The Convexity Spectra of Graphs

Li-Da Tong, Pei-Lan Yen
Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung 804, Taiwan

Alastair Farrugia
Rahal Gdid, Malta

June, 08 2007†

Abstract

Let D be a connected oriented graph. A set $S \subseteq V(D)$ is convex in D if, for every pair of vertices $x, y \in S$, the vertex set of every $x - y$ geodesic ($x - y$ shortest dipath) and $y - x$ geodesic in D is contained in S. The convexity number $con(D)$ of a nontrivial oriented graph D is the maximum cardinality of a proper convex set of D. Let G be a graph and $S_C(G) = \{con(D) : D$ is an orientation of $G\}$ and $S_{SC}(G) = \{con(D) : D$ is a strongly connected orientation of $G\}$. In the paper, we show that, for any $n \geq 4$, $1 \leq a \leq n - 2$, and $a \neq 2$, there exists a 2-connected graph G with n vertices such that $S_C(G) = S_{SC}(G) = \{a, n - 1\}$ and there is not any connected graph G of order $n \geq 3$ with $S_{SC}(G) = \{n - 1\}$. Then, we determine that $S_C(K_3) = \{1, 2\}$, $S_C(K_4) = \{1, 3\}$, $S_{SC}(K_3) = S_{SC}(K_4) = \{1\}$, $S_C(K_5) = \{1, 3, 4\}$, $S_C(K_6) = \{1, 3, 4, 5\}$, $S_{SC}(K_5) = S_{SC}(K_6) = \{1, 3\}$, $S_C(K_n) = \{1, 3, 5, 6, \ldots, n - 1\}$, $S_{SC}(K_n) = \{1, 3, 5, 6, \ldots, n - 2\}$ for $n \geq 7$. Finally, we prove that, for any integers n, m, and k with $n \geq 5, n + 1 \leq m \leq \binom{n}{2} - 1, 1 \leq k \leq n - 1$, and $k \neq 2, 4$, there exists a strongly connected oriented graph D with n vertices, m edges, and convexity k.

*This research was partially supported by the National Science Council under grant NSC95-2115-M-110-012-MY2. National Center of Theoretical Sciences. ldtong@math.nsysu.edu.tw

†1991 Mathematics Subject Classification. 05C20, 05C35, 05C15

Key words and phrases. convexity number, convex set, spectrum, oriented graph.
1 Introduction

Convexity in graphs is discussed in the book by Buckley and Harary [1] and studied by Harary and Neiminen [5]. The concept of convexity number of an oriented graph was first introduced by Chartrand, Fink and Zhang in [3].

Here we introduce the definitions used in the paper. Graphs considered in the paper are finite, without loops or multiple edges. In a graph $G = (V, E)$, $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. A cut vertex v is a vertex in a connected graph G with $G - \{v\}$ being disconnected. A block of a graph G is a maximal connected subgraph of G without a cut vertex. A block B of G is an end block of a graph G if B contains exactly one cut vertex of G. An oriented graph is an orientation of some graph. In an oriented graph $D = (V, E)$, $V(D)$ and $E(D)$ denote the vertex set and the edge set of D, respectively. An oriented subgraph $D' = (V', E')$ of an oriented graph $D = (V, E)$ is an oriented graph with $V' \subseteq V$ and $E' \subseteq E$. An oriented graph is connected if its underlying graph is connected. A dipath is a sequence $(v_1, v_2, ..., v_k)$ of vertices of an oriented graph D such that $v_1, v_2, ..., v_k$ are distinct and $(v_i, v_{i+1}) \in E(D)$ for $i = 1, 2, ..., k - 1$. An oriented graph is called strongly connected if for every ordered pair of vertices u and v, there exists a dipath from u to v. A strong component of an oriented graph D is a maximal strongly connected oriented subgraph in D.

A $u - v$ geodesic in a digraph D is a shortest $u - v$ dipath and its length is $d_D(u,v)$. The closed interval $I[u,v]$ between two vertices u and v of a digraph D is the set of all vertices lying on a $u - v$ or $v - u$ geodesic (if it exists) in D. If there is no $u - v$ and $v - u$ geodesics, then we define that $I[u,v]_D = \{u,v\}$. A nonempty subset S of the vertex set of a digraph D is called a convex set of D if, for every $u, v \in S$, every vertex lying on a $u - v$ or $v - u$ geodesic belongs to S. For a nonempty subset A of $V(D)$, the convex hull $[A]$ is the minimal convex set containing A. Thus $[S] = S$ if and only if S is convex in D. The convexity number $\text{con}(D)$ of a digraph D is the maximum cardinality of a proper convex set of D. A maximum convex set S of a digraph D is a convex set with cardinality $\text{con}(D)$. Since every singleton vertex set is convex in a connected oriented graph D, $1 \leq \text{con}(D) \leq n - 1$. The degree $\text{deg}(v)$ of a vertex v in an oriented graph is the sum of its indegree and outdegree; that is, $\text{deg}(v) = \text{id}(v) + \text{od}(v)$. A vertex v is an end-vertex if $\text{deg}(v) = 1$. A source is a vertex having positive outdegree and indegree 0, while a sink is a vertex having positive indegree and outdegree 0. For a vertex v of D, let $N^+(v) = \{x : (v, x) \in E(D)\}$ and $N^-(v) = \{x : (x, v) \in E(D)\}$. So if v is a source, then $N^-(v) = \emptyset$, while if v is a sink, then $N^+(v) = \emptyset$. A vertex v of D is a transitive vertex if $\text{od}(v) > 0$, $\text{id}(v) > 0$, and for every $u \in N^+(v)$ and $w \in N^-(v)$, $(w, u) \in E(D)$. For a nontrivial connected graph G, we define that the convexity-spectrum $S_C(G)$ of a graph G is the set of
convexity numbers of all orientations of \(G \) and the \textit{strong convexity-spectrum} \(S_{SC}(G) \) of a graph \(G \) is the set of convexity numbers of all strongly connected orientations of \(G \). If \(G \) has no strongly connected orientation then \(S_{SC}(G) \) is empty. Then the \textit{lower orientable convexity number} \(\text{con}^{-}(G) \) of \(G \) is the minimum convexity number among the orientations of \(G \) and the \textit{upper orientable convexity number} \(\text{con}^{+}(G) \) is the maximum convexity number among the orientations of \(G \); that is, \(\text{con}^{-}(G) = \min S_{C}(G) \) and \(\text{con}^{+}(G) = \max S_{C}(G) \). Hence, for every nontrivial connected graph \(G \) of order \(n \), \(1 \leq \text{con}^{-}(G) \leq \text{con}^{+}(G) \leq n - 1 \).

Chartrand et al. \cite{3} characterized the nontrivial connected oriented graphs of order \(n \) with convexity number \(n - 1 \), and showed that there is no connected oriented graph of order at least 4 with convexity number 2. They also showed that every pair \(k, n \) of positive integers with \(1 \leq k \leq n - 1 \) and \(k \neq 2 \) is realizable as the convexity number and order, respectively, of some connected oriented graph.

In the paper, we show that for any \(n \geq 4 \), \(1 \leq a \leq n - 2 \) and \(a \neq 2 \), there exists a 2-connected graph \(G \) with \(n \) vertices such that \(S_{C}(G) = S_{SC}(G) = \{a, n - 1\} \), and there is no connected graph \(G \) of order \(n \geq 3 \) with \(S_{SC}(G) = \{n - 1\} \). Then we prove that \(S_{C}(K_{3}) = \{1, 2\} \), \(S_{C}(K_{4}) = \{1, 3\} \), \(S_{SC}(K_{3}) = S_{SC}(K_{4}) = \{1\} \), \(S_{C}(K_{5}) = \{1, 3, 4\} \), \(S_{C}(K_{6}) = \{1, 3, 4, 5\} \), \(S_{SC}(K_{5}) = S_{SC}(K_{6}) = \{1, 3\} \), \(S_{C}(K_{n}) = \{1, 3, 5, 6, ..., n - 1\} \), \(S_{SC}(K_{n}) = \{1, 3, 5, 6, ..., n - 2\} \) for \(n \geq 7 \). Finally, for any integers \(n, m, \) and \(k \) with \(n \geq 5, n + 1 \leq m \leq \left(\binom{n}{2}\right) - 1, 1 \leq k \leq n - 1, \) and \(k \neq 2, 4 \), we prove that there exists a strongly connected oriented graph \(D \) with \(n \) vertices, \(m \) edges, and convexity \(k \).

2 Constructing oriented graphs with fixed lower orientable convexity number and upper orientable convexity number

For each connected graph \(G \) of order \(n \geq 2 \), there exists an acyclic orientation \(D \) of \(G \). Then \(D \) has a source \(v \) and \(V(D) - \{v\} \) is a convex set. This gives that \(n - 1 \in S_{C}(G) \). The following two useful results were proved by Chartrand et al. in \cite{3}.

\textbf{Theorem 1} \cite{3} Let \(D \) be a connected oriented graph of order \(n \geq 2 \). Then \(\text{con}(D) = n - 1 \) if and only if \(D \) contains a source, sink, or transitive vertex.

\textbf{Theorem 2} \cite{3} There is no connected oriented graph of order at least 4 with convexity number 2.
Farrugia [4] proved that a connected graph of order at least 3 has no end-vertex if and only if $\text{con}^-(G)$ and $\text{con}^+(G)$ are different.

Theorem 3 [4] Suppose G is a connected graph of order $n \geq 3$. Then $\text{con}^-(G) < \text{con}^+(G)$ if and only if G has no end-vertex.

By Theorem 3, we have that,

Theorem 4 Suppose G is a connected graph of order $n \geq 3$. Then $|S_C(G)| \geq 2$ if and only if G has no end-vertex.

By Theorem 4, for any connected graph G of order $n \geq 3$, $|S_C(G)| = 1$ if and only if G has an end-vertex.

If a connected graph G has a cut vertex then there is a lower bound of $\text{con}^-(G)$ related to the cardinality of a minimum end block of G.

Lemma 5 Suppose G is a nontrivial connected graph of order $n \geq 3$ with a cut vertex and an end block B. Let D be an orientation of G. Then $\text{con}(D) \geq n - |B| + 1$.

Proof. Suppose D is an orientation of G and u is the cut vertex of G with $u \in V(B)$. Let $D - \{u\} = D_1 \cup D_2 \cup ... \cup D_k$ where D_i is a connected component of $D - \{u\}$ for $i = 1, 2, ..., k$. Without loss of generality, $V(D_1) = V(B) - \{u\}$. It is clear that $V(D) - V(D_1)$ is a convex set and $|V(D) - V(D_1)| = n - |B| + 1$. Then $\text{con}(D) \geq n - |B| + 1$.

According to Lemma 5 and B being a minimum end block of G, we have that

Theorem 6 For positive integer $n \geq 3$, there exists a connected graph G with $\text{con}^-(G) \geq (n + 1)/2$.

Next, we show that for any $1 \leq a \leq n - 2$ with $a \neq 2$, there exists a 2-connected graph G with n vertices such that $\text{con}^-(G) = a$ and $\text{con}^+(G) = n - 1$.

Theorem 7 For every pair of positive integers n and a with $n \geq 4$, $1 \leq a \leq n - 2$ and $a \neq 2$, there exists a 2-connected graph G with n vertices such that $S_C(G) = S_{SC}(G) = \{a, n - 1\}$.

4
Proof. For \(a = 1 \), define a connected graph \(G_1 = (V_1, E_1) \) with \(V_1 = \{u, v, v_1, v_2, \ldots, v_{n-2}\} \) and \(E_1 = \{uv \} \cup \{uv_i, v_i v : i = 1, 2, \ldots, n-2\} \). Then \(G_1 \) is 2-connected. Let \(D \) be an orientation of \(G_1 \). Without loss of generality, \((u,v) \in E(D)\). If \(D \) has a source, sink, or transitive vertex then \(\text{con}(D) = n - 1 \). If \(D \) has no source, sink, or transitive vertex then \(D \) is strongly connected. Consider \(D \) is strongly connected, there exists \(i \) such that \((v, v_i, u)\) is a geodesic in \(D \). If there exists \(j \) such that \((u, v_j, v)\) is a dipath in \(D \) then \(v_j \) is a transitive vertex in \(D \). Thus, \(\text{con}(D) = n - 1 \). If, for every \(1 \leq j \leq n - 2 \), \((v, v_j, u)\) is a geodesic in \(D \) then, for any two distinct vertices \(x \) and \(y \) of \(D \), \(u, v \in I[x, y] \) and \(\{x, y\} = V(D) \); that is, \(\text{con}(D) = 1 \). Hence we have that \(S_C(G_1) = S_S(G_1) = \{1, n - 1\} \).

Assume that \(3 \leq a \leq n - 2 \) and define \(G_a \) to be the graph with \(V(G_a) = \{u, v, u_1, \ldots, u_{n-a}, v_1, \ldots, v_{a-2}\} \) and \(E(G_a) = \{uv, uu_1, vv_{n-a}\} \cup \{uv_i, v_i v : 1 \leq i \leq a - 2\} \cup \{u_i u_{i+1} : 1 \leq i \leq n - a - 1\} \). It is evident that \(G_a \) is 2-connected.

Let \(D_{n-1} \) be the orientation of \(G_a \) with \(E(D_{n-1}) = \{(u, v), (u, v_1), (v, u), vv_{n-a}\} \cup \{(v, v_i) : 2 \leq i \leq a - 2\} \cup \{(u_{i+1}, u_i) : 1 \leq i \leq n - a - 1\} \). For \(a \geq 3 \), \(D_{n-1} \) is a strongly connected graph and \(v_1 \) is a transitive in \(D_1 \). Then \(\text{con}(D_{n-1}) = n - 1 \); that is \(n - 1 \in S_C(G_a) \cap S_S(G_a) \).

Let \(D \) be an orientation of \(G_a \) with \(\text{con}(D) < n - 1 \). By Theorem 1, \(D \) has no sink, source, or transitive vertex. Without loss of generality, \((u,v) \in A(D)\). Then \((v, v_i, u)\) is a geodesic in \(D \) for \(i = 1, 2, \ldots, a - 2 \). By \(n - a \geq 2 \), the length of the path \((u, u_1, \ldots, u_{n-a}, v)\) in \(G_a \) is greater than 2. Since \(u_1, u_2, \ldots, u_{n-a} \) are not sources or sinks, either \((u, u_1, u_2, \ldots, u_{n-a}, v)\) or \((v, u, u_{n-a}, u_{n-a-1}, \ldots, u_{1}, u)\) is in \(D \). For either \((u, u_1, u_2, \ldots, u_{n-a}, v)\) or \((v, u, u_{n-a}, u_{n-a-1}, \ldots, u_{1}, u)\) being in \(D \), \(D \) is strongly connected and the set \(\{u, v_1, \ldots, v_{a-2}, v\} \) is a proper convex set in \(D \). If a convex set \(S \) contains vertices \(u_i \) and \(x \) for some \(x \in V(D) - \{u_i\} \) then \(I[u_i, x] \) contains vertices \(u, v, u_1, \ldots, u_{n-a} \). This implies that \(\{u_i, x\} = V(D) \). So, if \(S \) is a proper convex set in \(D \) then \(S \) does not contain vertices \(u_j \). Thus \(\{u, v_1, \ldots, v_{a-2}, v\} \) is the unique maximum proper convex set of \(D \). Hence \(\text{con}(D) = a \). The proof is complete.

Corollary 8 For every pair of positive integers \(n \) and \(a \) with \(n \geq 4 \), \(1 \leq a \leq n - 1 \) and \(a \neq 2 \), there exists a connected graph \(G \) with \(n \) vertices such that \(S_C(G) = \{a, n - 1\} \).

Proof. For \(1 \leq a \leq n - 2 \) and \(a \neq 2 \), by Theorem 7, there is a connected graph \(G \) such that \(S_C(G) = \{a, n - 1\} \). If \(a = n - 1 \) then we take \(G \) to be a tree; \(S_C(G) = \{n - 1\} \).

Corollary 9 For every pair of positive integers \(n \) and \(a \) with \(n \geq 4 \), \(1 \leq a \leq n - 1 \) and \(a \neq 2 \), there exists a connected graph \(G \) with \(n \) vertices such that \(\text{con}^{-1}(G) = a \) and \(\text{con}^+(G) = n - 1 \).
By the above investigation, we need to study graphs \(G \) of order \(n \) with \(S_{SC}(G) = \{n-1\} \). But there is no such graph. The following theorem can be proved by Theorem 2 of [4]. We give another proof in the following.

Theorem 10 There is no connected graph \(G \) of order \(n \geq 3 \) with \(S_{SC}(G) = \{n-1\} \).

Proof. Suppose \(G \) is a connected graph with \(S_{SC}(G) = \{n-1\} \). Then there exists a strongly connected orientation of \(G \). This implies that every block of \(G \) is 2-connected; that is, each block has at least 3 vertices. If every block of \(G \) has a strongly connected orientation without transitive vertex then there is a strongly connected orientation \(D \) without source, sink, transitive vertex. By Theorem 1, \(\text{con}(D) < n-1 \). It contradicts that \(S_{SC}(G) = \{n-1\} \). So, we construct a strongly connected orientation of \(G \) without transitive vertex in the next paragraph.

Suppose \(G' \) is 2-connected. Claim that there exists a strongly connected orientation \(D \) of \(G' \) without a transitive vertex. By Menger’s Theorem, we have that the property (*): for three distinct vertices \(x, y, z \) of \(G' \), there exist two paths \(P_1 \) from \(x \) to \(y \) and \(P_2 \) from \(x \) to \(z \) in \(G' \) such that \(V(P_1) \cap V(P_2) = \{x\} \).

Since \(G' \) is 2-connected, there exists a cycle \((v_1, v_2, ..., v_k, v_1)\) which is an induced subgraph of \(G' \). (i.e. there is not any chord in \((v_1, v_2, ..., v_k, v_1)\).) Define the directed cycle \((v_1, v_2, ..., v_k, v_1)\) in \(D \). We have that, for each \(i \), either \(v_i \) has an out neighbor and an in neighbor which are nonadjacent or \((v_1, v_2, v_3, v_1)\) is a directed cycle in \(D \). This implies that vertices \(v_1, v_2, ..., v_k \) are not source, sink, or transitive vertex. Let \(S_1 = \{v_1, v_2, ..., v_k\} \). If \(V(G') - S_1 \) is not empty then, by the property (*), there is a shortest path \((v_i, x_1, ..., x_r, v_j)\) of \(G' \) satisfying \((k \geq i > j \geq 1 \text{ and } (i,j) \neq (k,1))\) or \((i,j) = (1,k)\) such that \(r \geq 1 \) and \(x_1, ..., x_r \notin S_1 \). Define the directed path \((v_i, x_1, ..., x_r, v_j)\) is in \(D \). We observe that if \(r > 1 \) then each vertices of \(x_1, ..., x_r \) has an out neighbor and an in neighbor that are nonadjacent in \(G' \) by \((v_i, x_1, ..., x_r, v_j)\) being shortest. If \(r = 1 \) then either \(v_iv_j \notin E(G') \) or \((v_j, v_i) \in E(D) \). Let \(S_2 = S_1 \cup \{x_1, ..., x_r\} \). The other edges between two vertices of \(S_2 \) are assigned random directions in \(D \). Therefore each vertex of \(x_1, ..., x_r \) is not source, sink, or transitive vertex in \(D \). Repeatedly, we can find a shortest path \((x, y_1, ..., y_s, y)\) with \(xy \notin E(G') \) or \((y, x) \in E(D) \) such that \(s \geq 1 \) and \(y_1, ..., y_s \notin S_1 \), then define the directed path \((x, y_1, ..., y_s, y)\) is in \(D \), and let \(S_{i+1} = S_i \cup \{y_1, ..., y_s\} \). The other edges between two vertices of \(S_{i+1} \) are assigned random directions in \(D \). Until \(S_{n+1} = V(G') \), we obtained a strongly connected orientation \(D \) of \(G \) without source, sink, or transitive vertex. \(\blacksquare \)
3 Strong convexity spectra of complete graphs

In this section, we determine the convexity-spectra and the strong convexity-spectra of complete graphs. Since $SC(G) = \{ \text{con}(D) : D \text{ is an orientation of } G \}$ and $SCSC(G) = \{ \text{con}(D) : D \text{ is a strong orientation of } G \}$, $SCSC(G) \subseteq SC(G)$. An orientation of the complete graph of order n is called a tournament of order n. In a strongly connected graph D, the diameter of D is denoted by $diam(D)$.

We find some strongly connected tournaments D of order $n \geq 3$ with $\text{con}(D) = 1$.

Lemma 11 Suppose n is a positive integer with $n \geq 3$ and $n \neq 4$. Then there exists a strongly connected tournament D of order n with $d(D) = 2$ and $\text{con}(D) = 1$ and every strongly connected tournament of order 4 has diameter 3.

Proof. If $n = 4$, then all strongly connected tournaments of order 4 are isomorphic. It is easy to check that the diameter of every strongly connected tournament of order 4 is 3.

Suppose n is a positive integer with $n \geq 3$ and $n \neq 4$. For $n = 3$, a directed cycle D_1 with the vertex set $\{a, b, c\}$ has $d(D_1) = 2$ and $\text{con}(D_1) = 1$. For $n = 5$, Let D_2 be the oriented graph with $V(D_2) = V(D_1) \cup \{x, y\}$ and $E(D_2) = E(D_1) \cup \{(u, x), (y, u) : u \in V(D_1)\} \cup \{(x, y)\}$. We can find that D_2 has $d(D_2) = 2$ and $\text{con}(D_2) = 1$. For $n = 6$, let D_3 be the oriented graph with $V(D_3) = V(D_2) \cup \{z\}$ and $E(D_3) = E(D_2) \cup \{(a, z), (b, z), (x, z), (z, c), (z, y)\}$. We also can find that D_3 has $d(D_3) = 2$ and $\text{con}(D_3) = 1$. For $n \geq 7$, if we have a strongly connected tournament D' with order $n - 1$, $d(D') = 2$, and $\text{con}(D') = 1$, then, let D be the oriented strongly connected tournament with the vertex set $V(D') \cup \{s, t\}$ and the edge set $E(D') \cup \{(u, s), (t, u) : u \in V(D')\} \cup \{(s, t)\}$. We have that D has $d(D) = 2$ and $\text{con}(D) = 1$. By induction, we can get the theorem.

Lemma 12 If D is a strongly connected tournament of order $n \geq 3$, then $\text{con}(D) \leq n - 2$.

Proof. Let S be a set of vertices in D with $|S| = n - 1$. Then there exists a vertex $v \in V(D) - S$. Let $X = \{x \in V(D) : (x, v) \in E(D)\}$ and $Y = \{y \in V(D) : (v, y) \in E(D)\}$. By D being a strongly connected tournament, there exist $x \in X$ and $y \in Y$ such that $(y, x) \in E(D)$. Thus (x, v, y) is a geodesic in D. Then S is not a convex set; that is, $\text{con}(D) \leq n - 2$.

Lemma 13 For $n \geq 6$ being a positive integer, $4 \notin SCSC(K_n)$.
Proof. Suppose D be a strongly tournament with S being a proper convex set of 4 vertices in D. Then the induced subgraph H of S is strongly connected. Since $\text{diam}(H) = 3$, there is a geodesic (a, b, c, d) in the induced subgraph of S. Let $A = \{u : u \in V(D) - S \text{ and } (u, a) \in E(D)\}$ and $B = \{v : v \in V(D) - S \text{ and } (d, v) \in E(D)\}$. Take $u \in A$ and $v \in B$. Since (a, b, c, d) is a dipath of D and S is convex, $(u, b), (c, v) \in E(D)$. If $(u, b), (c, v) \in E(D)$ then, by S being convex, $(u, c), (b, v) \in E(D)$. Similarly, we have that $(u, d), (a, v) \in E(D)$. By $\text{diam}_D(a, d) = 3$ and S being convex, A and B are disjoint and $(u, v) \in E(D)$ for $u \in A$ and $v \in B$. If $V(D) - (S \cup A \cup B)$ is empty, then D is not strongly connected. So, there exists a vertex $x \in V(D) - (S \cup A \cup B)$ with $(a, x), (x, d) \in E(D)$. It contradicts that $\text{diam}_D(a, d) = 3$. Hence, $4 \notin S_{SC}(K_n)$ for $n \geq 6$.

We combine the ideas in Lemmas 11 12, and 13 to get the following Theorem.

Theorem 14 $S_{SC}(K_3) = S_{SC}(K_4) = \{1\}$, $S_{SC}(K_5) = S_{SC}(K_6) = \{1, 3\}$, and $S_{SC}(K_n) = \{1, 3, 5, 6, \ldots, n-2\}$ for integer $n \geq 7$.

Proof. For $n = 3$ or 4, by Theorem 2, Lemma 11, and Lemma 12, $S_{SC}(K_3) = S_{SC}(K_4) = \{1\}$. For $n \geq 5$, by Lemma 11, $1 \in S_{SC}(K_n)$; and by Theorem 2 and Lemma 12 and 13, $2, 4, n-1 \notin S_{SC}(K_n)$. In the following paragraphs, we construct a strongly connected orientation of K_n for $n \geq 5$ and $\text{con}(D) = k$ for $3 \leq k \leq n-2$ and $k \neq 4$.

Suppose $n \geq 5$, $3 \leq k \leq n-2$ and $k \neq 4$. Let the vertex set of K_n be $\{v_1, v_2, \ldots, v_k, u_1, u_2, \ldots, u_{n-k}\}$, $V = \{v_1, v_2, \ldots, v_k\}$, and $U = \{u_1, u_2, \ldots, u_{n-k}\}$.

By Lemma 11, there exists a strongly connected oriented graph D_1 with the vertex set V, $(v_k, v_1) \in E(D_1)$, $d(D_1) = 2$, and $\text{con}(D_1) = 1$. Let D_2 be the oriented graph with the vertex set U and the edge set $\{(u_i, u_j) : 1 \leq i < j \leq n-k\} - \{(u_1, u_{n-k})\}$ for $n-k \geq 3$. If $n-k = 2$ then the edge set of D_2 is defined by $\{(u_2, u_1)\}$. Let D_3 be the oriented graph with the vertex set $V \cup U$ and the edge set $\{(u_1, v_i) : 1 \leq i \leq k\} \cup \{(v_i, u_j) : 1 \leq i \leq k \text{ and } 2 \leq l \leq n-k\}$. Define that D is a strongly connected orientation of K_n with $E(D) = E(D_1) \cup E(D_2) \cup E(D_3)$.

By Lemma 11, $d_D(v_i, v_j) \leq 2$ for all $1 \leq i < j \leq k$. And $u_l \notin [v_i, v_j]$ in D for all i, j, k. Then V is a convex set of D.

Let S be a convex set of D. If there exist $1 \leq l < m \leq n-k$ such that $u_l, u_m \in S$, then $I[u_m, u_l]$ contains vertices u_l and u_m. Since (u_1, u_m, u_{n-k}) and (u_l, u_{n-k}) are geodesics in $V(D)$ for all $1 < p < n-k$ and $1 \leq i < k$, $S = V(D)$. If there exist $1 \leq l < n-k$ and $1 \leq m \leq k$ such that $u_l, u_m \in S$, then $I[u_l, v_m]$ contains vertices u_1 and u_{n-k}. By the same above reason, $S = V(D)$. So, we have that V is a maximum convex set with $V \neq V(D)$. Thus, $\text{con}(D) = |V| = k$.

8
Lemma 15 For positive integer \(n \geq 7 \), \(4 \notin S_C(K_n) \).

Proof. Suppose \(D \) is a tournament of order \(n \geq 7 \). If \(D \) is strongly connected then, by Lemma 13, \(\text{con}(D) \neq 4 \). Assume that \(D \) is not strongly connected. Then there exists a strong component \(S \) of \(D \) such that \((x, y) \in E(D) \) for each \(x \in V(D) - S \) and \(y \in S \). If \(|S| = 1 \) or \(|V(D) - S| = 1 \), then \(D \) has a sink or a source; that is, \(\text{con}(D) = n - 1 \neq 4 \). If \(|S|, |V(D) - S| > 1 \), then, for \(x \in V(D) - S \) and \(y \in S \), \(S \cup \{x\} \) and \((V(D) - S) \cup \{y\} \) are proper convex sets in \(D \); that is, \(\text{con}(D) \geq n/2 + 1 > 4 \).

Theorem 16 \(S_C(K_3) = \{1, 2\}, S_C(K_4) = \{1, 3\}, S_C(K_5) = \{1, 3, 4\}, S_C(K_6) = \{1, 3, 4, 5\} \) and \(S_C(K_n) = \{1, 3, 5, 6, ..., n - 1\} \) for integer \(n \geq 7 \).

Proof. Since every acyclic orientation \(D \) has a source, \(\text{con}(D) = n - 1 \). Then \(n - 1 \in S_C(K_n) \) for \(n \geq 2 \). By \(S_{SC}(G) \subseteq S_C(G) \), Theorem 14, and Lemma 15, we have that \(S_C(K_3) = \{1, 2\} \), \(S_C(K_4) = \{1, 3\} \), \(S_C(K_5) = \{1, 3, 4\} \), and \(S_C(K_n) = \{1, 3, 5, 6, ..., n - 1\} \) for integer \(n \geq 7 \). For \(K_6 \), we have an orientation \(D \) with \(V(D) = \{v_1, v_2, v_3, v_4, v_5, v_6\} \) and \(E(D) = \{(v_1, v_2), (v_2, v_3), (v_3, v_1), (v_4, v_5), (v_5, v_6), (v_6, v_4)\} \cup\{(v_i, v_j) : 1 \leq i \leq 3 \text{ and } 4 \leq j \leq 6\} \) with \(\text{con}(D) = 4(\{v_1, v_2, v_3, v_4\} \) is a maximum convex set). Thus, \(S_C(K_6) = \{1, 3, 4, 5\} \).

4 Constructing strongly connected oriented graphs with fixed order, size, and convexity number

Analyzing the orientation \(D \) in the proof of Theorem 14, we have the following observations. (We use the same notations in the following observations.)

Observation 17 For \(1 \leq i < j \leq k \), \(\{v_i, v_k\} \subseteq \{v_i, v_j\} \) and \(\{v_1, v_k\} = V \). Then \(V \) is a convex set in \(D \).

Observation 18 (1) For \(2 \leq l \leq n - k - 1 \), \((u_1, u_l, u_{n-k}) \) is a geodesic in \(D \).

(2) For \(1 \leq i \leq k \), if \(k \) is odd then \((u_1, v_i, u_n-k) \) is a geodesic in \(D \), and if \(k \) is even and \(i \neq k - 1 \) then \((u_1, v_i, u_{n-k}) \) is a geodesic in \(D \) and \((v_k, v_{k-1}, v_1) \) is a geodesic in \(D \).

Observation 19 Every vertex of \(U \) except \(u_1 \) and \(u_{n-k} \) belongs to a unique \(u_1 - u_{n-k} \) geodesic in \(D \).
Observation 20 For $1 \leq i < j \leq n$, $\{u_1, u_{n-k}\} \subseteq \{u_i, u_m\}$ and $\{u_1, u_{n-k}\} = V(D)$. Then $\{u_l, u_m\} = V(D)$.

Observation 21 For $1 \leq i \leq k$ and $1 \leq l \leq n-k$, $\{u_1, u_{n-k}\} \subseteq \{v_i, u_l\}$. Then $\{v_l, u_i\} = V(D)$.

Lemma 22 Let D be a connected oriented graph of order $n \geq 5$. If $V(D) = V \cup U$ where $V = \{v_1, v_2, ..., v_k\}$, $U = \{u_1, u_2, ..., u_{n-k}\}$, $k \geq 3$ and $n-k \geq 2$ satisfying two conditions:

1. $[\{v_i, v_j\}] = V$, for every $i < j$ and
2. $[\{u_1, u_{n-k}\}] = V(D)$ and $u_1, u_{n-k} \in \{x, y\}$ for every two vertices x, y with $x \in U$ and $y \in V(D) - \{x\}$.

then V is the unique maximum convex set in D and $\text{con}(D) = |V|$.

Proof. By the condition (1), we have that V is a convex set in D. According to the condition (2), the convex hull of every pair of vertices in U is $V(D)$ and the convex hull of every pair u, v with $u \in U, v \in V$ is also $V(D)$. Then we have V is the unique maximum convex set in D and $\text{con}(D) = |V|$. □

By Theorem 2, there is no connected graph G of order $n \geq 4$ with $2 \in S_{SC}(G)$. In the first theorem of this section, we consider the existence of strongly connected oriented graphs of order n, size m, and convexity number k where $n \geq 5$, $n+1 \leq m \leq \binom{n}{2}$, and $3 \leq k \leq n-2$.

Theorem 23 For integers k, n, m with $n \geq 5$, $3 \leq k \leq n-2$, $k \neq 4$, and $n+1 \leq m \leq \binom{n}{2}$, there exists a strongly connected oriented graph with n vertices, m edges, and convexity number k.

Proof. Let n, m and k be positive integers with $n \geq 5$, $3 \leq k \leq n-2$, $n+1 \leq m \leq \binom{n}{2}$. In the following, we construct a strongly connected oriented graph with n vertices, m edges, and convexity number k by examining different cases.

(a) First, for $m = \binom{n}{2}$, by Theorem 14, there exists a strongly connected tournament D of order n and convexity number k.

(b) For $\binom{n}{2} - k(n-k)+4 \leq m < \binom{n}{2}$, there is a strongly connected oriented graph D with $E(D) = E(D_1) \cup E(D_2) \cup E(D_3)$ in the proof of Theorem 14. Let $S \subseteq E(D_3) - \{(u_1, v_1), (u_1, v_k), (v_1, u_{n-k}), (v_k, u_{n-k})\}$ with $|S| = \binom{n}{2} - m$ and $H_m = D - S$. By V being a convex set of D and $S \subseteq E(D_3)$, V is still a convex set in H_m. By Lemma
11, for every $i < j$, $\{v_i, v_j\} \in H_m$. Since $(u_1, u_i, u_{n-k}), (u_1, v_i, u_{n-k}), (u_1, v_k, u_{n-k})$ are geodesics in H_m, $\{u_1, u_{n-k}\} \in H_m$. And, for $i < j$, $u_1, u_{n-k} \in I_{H_m}[u_1, u_i]$. This implies that $\{u_1, u_j\} \in H_m$. By Lemma 22, V is the unique maximum convex set in H_m and $\text{con}(H_m) = |V| = k$.

(c) For $\left(\frac{n}{2}\right) - k(n-k) + 4 - \binom{n-k-2}{2} < m < \left(\frac{n}{2}\right) - k(n-k) + 4$. Let $D' = D - E(D_3) \cup \{(u_1, v_i), (u_1, v_k), (v_i, u_{n-k}), (v_k, u_{n-k})\}$. Let $D' = \{(u_1, u_i), (u_1, u_k), (v_i, u_{n-k}), (v_k, u_{n-k})\}$, with $|S| = \left(\frac{n}{2}\right) - k(n-k) + 4 - m$. And $H_m = D' - S$. Similarly to part (b), by Theorem 22, V is the unique maximum convex set in H_m and $\text{con}(H_m) = |V| = k$.

(d) For $2n-2 \leq m < \left(\frac{n}{2}\right) - k(n-k) + 4 - \binom{n-k-2}{2}$. Define D' to be a strongly connected oriented graph with $V(D') = V \cup U$ and $E(D') = E_1 \cup E_2 \cup \{(u_1, v_1), (u_1, v_k), (v_1, u_{n-k}), (v_k, u_{n-k})\}$. Then $|E(D')| = \left(\frac{n}{2}\right) - k(n-k) + 4 + 2(n-k-2) + 1$. Let $S \subseteq \{(v_j, v_i) : 2 \leq i < j \leq k-1\}$ with $|S| = \left(\frac{n}{2}\right) + 4 + 2(n-k-2) + 1 - m$ and $H_m = D' - S$. We have that $|E(H_m)| = m$, and V is convex in H_m. For $x \in U$ and $y \in V(H_m) - \{x\}$, $u_1, u_{n-k} \in I_{H_m}[x, y]$, $v_1, v_k, u_1, u_2, \ldots, u_{n-k} \in I_{H_m}[u_1, u_k]$ and $I_{H_m}[v_1, v_k] = V$. By Lemma 22, V is the unique maximum convex set in H_m and $\text{con}(H_m) = |V| = k$.

(e) For $m = 2n-3$. (i) If $k = n-2$ then let $D = (V, E)$ be the digraph with $V = \{v_1, v_2, \ldots, v_n\}$ and $E = \{(v_i, v_j) : i = 2, \ldots, n-3\} \cup \{(v_n, v_1), (v_n, v_k), (v_1, v_{n-1}), (v_1, v_n), (v_1, v_{n-1})\}$. Then $|E| = 2(n-4) + 5 = 2n-3$ and $\{v_1, v_2, \ldots, v_{n-2}\}$ is a convex set. If S is a convex set with $|S| \geq n-1$ then there exist $2 \leq i \leq n-2$ and $n-1 \leq j \leq n$ such that $v_i, v_j \in S$. We have that $v_1, v_{n-2}, v_{n-1}, v_n \in S$. Thus $S = V$. Hence $\text{con}(D) = n-2$. (ii) If $3 \leq k \leq n-3$ and $n \geq 6$ then let $D = (V, E)$ be the digraph with $V = \{v_1, v_2, \ldots, v_n\}$ and $E = \{(v_1, v_i), (v_1, v_k) : i = 2, \ldots, k-1\} \cup \{(v_k, v_1), (v_k, v_{k+1}), (v_{k+2}, v_{k+3})\} \cup \{(v_{k+1}, v_j), (v_j, v_i) : j = k+2, \ldots, n\}$. Then $|E| = 2(k-2) + 3 + 2(n-k-1) = 2n-3$ and $\{v_1, v_2, \ldots, v_k\}$ is a convex set. For $1 \leq i < j \leq n$, $v_i, v_k, v_{k+1} \in I[v_i, v_j]$; that is, $\{v_i, v_j\} = V$. For $k \leq i < j \leq n$, $v_i, v_k, v_{k+1} \in I[v_i, v_j]$; that is, $\{v_i, v_j\} = V$. So $\{v_1, v_2, \ldots, v_k\}$ is the unique maximum convex set. Therefore $\text{con}(D) = k$.

(f) For $n+1 \leq m \leq 2n-4$. Let a, b be integers with $1 \leq a \leq k-2$ and $1 \leq b \leq n-k-1$. Define $H(a, b)$ to be a strongly connected oriented graph with $V(H(a, b)) = V \cup U$ and $E(H(a, b)) = E_1 \cup E_2$ where $V = \{v_1, v_2, \ldots, v_k\}$, $U = \{u_1, u_2, \ldots, u_{n-k}\}$, $E_1 = \{(v_1, v_i), (v_1, v_{n+2}) : 2 \leq a \leq i \leq a + 1\} \cup \{(v_j, v_{j+1}) : a + 2 \leq j \leq k - 1\} \cup \{(v_k, v_i)\}$ and $E_2 = \{(v_k, u_{n-k})\} \cup \{(u_j, u_{j-1}) : n - k \leq j \leq b + 2\} \cup \{(u_{b+1}, u_1), (u_1, v_1) : 1 \leq i \leq b\}$. In $H(a, b)$, $|E(H(a, b))| = n + a + b - 1$ and V is a convex set. And $I_{H(a, b)}[v_1, v_k] = V$ and $u_1, u_2, \ldots, u_{n-k} \in I_{H(a, b)}[v_1, v_k]$. If S is a convex set containing u_i and u_j with $i < j$ then $v_1, v_k, u_{n-k} \in I_{H(a, b)}[u_1, u_j]$; that is, $S = V(H(a, b))$. If S is a convex
set containing \(v_i \) and \(u_j \) then \(v_1, v_k, u_{n-k} \in I_{H(a,b)}[v_i, u_j] \); that is, \(S = V(H(a, b)) \). Therefore \(V \) is the unique maximum convex set in \(H_m \) and \(\text{con}(H_m) = |V| = k \).

For strongly connected oriented graphs with convexity number 1, we have that:

Theorem 24 For any integers \(n, m \) with \(n \geq 3, n \leq m \leq \left(\frac{n}{2} \right) \), there exists a strongly connected oriented graph \(D \) with \(n \) vertices, \(m \) arcs, and convexity 1.

Proof. First, we consider the case \(m = \left(\frac{n}{2} \right) \). Define \(D_0 \) to be an oriented graph with vertex set \(\{v_1, v_2, ..., v_n\} \) and arc set \(\{(v_i, v_{i+1}) : 1 \leq i \leq n-1\} \cup \{(v_j, v_i) : 3 \leq i + 2 \leq j \leq n\} \). Since \((v_k, v_{k+1}, v_{k+2}, v_k) \) is a directed cycle of length 3 for all \(1 \leq k \leq n - 2 \), we have that \((v_{k+1}, v_{k+2}, v_k) \) and \((v_k, v_{k+2}, v_k) \) are geodesics in \(D_0 \). If a convex set of \(D_0 \) contains two consecutive vertices \(v_i, v_{i+1} \) for some \(1 \leq i \leq n - 1 \), then it must be \(V(D_0) \). Suppose that \(\text{con}(D_0) > 1 \) and \(S \) is a convex set of \(D_0 \) with \(|S| > 1 \). Take \(v_i, v_j \in S \) with \(i < j \). Then the vertices of the geodesic \((v_i, v_{i+1}, ..., v_j) \) belong to \(S \). Thus, \(S \) contains two consecutive vertices of \(V(D_0) \). By the above property, \(S = V(D_0) \). Hence, \(\text{con}(D_0) = 1 \).

Second, we consider the case of \(2n - 2 \leq m \leq \left(\frac{n}{2} \right) - 1 \). Let \(T \) be a subset of \(\{(v_j, v_i) : 1 \leq i \leq j \leq 3 \leq n - 3\} \cup \{(v_n, v_1)\} \) with \(|T| = \left(\frac{n}{2} \right) - m \) and \(D' = D_0 - T \). If \(S \) is a convex set of \(D' \) containing two distinct vertices \(v_i \) and \(v_j \) with \(i < j \), then \((v_i, v_{i+1}, ..., v_{j-1}, v_j) \) is a geodesic in \(D' \); that is, vertices \(v_i, v_{i+1}, ..., v_{j-1}, v_j \) are in \(S \). Since \((v_k, v_{k+1}, v_{k-1}) \) and \((v_{k+1}, v_{k-1}, v_k) \) are geodesics in \(D' \) for \(2 \leq k \leq n - 1 \) and \(v_i, v_{i+1} \in S \), \(S = V(D') \). Hence \(D' \) is an oriented graph with \(m \) arcs and \(\text{con}(D') = 1 \).

Finally, the case \(n \leq m \leq 2n - 3 \). For \(1 \leq k \leq n - 2 \), define \(D_k = (V, E) \) with \(V = \{u_0, u_1, ..., u_{n-1}\} \) and \(E = \{(u_0, u_i), (u_i, u_{i+1}) : 1 \leq i \leq k \} \cup \{(u_i, u_{i+1}) : k + 1 \leq i \leq n - 2\} \cup \{(u_{n-1}, u_0)\} \). Then \(D_k \) is strongly connected and \(|E| = n + k - 1 \). And, for each \(i < j \), we have that vertices \(u_0 \) and \(u_{n-1} \) are contained in \(u_j - u_i \) and \(u_i - u_j \) geodesics and \(I[u_0, u_{n-1}] = V \); that is, \(\text{con}(D_k) = 1 \).

Consider the strongly connected oriented graphs with convexity number \(n - 1 \). By Lemma 12, there is no strongly connected tournament of order \(n \geq 3 \) with convexity number \(n - 1 \); and, the convexity number of each directed cycle is 1. So we have the following theorem.

Theorem 25 For any integers \(n \) and \(m \) with \(n \geq 4 \), there exists a strongly connected oriented graph \(D \) with \(n \) vertices, \(m \) arcs, and convexity \(n - 1 \) if, and only if, \(n + 1 \leq m \leq \left(\frac{n}{2} \right) - 1 \).

Proof. By Lemma 12, there is no strongly connected tournament \(D \) of order \(n \geq 3 \) with \(\text{con}(D) = n - 1 \). So, we assume that \(n + 1 \leq m \leq \left(\frac{n}{2} \right) - 1 \). If \(n + 1 \leq
If \(\binom{n}{2} - (n-4) \leq m \leq \binom{n}{2} - 1 \) and \(n \geq 5 \) then, let \(r = \binom{n}{2} - m \), define a strongly connected graph \(D = (V, E) \) with \(V = \{v_1, v_2, ..., v_n\} \) and \(E = \{(v_a, v_b) : 1 \leq a < b \leq n - 2\} \cup \{(v_c, v_d) : r + 1 \leq c \leq n - 2 \text{ and } n - 1 \leq d \leq n\} \cup \{(v_n, v_1) : 1 \leq i \leq r\} \cup \{(v_n, v_{n-1})\} \). We observe that \(D \) is a strongly connected oriented graph with \(n \) vertices and \(m \) edges, and \(v_n \) is a transitive vertex of \(D \). Therefore \(\text{con}(D) = n - 1 \).

For the remained cases, we have the following result.

Theorem 26 Suppose \(D \) is a strongly connected oriented graph with \(n \) vertices and \(m \) edges. Then

1. if \(n = 3 \) and \(m = 3 \) then \(\text{con}(D) = 1 \);
2. if \(n = 4 \) and \(m = 4 \) then \(\text{con}(D) = 1 \);
3. if \(n = 4 \) and \(m = 5 \) then \(\text{con}(D) = 1 \) or 3;
4. if \(n = 4 \) and \(m = 6 \) then \(\text{con}(D) = 1 \).

Proof. (1) If \(D \) is a strongly connected oriented graph with 3 vertices and 3 edges then \(D \) is directed cycle of length 3. Thus \(\text{con}(D) = 1 \).

(2) If \(D \) is a strongly connected oriented graph with 4 vertices and 4 edges then \(D \) is directed cycle of length 4. Thus \(\text{con}(D) = 1 \).

(3) If \(D \) is a strongly connected oriented graph with 4 vertices and 5 edges then the underlying graph of \(D \) is isomorphic to \(K_4 - \{e\} \) for some edge \(e \in E(K_4) \). Let the underlying graph \(D \) be the \(G = (V, E) \) with \(V = \{x_1, x_2, x_3, x_4\} \) and \(E = \{x_ix_j : i < j\} \cup \{x_1x_4\} \). Without loss of generality, \((x_2, x_1), (x_1, x_3) \) are in \(E(D) \). If \(x_1 \) is a transitive vertex in \(D \) then \((x_2, x_3) \) is in \(E(D) \). Thus, \((x_3, x_4), (x_4, x_2) \) are in \(E(D) \) and \(\text{con}(D) = 3 \). If \(x_1 \) is not a transitive vertex in \(D \) then \((x_3, x_1) \) is in \(E(D) \). If \(x_4 \) is not a transitive vertex in \(D \) then \(\text{con}(D) = 1 \); otherwise, for \(x_4 \) being a transitive vertex, \(\text{con}(D) = 3 \).

(4) By Theorem 14, \(S_{SC}(K_4) = \{1\} \). Then \(\text{con}(D) = 1 \).
References

