions, which is corresponding to certain properties or characteristics, for object identification, classification and processing [1].

Image segmentation can be categorized into two types, supervised and unsupervised. Practically in lab, the most common method for evaluating the effectiveness of a segmentation method is a human supervision. Hematologist will make comparison with the segmented results for separate segmentation algorithms. This is known as supervised segmentation. However, this process is tedious and limits the depth of evaluation to a relatively small number of segmentation comparisons over a set of images [2]. An unsupervised method provides more effective and accurate results of the segmented images. Unsupervised segmentation method are fully automated and it uses different kind of automated algorithm such as region or boundary based [3], edge based and thresholding [4]. The goal of the automated segmentation tools is to automate the process with faster and accurate results.

Automated segmentation for blood cell image has tremendous growth in the study of diagnostic pathology. It has become a great attention for clinical researcher especially for hematologist to analyze the human blood and classify the area of interest such as texture, shape or color. They can identify the clinical behavior of the disease and predict the abnormalities of the blood cell. Many automated segmentation techniques have been proposed in the literature to overcome the issue of image segmentation specifically in blood cell such as morphological features, watershed clustering and thresholding. All of this effort is to provide valuable information to experts in diagnosis of several diseases related to blood cells.

2. Image segmentation

Digital Image processing has been utilized in many areas of biomedical research and applications. In automated imaging technique, the existing techniques for image recognition and visualization [5], and object based image compression [6] is highly depend on the segmentation results. Segmentation is the process of partitioning a digital image into sets of pixels. The goal of segmentation is to simplify the representation of an image into something that is more meaningful and easier to analyze. Image segmentation is typically used to locate objects and boundaries in images. Recently many segmentation tools have been proposed and develop to produce better segmentation on medical images such as clustering [7], active contour [8], thresholding [9] and region-based [10,11].

Thresholding is among the initial techniques developed for image segmentation due to its simplicity and intuitive properties that provides image thresholding a central position [9]. The active contour model known as snake model (Kass, 1988) had also been used to segment white blood cells in bone marrow to extract features using the deformable model [8]. Model based algorithm is proposed to solve the clustering-separation problem in leukocytes cluster using moving interface models and model-based combinatorial optimization scheme [12]. A combination technique is used to segment white blood cells on color space images using feature space clustering techniques, scale-space filtering for nucleus extraction, and watershed clustering for cytoplasm extraction [13]. Many automated segmentation methods are based on two basic properties of the pixels related to their local neighborhood; discontinuity and similarity. Methods based on discontinuity and similarity property of the pixels are called boundary-based methods and region-based
methods. Unfortunately, both techniques, boundary-based and region-based often fail to produce accurate segmentation results [14]. Recently there are some approaches that have been developed to perform automated detection for leukemia cells which utilized Otsu method combine with artificial intelligence which includes Cellular Automata and heuristic search [15] and thresholding technique [16].

2.1 K-Means Clustering

In recent years there has been a growing interest in developing effective methods for image clustering. Unsupervised learning has become common technique for statistical data analysis used in many fields such as pattern recognition, image analysis and bioinformatics. Clustering techniques classifies the pixels with same characteristics into one cluster, thus forming different clusters according to coherence between pixels in a cluster. Image clustering is a means for description of image content. The aim is to map the archived images into groups (clusters) with the exact information about the archived image collection. This approach was one of the first techniques used for the segmentation natural images due to its simplicity and efficiency [17]. Image clustering provides an efficient retrieval algorithms and the creation of a user-friendly interface to the database. The quality of clustering depends on the method and implementation measure which able to discover hidden patterns. A good clustering consists of high intra-class similarity and low inter-class similarity.

K-Means clustering algorithm is one of the recent techniques that have been proposed in the area of blood cells analysis. K-Means algorithm is an unsupervised clustering algorithm that classifies the input data points into multiple classes based on their minimum distance. In medical imaging, K-Means clustering has been proven to give good segmentation image performance due its performance in clustering massive datasets [18]. The final clustering result of the K-Means clustering algorithm is highly dependable on the correctness of the initial centroids. In 2011, Filipczuk used a thresholding method prior k-means algorithm to distinguish nuclei from red blood cells and other objects [19]. Recent paper suggested hybrid K-Means merging with median-cut algorithms for blood cell image segmentation to produce better segmented image of the blood cells [20]. In 2000, Moving K-Means (Mashor, 2000) is used to segment the blast cell in acute leukemia blood samples. The clustering was performed after applying the threshold method using saturation component formula [22]. All of these shows that the K-Means method would yield better segmentation as we input a priori information to the clustering process. Due to this issue, this study is to focus on the classic K-Means which imposed an efficient way of choosing the initial centroid during the initialization step for better segmentation of the blast cells.

3. Method

3.1 Image acquisition

The datasets used in this study consists of 10 of real images, which taken from patients suffering from AML. The size of the image is 1280 by 960 pixels. All of these images are provided by the Department of Hematology in University Sains Malaysia (USM) located in Kota Bharu, Kelantan, Malaysia. Figure 1 show the example of the leukemia images.

![Figure 1. Example of leukemia images](image)

3.2 K-Means Algorithm

K-means (MacQueen, 1967) is one of the simplest unsupervised learning algorithms that solve the well known clustering problem. The simple method is to classify a given data set through a certain number of clusters (assume k clusters) fixed a priori. The main idea of the clustering process is divided into 2 phases: first phase is defining the k-centroids, one for each cluster. This step is likely name initializations step which contribute to the initial steps for the whole process. The placement of the k-centroids is very crucial because different location will give different result. Then each point from data set will be mapped to the nearest centroids until all points are assigned using Euclidean Distance. Second phase observed the updates each of the points. The k-centroids need to be recalculated as new k-centroids and new mapping need to be done between the points and the new k-centroids. This process will give changes in k-centroids location step by step until the location of centroids is retain.

\[
W(C) = \sum_{i=1}^{N} \sum_{j \in C_i} ||X_j - \mu_i||^2
\]

where \(\mu_i \) is the mean of the i-th cluster based on the assignment C. The interest is to minimize the sum of square distance within-cluster and such assignments have to map each point to its nearest centroids.

3.3 Proposed Work

This adaptive K-Means method utilizes the efficient way of choosing the initial centroid during the initialization step. In this experiment, the initialization step used in this processing mode is evenly spaced values over the main diagonal. The initialization method returns two-element array with minimum and maximum RGB values from the whole pixel area. The experiment will be conducted without applying any filtering method or image smoothing to retain the significant image for further computer processing. The proposed initialization method is presented in the chart as shown in Figure 2 below.
4. Result & Discussion.

In this experiment we make a comparison using several of k-centroids value; k=3,4 and 6 with iterations of 10 as shown in example Figure 3. From the experimental result we can observe that the extrema value (c), (e) and (g) give better segmentation result as compared to randomly choose k centroids value (b), (d) and (g). Unlike the random method, the resultant image for extrema value will remain unchanged each time running the experiment. This is due to the fact that the image data pass through this operation is remain unchanged.

The adaptive K-Means uses the initialization method that returns an array of minimum and maximum RGB value found in each band of the image. Despite of using the normal randomly choose k-centroids, this initialization method manipulates the local minimum and maximum values which referred as extrema values based on the RGB colour space. The extrema operation scans a specific region of a rendered image and finds the maximum and minimum pixel values for each band within that region of the image.

5. Conclusions

Clustering is one of the most common automated segmentation techniques used for biomedical image segmentations. This research utilizes an optimized initial centroids for K-Means clustering algorithm for segmenting acute leukemia blood cells images. Experimental results shows better segmentation images using the proposed initialization method of classic K-Means clustering as compared to randomly choose centroids K-Means.

References

[23] Hassan, R., 1996. Diagnosis and outcome of patients with Acute leukaemia. Degree of Master of Medicine, Haematology department University Science Malaysia.