












Figure 4. Effect of norrin on LRP-1 phosphorylation. Retinal ganglion cell (RGC)-5 cells were left untreated or treated for 24 h with 2.0 μM
staurosporine (SS) alone or SS and 25 ng/ml norrin (n=2 experiments). At the end of 24 h, cells were collected, proteins were extracted, and
immunoprecipitated by using antibodies against lipoprotein-related receptor-1 (LRP-1). Immunoprecipitated proteins were subjected to
western blot analysis by using antibodies against anti-phosphoserine, anti-phosphotyrosine, and anti-LRP-1 (A). Relative levels of proteins
were determined by densitometry (C). At the end of treatment, conditioned medium was collected, and proteolytic activity of tissue
plasminogen activator (tPA) and urokinase plasminogen activator (uPA) was determined by zymography assays (B). Relative amount of
proteolytic activity was determined by densitomety (D). LRP-1 was expressed constitutively in untreated cells and its expression did not
change regardless of the treatment condition (A). LRP-1 was phosphorylated at Tyr-residues constitutively in untreated cells and
phosphorylation status of LRP-1 at Tyr-residuces was not altered with any of the treatment conditions (A). LPR-1 was constitutively
phosphorylated at Ser-residues in untreated cells (A). Norrin-treatment alone had no effect on LPR-1 phosphorylation at Ser-residues, but SS-
treatment significantly reduced Ser-phosphorylation of LRP-1 (A, C, *p<0.05). Nonetheless, LPR-1 phosphorylation at Ser-residues was
significantly increased in the presence of SS and norrin (A,C, **p<0.05). RGC-5 cells were left untreated or treated for 48 h with 2.0 μM SS
and 25 ng/ml norrin in serum-free medium (n=3 experiments). Compared to low levels of uPA in untreated cells, levels of both uPA (B,D,
*p<0.05) and tPA (B,D, %p<0.05) were increased in the presence of SS. In addition, compared to low levels of uPA in norrin-treated cells,
levels of both uPA (B,D, **p<0.05) and tPA (B,D, %%p<0.05) were significantly increased in the presence of SS and norrin. Nonetheless,
cell viability assays (E) indicate that survival of RGC-5 cells decreased significantly under SS-treated conditions (E,*p<0.05), but not under
SS and norrin-treated conditions (E, **p<0.05). NS, not significant.
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Figure 5. Effect of protein kinase inhibitors on phosphorylation of LRP-1. Retinal ganglion cell (RGC)-5 cells were left untreated or treated
for 24 h with staurosporine (SS; 2.0 μM), norrin (25 ng/ml), with or without H-89 (n=3 experiments). At the end of 24 h, proteins were extracted
and immunoprecipitated by using antibodies against lipoprotein-related receptor-1 (LRP-1). Immunoprecipitated proteins were then subjected
to western blot analysis by using antibodies against phosphoserine, phosphotyrosine, and LRP-1 (A). Relative amount of proteins was
determined by densitometric analysis (B). LRP-1 was expressed constitutively in norrin-treated cells and its expression did not change
regardless of treatment condition (A). LRP-1 was phosphorylated at Tyr-residues constitutively in norrin-treated cells and phosphorylation
status of LRP-1 at Tyr-residues did not change with any of the treatment condition (A). In addition, LPR-1 was constitutively phosphorylated
at Ser-residues in norrin-treated cells (A). Compared to Ser-phosphorylation of LRP-1 in norrin-treated cells, Ser-phosphorylation of LRP-1
was significantly reduced when cells were treated with H-89 (A, B, *p<0.05). In addition, compared to Ser-phosphorylation of LRP-1 under
SS and norrin-treated conditions, Ser-phosphorylation of LRP-1 was further reduced under H-89, SS, and norrin-treated conditions (A,B,
**p<0.05). Cell viability assays indicate that, in the absence of SS, lower concentrations of H-89 had no effect on cell survival, but higher
concentrations of H-89 (2.5–10.0 μM) decreased cell survival significantly regardless of norrin's presence (C, *p<0.05). Furthermore, in the
presence of SS, lower concentrations of H-89 had no effect on cell survival, but higher concentrations of H-89 (2.5–10.0 μM) decreased norrin-
mediated cell survival (D, *p<0.05).
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regulating the phosphorylation of LRP-1. Comparison of
phosphorylation of LRP-1 with tPA and uPA levels (Figure
4C,D) indicated that the phosphorylation status of LRP-1 does
not affect the levels of tPA and uPA. However, comparison
of phosphorylation of LRP-1 (Figure 4A) with MTT assays
(Figure 4E) indicated that phosphorylation status of LRP-1
affected the survival of RGC-5 cells. Results presented in
Figure 4 show that despite elevated levels of tPA and uPA
(Figure 4C,D), a significant number of RGC-5 cells survived
(Figure 4E) as long as LRP-1 was phosphorylated at both Ser
and Tyr-residues (Figure 4A).

To identify the kinases responsible for LRP-1
phosphorylation, we have concentrated our efforts on protein
kinase A (PKA) and protein kinase C (PKC) because these
kinases have been shown to regulate the phosphorylation of
LRP-1. Since SS (inhibitor for PKCs) reduced the
phosphorylation of LRP-1 at Ser-residues in RGC-5 cells (see
Figure 4A), we have ruled out the role of PKCs in LRP-1
phosphorylation under SS and norrin-treated conditions. To
investigate whether PKA plays a role in norrin-mediated
phosphorylation of LRP-1, RGC-5 cells were left untreated or
treated with 5 μM H-89 (a PKA inhibitor) [16], norrin alone,
or combined norrin and 5 μM H-89. In addition, RGC-5 cells
were treated with SS only, SS and H-89, SS and norrin, or
combined SS, norrin, and H-89. After the treatment,
phosphorylation of LRP-1 was assessed by western blot
analysis as described in the previous section. Western blot
analysis indicated that LRP-1 was phosphorylated at Ser- and
Tyr-residues when treated with norrin alone or norrin plus SS
(Figure 5A,B), consistent with the results presented in Figure
4A. When LRP-1 phosphorylation was compared between
norrin only or norrin and H-89-treated cells, Ser-
phosphorylation of LRP-1 was reduced by about 15%–20%.
In the presence of SS and norrin, H-89 led to an additional
reduction in LRP-1 phosphorylation, suggesting that PKA
plays a role in norrin-mediated phosphorylation of LRP-1.

Finally, to investigate the role of PKA on survival of
RGC-5 cells, cells were left untreated or treated with 0.625–
10 μM H-89 only, norrin only, or combined norrin and 0.625–
10 μM H-89, with or without SS. At the end of the treatment
cell viability was determined by MTT assays (Figure 5C,D).
Results presented in Figure 5C indicate that 2.5−10 μM H-89
alone, in the presence or absence of norrin, significantly
reduced the viability of RGC-5 cells, indicating that PKA, in
part, plays a role in survival of RGC-5 cells under normal
conditions. In addition, when survival of RGC-5 cells was
compared between SS- and norrin-treated conditions, and
combined SS-, norrin-, and H-89-treated conditions (Figure
5D), cell survival was further reduced under 2.5–10 μM H-89-
treated conditions. These results indicate that PKA, in part,
plays a role in norrin-mediated survival of RGC-5 cells.

DISCUSSION
Recent studies indicated that norrin, which regulates the
regression of hyaloid vessels in the retina [3,6,7,17,18] and

acts as a nonconventional ligand for Wnt pathway, prevents
loss of RGCs in norrin-deficient Ndpy/- mice [6]. Yet, it is
unclear how norrin attenuates loss of RGCs.

In this study, we have used transformed RGC-5 cells as
an in vitro model system to investigate the effects of norrin on
cell death. We have chosen RGC-5 cells because they express
markers such as Thy-1, Brn-3c, and neuritin characteristic of
primary RGCs, and have extensively been used as an in vitro
model system to investigate the effect of oxidative stress
[19], sigma-1 receptor ligands [20], thioredoxins [21], visible
light exposure [22], and hydrostatic pressure [23,24].
Although RGC-5 cells have been widely used, they differ
from primary RGCs in many respects including their
proliferative nature and resemblance to glial cells in culture.
Studies by Frassetto et al. [25] have reported that RGC-5 cells
can be differentiated into neuronal-like cells by treating them
with SS, a broad-spectrum protein kinase inhibitor. By
employing RGC-5 cells and by treating them with SS, we have
previously reported that SS induces tPA and uPA expression
in RGC-5 cells, and elevated levels of these proteases directly
cause the death of RGC-5 cells by interacting with LRP-1
[10,11]. Therefore, we have used RGC-5 cells to investigate
the effect of norrin on tPA and uPA-mediated cell death, and
made several important observations: 1) norrin attenuated SS-
mediated death of RGC-5 cells, without altering the levels of
tPA and uPA; 2) norrin-mediated survival of RGC-5 cells was
associated with activation of Wnt/beta-catenin pathway, but
inhibition of Wnt pathway did not reduce norrin-mediated
survival of RGC-5 cells completely; and 3) norrin attenuated
tPA and uPA-mediated death of RGC-5 cells, in part, by
regulating the phosphorylation status of LRP-1, a cell surface
receptor for both tPA and uPA.

Based on the results presented in this study, we propose
that both PKA and PKC contribute to constitutive
phosphorylation of LRP-1 in undifferentiated RGC-5 cells
(Figure 6). Under these conditions, low levels of uPA do not
cause death of RGC-5 cells because LRP-1 is phosphorylated
constitutively. Since SS is a PKC inhibitor, we propose that
SS reduces PKC levels in differentiated cells, and the reduced
PKC fails to phosphorylate LRP-1. We believe that under
these conditions, elevated levels of tPA and uPA cause death
of RGC-5 cells because LRP-1 is not phosphorylated at Ser-
residues. On the other hand, with addition of norrin, LRP-1
remains phosphorylated at the Ser-residues, and under these
conditions, survival of RGC-5 cells increases despite elevated
levels of tPA and uPA. We propose that Wnt pathway alone
is not responsible for the norrin-mediated protective effect
since inhibition of Wnt pathway did not decrease norrin-
mediated protection completely. Since norrin restored LRP-1
phosphorylation and attenuated cell death despite elevated
levels of tPA and uPA, and since norrin-mediated protection
was reduced by the PKA inhibitor, we propose that norrin
restores phosphorylation of LRP-1, in part, by regulating PKA
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levels in RGC-5 cells. Finally, we propose that as long as
LRP-1 is phosphorylated, elevated levels of tPA and uPA do
not cause death of RGC-5 cells.

It is interesting to speculate the mechanisms underlying
phosphorylation of LRP-1 and survival of RGC-5 cells.
Although a growing body of evidence indicates that LRP-1
plays a role in the pathophysiology of cerebral ischemia
[26-29] and deletion of LRP-1 in mouse is embryonic lethal
[30], two important aspects of LRP-1 are still unclear. First,
how does LRP-1 regulates cell survival? Second, does
phosphorylation status of LRP-1 receptor plays a role in cell
survival? Since the cytoplasmic domain of LRP-1 contains
NPXY motifs that bind to a variety of adaptor proteins, it has
been speculated that LRP-1 controls a variety of cells
functions including cell survival [31]. For example, previous
studies have suggested that LRP-1 may regulate cell survival
by activating the PI3-Akt pathway [32,33], by preventing
nuclear translocation of activated c-Jun N-terminal protein
kinase (JNK) to the nucleus [34] or by controlling activation
of caspases [32]. In addition, several previous studies have
used the receptor-associated protein (RAP), a LRP-1 receptor
antagonist, and reported that LRP-1 regulates several cellular
functions [35-38]. Furthermore, studies from our own
laboratory have reported that RAP inhibits tPA and uPA
interaction with LRP-1, and attenuates tPA and uPA-mediated
death of RGC-5 cells [11]. However, the link between
phosphorylation status of LRP-1 and cell death has not been
reported. To our knowledge, this is the first report describing
the link between phosphorylation of LRP-1 and cell death, at
least in transformed RGC-5 cells.

The precise mechanisms by which norrin affects the
phosphorylation of LRP-1 are currently unclear. It is plausible
that norrin may regulate certain kinases and the kinases, in

Figure 6. Proposed model for norrin’s role on RGC-5 cells. Our
working hypothesis is that under normal conditions, phosphorylated
LRP-1 receptor prevents uPA-mediated cell death. SS, by inhibiting
PKC, downregulates LRP-1 phosphorylation, and in the absence of
LRP-1 phosphorylation, elevated levels of tPA and uPA cause death
of RGC-5 cells. In contrast, norrin prevents tPA and uPA-mediated
cell death, in part, by restoring phosphorylation of LRP-1 and, in part,
by activating Wnt pathway.

turn, may alter the phosphorylation of LRP-1. In this context,
previous studies have shown that the signaling functions of
LRP-1 are mediated through phosphorylation of its
cytoplasmic domain [4,39]. For example, PKA plays a role in
Ser-phosphorylation [14], while platelet-derived growth
factor (PDGF) induces phosphorylation of Tyr in the
cytoplasmic domain of LRP-1 [15]. In our study, we have
shown that norrin regulates phosphorylation of LRP-1
through PKA. An additional possibility is that certain genes
activated by Wnt pathway may, in turn, regulate norrin-
mediated protective effect in RGC-5 cells. Finally, LRP-1 can
alter the Wnt pathway by disrupting LRP5/6 and Frizzled
complexes [40].

There are few caveats associated with study. First, the
current study used transformed RGC-5 cells for investigating
the effect of norrin. Therefore, the results presented in this
study are applicable only to cultured RGC-5 cells, and not
applicable to primary RGCs. Second, since the current used
SS (a PKC inhibitor) to differentiate RGC-5 cells and to
induce death of RGC-5 cells, the relevance of these results to
a clinical situation is a concern. Yet, based on recent studies
that used SS to induce death of RGCs in animal models, we
believe that these results will also be applicable to clinical
situations. For example, Cordeiro et al. [41] have injected SS
into the vitreous humor of dark Agouti rats and macaque
monkeys to induce apoptosis of RGCs, and reported that this
model system is useful to investigate the mechanisms
underlying retinal neuro-degenerative diseases. Furthermore,
recent studies indicate that the SS-induced model system
represents as a glaucoma-related animal model to investigate
the role of glutamate receptors in RGCs’ death [42]. Future
studies aimed at understanding the effect of norrin in animal
models of SS-induced cell death would provide a better
understanding of the mechanisms underlying norrin in
survival of RGCs.

In summary, we have provided evidence that norrin
attenuates tPA and uPA-mediated death of RGC-5 cells by
activating Wnt/beta-catenin pathway and by regulating the
phosphorylation of LRP-1, a cell surface receptor for both tPA
and uPA.
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