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Abstract: Diabetes mellitus is one of the most common human diseases worldwide and may cause
several health-related complications. It is responsible for considerable morbidity, mortality, and
economic loss. A timely diagnosis and prediction of this disease could provide patients with an
opportunity to take the appropriate preventive and treatment strategies. To improve the understand-
ing of risk factors, we predict type 2 diabetes for Pima Indian women utilizing a logistic regression
model and decision tree—a machine learning algorithm. Our analysis finds five main predictors
of type 2 diabetes: glucose, pregnancy, body mass index (BMI), diabetes pedigree function, and
age. We further explore a classification tree to complement and validate our analysis. The six-fold
classification tree indicates glucose, BMI, and age are important factors, while the ten-node tree
implies glucose, BMI, pregnancy, diabetes pedigree function, and age as the significant predictors.
Our preferred specification yields a prediction accuracy of 78.26% and a cross-validation error rate of
21.74%. We argue that our model can be applied to make a reasonable prediction of type 2 diabetes,
and could potentially be used to complement existing preventive measures to curb the incidence of
diabetes and reduce associated costs.

Keywords: decision tree; diabetes risk factors; machine learning; prediction accuracy

1. Introduction

Diabetes is one of the most common human diseases and has become a significant
public health concern worldwide. There were approximately 450 million people diagnosed
with diabetes that resulted in around 1.37 million deaths globally in 2017 [1]. More than
100 million US adults live with diabetes, and diabetes was the seventh leading cause of
death in the US in 2020 [2]. One in ten US adults have diabetes now, and if the current
trend continues, it is projected that as many as one in three US adults could have diabetes
by 2050 [2]. Diabetes patients are at elevated risk of developing health complications such
as kidney failure, vision loss, heart disease, stroke, premature death, and amputation of
feet or legs, which can lead to dysfunction and chronic damage of tissue [3]. In addition,
there are substantial economic costs associated with the disease. The total estimated price
of diagnosed diabetes in the US increased to USD 237 billion in 2017 from USD 188 billion
in 2012. The excess medical costs per person associated with diabetes increased to USD
9601 from USD 8417 during the same period [2]. Additionally, there could be productivity
loss due to diabetic patients in the workforce.

An individual at high risk of diabetes may not be aware of the risk factors associated
with it. Given the high prevalence and severity of diabetes, researchers are interested in
finding the most common risk factors of diabetes, as it could be due to a combination of
several reasons. Determining the risk factors and early prediction of diabetes have been
vital in reducing diabetes complications [4,5] and economic burden [6] and is beneficial
from both clinical practice and public health perspectives [7]. Similarly, studies find that
screening high-risk individuals identifies the population groups in which implementing
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measures aimed at preventing diabetes will be the most beneficial [8]. Early intervention
may help prevent complications and improve quality of life and are essential in designing
effective prevention strategies [9,10]. There is growing evidence that lifestyle modification
prevents or delays type 2 diabetes [11]. The main risk factors of diabetes are considered
to be an unhealthy diet, aging, family history, ethnic groups, obesity, sedentary lifestyle,
and previous history of gestational diabetes [6,7,12]. Previous studies have also reported
that sex, body mass index (BMI), pregnancy, and metabolic status are associated with
diabetes [13,14].

Prediction models can screen pre-diabetes or people with an increased risk of develop-
ing diabetes to help decide the best clinical management for patients. Numerous predictive
equations have been suggested to model the risk factors of incident diabetes [15–17]. For in-
stance, Heikes et al. [18] studied a tool to predict the risk of diabetes in the US using
undiagnosed and pre-diabetes data, and Razavian et al. [19] developed logistic regression-
based prediction models for type 2 diabetes occurrence. These models also help screen
individuals to posit individuals who are at a high risk of having diabetes. Zou et al. [20]
used machine learning methods to predict diabetes in Luzhou, China, and a five-fold
cross-validation was used to validate the models. Nguyen et al. [5] predict the onset of
diabetes employing deep learning algorithms suggesting that sophisticated methods may
improve the performance of models. In contrast, several other studies have shown that
logistic regression performs as least as well as machine learning techniques for disease risk
prediction ([21,22], for example). Similarly, Anderson et al. [23] used logistic regression
along with machine learning algorithms and found a higher accuracy with the logistic
regression model. These are mainly based on assessing risk factors of diabetes, such as
household and individual characteristics; however, the lack of an objective and unbiased
evaluation is still an issue [24]. Additionally, there is growing concern that those predictive
models are poorly developed due to inappropriate selection of covariates, missing data,
small samples size, and wrongly specified statistical models [25,26]. To this end, only a
few risk prediction models have been routinely used in clinical practice. The reliability
and quality of these predictive tools and equations show significant variation depending
on geography, available data, and ethnicity [5]. Risk factors for one ethnic group may not
be generalized to others; for example, the prevalence of diabetes is reported to be higher
among the Pima Indian community. Therefore, this study uses the Pima Indian dataset
to predict if an individual is at risk of developing diabetes based on specific diagnostic
factors [27,28].

We consider a combined approach of logistic regression and machine learning to
predict the risk factors of type 2 diabetes mellitus. The logistic regression compares several
prediction models for predicting diabetes. We used various selection criteria popular in the
literature such as AIC, BIC, Mallows’ Cp, adjusted R2, and forward and backward selection
to identify the significant predictors. We then exploit the classification tree, a widely used
machine learning technique with considerable classification power [5,20,25], to predict
diabetes incidence in several previous studies. Our paper also contributes to the broad
literature on risk factors of diabetes. We extend previous research by exploring traditional
econometric models and simple machine learning algorithms to build on the literature on
diabetes prediction. Our analysis finds five main predictors of diabetes: glucose, pregnancy,
body mass index, age, and diabetes pedigree function. These risk factors of diabetes
identified by the logistic regression were validated by the decision tree and could help
classify high-risk individuals and prevent, diagnose and manage diabetes. A regression
model containing the above five predictors yields a prediction accuracy of 77.73% and a
cross-validation error rate of 22.65%. This study helps inform policymakers and design
the health policy to curb the prevalence of diabetes. The methods exhibiting the best
classification performance vary depending on the data structure; therefore, future studies
should be cautious using a single model or approach for diabetes risk prediction.
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The remainder of this article proceeds as follows. The next section discusses data and
summary statistics. We then describe the methods. This is followed by a presentation of
the results. The last section concludes our study.

2. Data and Summary Statistics

Several factors might be related to diabetes, including blood pressure, pregnancies for
women, age and body mass index, etc. As a component of diabetes management, it would
be helpful to know which variables are related to diabetes. We use the Pima Indian dataset,
made available by the National Institute of Diabetes at the Johns Hopkins University, as a
test case to predict the risk factors associated with diabetes. The Pima are American Indians
that live along the Gila River and Salt River in Southern Arizona. Each observation in the
dataset represents an individual patient and includes information on the patient’s diabetes
classification, along with the various medical attributes such as the number of pregnancies,
plasma glucose concentration, tricep skinfold thickness, body mass index (BMI), diastolic
blood pressure, 2-h serum insulin (serum-insulin), age and diabetes pedigree function. Our
response variable, diabetes, would take the value of 1 if an individual were diagnosed with
type 2 diabetes and 0 otherwise. There are 268 (34.9%) diabetes patients in our sample.
Five covariates, insulin, glucose, BMI, skin thickness, and blood pressure, contain at least
one missing value (indexed by zero), which is not meaningful. So, we replaced all those
zeros with the corresponding median values. We analyzed data using statistical program
R version 4.0.5 [29]. Table 1 presents descriptive statistics for all predictors after median
value imputation for missing values.

Table 1 shows that BP, BMI, and skin-thickness have almost the same mean and
median. The variable pedigree has the lowest standard deviation while insulin has the
highest standard deviation, implying that pedigree has the least variability and insulin has
the highest variability present in their distributions. Our objective is to identify a subset of
covariates most suitable for inclusion in a predictive model for diabetes. Including only a
few predictors can lead to omitted variable bias, and too many predictors can reduce the
precision. There are numerous methods available for developing appropriate predictive
equations. Among them, we implement logistic regression and a classification tree—a
machine learning technique.

Table 1. Descriptive statistics.

Variable Definition Mean Std. dev. Median

Pregnancy Frequency of pregnancy 3.85 3.37 3.00
Glucose Concentration of plasma glucose (mg/dL) 121.66 30.44 117.00

BP Diastolic blood pressure (mm Hg) 72.39 12.10 72.00
Skin Tricep skinfold thickness (mm) 29.11 8.79 29.00

Insulin Two-hour serum insulin (mu U/mL) 140.67 86.38 125.00
BMI Body mass index (kg/m2) 32.46 6.88 32.30

Pedigree A pedigree function for diabetes 0.47 0.33 0.37
Age Age (log (years)) 33.24 11.76 29.00

3. Methods
3.1. Logistic Regression

Logistic regressions model a relationship between the categorical response variable
and covariates. Specifically, there is a linear combination of independent variables with
log-odds of the probability of an event in a logistic model. Binary logistic regressions
estimate the likelihood that a characteristic of a binary variable is present, given the values
of the covariates. Suppose Y is a binary response variable where Yi = 1 if the character is
present and Yi = 0 if the character is absent and the data [Y1, Y2, ..., Yn] are independent.
Let πi be the probability of success. Additionally, consider x = (x1, x2, ..., xp) as a set of
explanatory variables which can be discrete, continuous, or a combination of both discrete
and continuous. Then, the logistic function for πi is given by
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logit(πi) = log
( πi

1− πi

)
= β0 + β1xi1 + β2xi2 + · · ·+ βpxi,p;

where

πi =
exp(β0 + β1xi1 + β2xi2 + · · ·+ βpxi,p)

1 + exp(β0 + β1xi1 + β2xi2 + · · ·+ βpxi,p)
=

exp(x′i β)
1 + exp(x′i β)

= Λ(x′i β)

Here, πi denotes the probability that a sample is in a given category of the dichotomous
response variable, commonly called as the "success probability" and, clearly, 0 ≤ πi ≤ 1.
Λ(.) is the logistic cdf, with λ(z) = ez/(1 + e−z) = 1/(1 + e−z) and βs represents a vector
of parameters to be estimated (Cameron and Trivedi, 2005). The expression( πi

1− πi

)
is called the odds ratio or relative risk.

3.1.1. Estimation and Likelihood Ratio Test

Maximum likelihood is the preferred method to estimate β since it has better statistical
properties, although we can use the least-squares approach. Consider, the logistic model
with the single predictor variable X given by the logistic function of

π(X) =
exp(Xiβ)

1 + exp(Xiβ)

We wish to find the estimates such that plugging β̂ into the model for π(X) gives
a number close to one for all subjects who have diabetes and close to zero otherwise.
Mathematically, the likelihood function is given by

L(β0, β1) = ∏i:yi=1 π(xi)∏i′ :yi′=0(1− π(xi′))

The estimates β̂ are chosen to maximize this likelihood function. We take the logarithm
on both sides to calculate and use the log-likelihood function for the estimation purpose.

We used the likelihood ratio to test if any subset of estimates β is zero. Suppose that
p and r represent the number of β in the full model and the reduced model, respectively.
The likelihood ratio test statistic is given by

Λ∗ = −2[l(β̂(0))− l(β̂)],

where l(β̂) and l(β̂(0)) are the log likelihoods of the full model and the reduced model,
respectively, evaluated at the maximum likelihood estimation (MLE) of that reduced
and Λ∗ ∼ χ2

p−r; p and r being the number of parameters in the full and the reduced
model, respectively.

3.2. Model Selection Criteria

We used Akaike’s information criteria (AIC), Schwarz’s Bayesian information criteria
(BIC), adjusted R2, and PRESS to select the best predictive model. Information criteria
are procedures that attempt to choose the model with the lowest sum of squared er-
rors (SSE), with penalties for including too many parameters. AIC estimates the relative
distance between the true and fitted likelihood functions of the data and model plus a
constant. The AIC criteria are to choose the model which yields the smallest value of AIC,
as defined by

AICp = n log(SSE)− n log(n) + 2p,

where n, and p number of observations and the number of parameters, respectively.
The BIC gives a function of the posterior probability of a true model under a certain

Bayesian setup. The BIC criteria are to choose the model which yields the smallest value of
BIC. We define BIC as

BICp = n log(SSE)− n log(n) + p log(n),
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where parameters are as defined earlier. Note that BIC incorporates a higher penalty for a
higher n, and so it rewards more parsimonious models.

The prediction sum of squares (PRESS) is used to assess the model’s predictive ability
and can also be used to compare regression models as a model validation method. For n
observations, PRESS is determined by excluding each point at once, and then the remaining
n− 1 observation points are used to predict the value of the omitted response, denoted by
ŷi(i). We then calculated the ith PRESS residual as the difference yi − ŷi(i). The formula for
PRESS is given by

PRESS= ∑n
i=1(yi − ŷi(i))

2.

The smaller the PRESS value, the better the model’s prediction ability, which is
helpful to validate the predictive ability of the model without selecting another sample or
subsetting the data into training and to assess the predictive power. Predictive R2 (denoted
by R2

Pred) which is more intuitive than PRESS itself, is defined as

R2
Pred = 1− PRESS

SSTO
.

PRESS and R2
Pred together can help prevent over-fitting because both are computed

using observations, not in the model estimation.
R2 is the proportion of the variance in the dependent variable that is predictable from

the independent variable(s) and is defined as

R2 =
SSR

SSTO
= 1− SSE

SSTO
,

where SSR and SSTO are the regression sum of squares and total sum of squares, respec-
tively. We can see that R2 increases with an increase in predictors. Therefore, a model based
on the largest R2 value may not be the best predictive equation. Penalizing for adding
more predictors to the model seems more plausible as the adjusted R2, denoted by R2

a and
defined by

R2
a = 1− n− 1

n− p
SSE

SSTO
= 1− n− 1

SSTO
MSE,

where MSE is defined as MSE =
SSE

n− p
=

∑( yi − ŷi)
2

n− p
.

Note that MSE is minimal if and only if R2
a is at its highest value.

3.3. Validation and Cross-Validation Method

We can estimate the test error using the validation set and cross-validation error
methods as an alternative to the above-described approaches. We calculated the cross-
validation error and validation set error for each model under consideration and then
selected the model with the lowest test error as our preferred specification. It can also be
used in a broader range of model selection problems where it is hard to figure out the
number of covariates in the model or complex to estimate the error variance σ2.

Validation set approach: To estimate the test error rate associated with a particular
method on a set of samples, we used the validation set approach that randomly divides
the available samples into a training set and a validation set. The model fits the training
set. We used the fitted model to predict the responses in the validation set. The resulting
validation set error rate-typically assessed using mean square errors (MSEs).

k-fold cross-validation: This approach randomly divides the sample into k-groups
or folds of equal size. The first fold behaves as a validation set, and the model is fitted
with the remaining k-1 folds. The mean squared error, MSE, is then calculated using the
samples in the held-out fold. We repeat this process k times; each time, a different group
of samples behaves as a validation set [30]. This process yields k estimates of the test
errors; MSE1, MSE2, · · · , MSEk. The advantages of this method is that full data are trained
and tested that help lowers the variance [31]. The k-fold CV estimate is determined by
averaging these values:
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CV(k) =
1
k ∑k

i=1 MSEi

3.4. Classification Tree

A classification tree is a basic regression method with a tree structure that begins
with a single node representing the training set. We used a classification tree to predict
a qualitative response. The expected response for a sample is computed by the mean
response of the training set that lies to the same terminal node. We predicted that each
sample belongs to the most frequently occurring class of training sets. We are also interested
in the classes among the training sets [30].

The classification error rate is the fraction of the training set in a region that does not
belong to the most common class:

E = 1−maxk( p̂mk) · · · (*)

where p̂mk represents the proportion of the training set from the kth class in the mth region.
Two other measures are preferable when classification error is not sensitive for tree growing.

The Gini index [32] is defined by

G = ∑K
k=1 p̂mk(1− p̂mk) · · · (**)

and this is a measure of total variance across K classes. Note that the Gini index is referred
to as a measure of node purity and equal to a small value if all of the p̂mks approximate
to zero or one. A small value indicates that a node contains observations from a single
class. Prediction accuracy is one of the most commonly used criteria in the classification
tree. We also measured the performance of classifiers using the prediction accuracy, which
is defined as the proportion of all subjects that were correctly predicted. The accuracy of
models was calculated through the confusion matrix as

Accuracy =
TP + TN

TP + FP + TN + FN
× 100%

where TP, TN, FP, and FN are true positive, true negative, false positive, and false nega-
tive, respectively.

4. Results

Figure 1 is the correlation plot, which gives the strength of the correlations between
different pairs of the predictors. The pairwise correlations (r) between pregnancy and age
(0.59) and between BMI and skin thickness (0.54) are (r > 0.5) high compared to other pairs,
indicating these two pairs of predictors are significantly correlated.

4.1. Estimates of Logistic Regression Models

We begin by looking at the predictors of the prevalence of diabetes using the logistic
regression model. We tried all possible combinations of predictors and then compared each
model using the goodness of fit test and model selection criteria. We outlined five candidate
models while performing the goodness of fit test. Table 2 shows results from fitting the
logistic regression models, in which we compared results across five different candidate
regression specifications and a null model. Model 1 represents estimates from the null
model, while model 2 estimates the full model. Since the residual deviance is decreased
significantly with the inclusion of predictor variables, we can say that the model with the
inclusion of predictor variables is better than the null model. Based on the full model,
the variables skin thickness, blood pressure, and insulin are not significant predictors of
diabetes at 5% significance level. Model 3 is the estimate of the logistic regression, omitting
the non-significant variable from model 2 as we want to ensure a better estimation of the
regression coefficients. Model 4, model 5, and model 6 add different interaction terms as
we observe interacting age with pregnancy, glucose, and insulin, and insulin with pedigree
provides more meaningful results.
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Figure 1. Correlation plot of the variables used in the study. Note: BP and BMI represent blood pressure and body mass
index, respectively.

We proceed to obtain the best possible model specified by the best subset selection
method. For this purpose, we used AIC, BIC, log-likelihood, R2, adjusted R2, and Cp criteria.
Model 6 has the smallest AIC and the largest R2 and log-likelihood values, suggesting a
better fit; however, model 4 has the smallest BIC, indicating ambiguity. Notice that R2

and log-likelihood values increase continuously with each additional variable included
in the model. These two criteria are not much helpful for selecting the best fit model
since these statistics do not indicate which and how many predictor variables to include.
Additionally, we have to be cautious about the possibility of obtaining an over-fitted model
while including several covariates and interaction terms that could lead to a problem with
near co-linearity.

We drew interaction plots to better understand the nature of the interactions between
age and glucose and between age and pregnancy. Figures 2 and 3 show how the vari-
ation in one of the predictor variable changes the response given a fixed value of the
interacting variable.

As seen in Figure 2, the probability of diabetes is higher for high-age groups when
the glucose level is below 160 mg/dL (approx). However, when the glucose level is above
160 mg/dL, the probability of diabetes is higher for low-age groups and lower for high-age
group women. The second plot in the Figure 2 shows that the probability of diabetes is
the highest for women with high glucose levels (185 mg/dL). The lower the glucose level,
the lower the probability of diabetes.

Figure 3 shows the interaction between age and pregnancy. As seen in the plot, there is
an inverse relationship between age and pregnancy in the prediction of diabetes. When the
number of pregnancies is greater than 7, the probability of diabetes is higher for low age
groups (<55 years) and less for higher age group women. This relationship is the opposite
when the number of pregnancies for a woman is less than 7. On the other hand, if we keep
pregnancy fixed and vary age, the probability of diabetes is higher for the higher age group
(>55 years) who have no children and the lowest for the women of age ≥ 55 years who
have had six pregnancies. At the same time, the probability of diabetes incidence remains
lower if a woman is in the low-age group with fewer than six pregnancies.
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Table 2. Predictive models for diabetes risk factors.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Constant −0.62 ∗∗∗ −11.32 ∗∗∗ −11.43 ∗∗∗ −15.63 ∗∗∗ −23.92 ∗∗∗ −25.40 ∗∗∗

(0.08) (1.33) (1.32) (1.96) (5.35) (5.62)
Pregancy 0.11 ∗∗ 0.10 ∗∗ 1.29 ∗∗ 1.29 ∗∗∗ 1.28 ∗∗

(0.03) (0.03) (0.39) (0.39) (0.40)
Glucose 0.04 ∗∗∗ 0.04 ∗∗∗ 0.04 ∗∗∗ 0.10 ∗∗ 0.16 ∗∗∗

(0.00) (0.00) (0.00) (0.04) (0.04)
BP −0.01

(0.01)
Skin 0.00

(0.01)
Insulin −0.00 −0.04 ∗∗

(0.00) (0.01)
BMI 0.10 ∗∗∗ 0.09 ∗∗∗ 0.09 ∗∗∗ 0.09 ∗∗∗ 0.09 ∗∗∗

(0.02) (0.01) (0.01) (0.02) (0.02)
Pedigree 0.86 ∗∗ 0.86 ∗∗ 0.90 ∗∗ 0.87 ∗∗ 1.73 ∗∗∗

(0.30) (0.30) (0.30) (0.30) (0.45)
Age 0.84 ∗ 0.73 ∗ 1.89 ∗∗∗ 4.27 ∗∗ 4.40 ∗∗

(0.37) (0.35) (0.52) (1.51) (1.58)
Pregancy × Age −0.33 ∗∗ −0.33 ∗∗ −0.32 ∗∗

(0.11) (0.11) (0.11)
Glucose × Age −0.02 −0.03 ∗∗

(0.01) (0.01)
Pedigree × Insulin −0.01 ∗∗

(0.00)
Age × Insulin 0.01 ∗∗

(0.00)

AIC 995.48 727.55 724.13 716.70 715.90 701.87
BIC 1000.13 769.34 752.00 749.20 753.05 752.95
Log Likelihood −496.74 −354.77 −356.07 −351.35 −349.95 −339.93
Deviance 993.48 709.55 712.13 702.70 699.90 679.87
R2 0.00 0.43 0.42 0.43 0.44 0.46
N 768 768 768 768 768 768

Note: Figures in parentheses indicate standard errors. ∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05. BP, BMI and Skin represent blood pressure,
body mass index and tricep skinfold thickness, respectively.

Figure 2. Interaction between age and glucose.
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Figure 3. Interaction between age and pregnancy.

The plots of residual sum of square (RSS), adjusted R2, Cp, and BIC for all models
together will help us decide the best fit model to select. Figure 4 plots the relationship
between selection criteria versus a number of predictors in models. We observed that
different criteria suggest different sized models that fit best. According to RSS criteria, five
or six variable models fit the data better. Adjusted R2 selected a six-variable model, while
BIC and Cp suggest four- and five-variable models, respectively.

Now, we need to know which of the predictors should be selected. According to
the BIC criteria, there are only four predictors: pregnancy, glucose, BMI, and pedigree.
The model with these four predictors has the minimum BIC value (results not shown).
According to Mallows’ Cp criteria, we have five significant predictor variables: pregnancy,
glucose, BMI, pedigree, and age. If we look at the adjusted R2 plot, six variables, pregnancy,
glucose, BP, BMI, pedigree, and age, are significant. The coefficients associated with the
four predictors given by BIC and that for five predictors associated with the Mallows’ Cp
criterion are given in Figure 5.

We further explored models suggested by the forward and backward stepwise selec-
tion method. For this, we used the regsubsets() function in R. The forward and backward
method both agree on the five predictor variables, pregnancy, glucose, BMI, pedigree,
and age, which is consistent with the other selection criteria to give the best fit model.

4.2. Classification Tree and Prediction Accuracy

Our variable outcome, diabetes, is a binary numeric variable indexed by 1 and 0. We
changed this variable into a qualitative variable to obtain a classification tree. Accordingly,
we recoded variable labels so that “Yes” indicates the diabetes patient and “No” otherwise.
Figure 5 shows the classification tree with thirteen terminal nodes and seven predictors.
Deviance in the classification tree, as in James et al. [30], is given by

−2 ∑m ∑k nmk log p̂mk,

where nmk is the number of sample points in the mth terminal node that belong to the
kth class. Small deviance indicates a good fit for the (training) data. The residual mean
deviance measures the goodness of fit and is simply the deviance divided by n − |T0|.
Figure 5 shows a classification tree using all predictors available in the dataset. Glucose is
the root node, suggesting that glucose is an important predictor of diabetes while BMI and
age are also key variables in this method. Our results from this method are also in line with
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Wu et al. (2021), who indicated that glucose, BMI, and age were the top three predictors of
diabetes. Residual mean deviance corresponding to Figure 6 is 601/755 = 0.796.

Figure 4. Number of significant predictors indicated by different criteria.

Figure 5. Significant predictors indicated by different criteria. Note: the variables BP and BMI are
blood pressure and body mass index, whereas the metrics r2, Cp, adjr2, and bic represent R-squared,
Mallows’ Cp, adjusted R-squared, and Bayesian information criteria, respectively.
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Figure 6. Classification tree with 13 terminal nodes. Note: BMI represents body mass index.

We consider the full-sized tree with thirteen terminal nodes to check the performance
of different trees and subtrees. In order to evaluate the performance of a classification tree,
we need to estimate the test error rate. For this, we split the dataset into a training set and
a test set. The training dataset contains 75% of the observations and the test set contains
the remaining 25% observations, which were assigned randomly. We built trees using the
training set and evaluated their performance on the test data using the predict() function
in statistical program R. The confusion matrix corresponding to the thirteen-node tree is
given in Table 3.

Table 3. Confusion matrix on test dataset.

Predicted

Actual

No Yes

No 102 27

Yes 23 40

The prediction accuracy rate of this thirteen-node tree is (102 + 40)/192 = 73.96%,
meaning that this tree cannot predict accurately 26.07% of the time. We can check the
performance of its subtrees by pruning for better predictive ability.

In order to determine the optimal level of tree complexity, we employed the function
cv.tree() in R. Cost complexity pruning was also used to select a sequence of trees for
consideration. We applied the prune.misclass() function in R to prune the tree. We check
for the performance of the trees with 14, 10, and 6 terminal nodes as suggested by the
cv.tree()function. Figure 7 shows pruning plots which were determined by the size (the
number of terminal nodes of tree) and α. The vertical axis represents residual deviance.
The model with the lowest residual deviance is preferred, as shown in Table 4.

We observe that subtrees with ten and six terminal nodes have the lowest residual
deviance; however, a tree with ten nodes may cause over-fitting. Thus, a six-node tree
could be a better choice. The residual deviance for this tree is 127, and the optimal value of
the tuning parameter is 3.25. The prediction accuracy corresponding to this six-terminal
node tree is (106 + 37)/192 = 74.48% (Table 5). It means 74.48% of the test observations
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can be correctly classified with only four predictors: glucose, BMI, pedigree, and age. It
also shows the improved accuracy compared to that of full-sized tree.

Figure 7. Pruning test.

Table 4. Relationship between terminal nodes and residual deviance.

Parameter (1) (2) (3) (4) (5) (6)

Size 14 11 10 6 3 1
Residual
deviance 128 128 127 127 147 194

α −∞ 0 2 3.25 7.67 30

Table 5. Confusion matrix for a tree with six terminal nodes.

Actual

Predicted

No Yes

No 106 29

Yes 20 37

On the other hand, the predictors associated with the ten-node subtree are also the
same—that is, glucose, BMI, pedigree and age, (Figure 8), with a prediction accuracy of
(105 + 38)/192 = 74.48%, which is same as that obtained from a six-node subtree.

4.3. Proposed Diabetes Predictive Equation for Pima Indians

For the sake of completeness, we also calculated the prediction accuracy and cross-
validation errors of the models proposed based on the logistic regression (Table 6). Model
6 has the highest prediction accuracy of 78.26% among all models considered in this study,
and it has a classification error rate equal to 21.74%, which is better than that of the other
candidate models.

Table 6. Summary of prediction accuracy and validation errors of potential predictive models.

Accuracy/Error Model 2 Model 3 Model 4 Model 5 Model 6

Prediction accuracy 77:73% 74.48% 76.43% 76.17% 78.26%
Classification error 22.27% 25.52% 23.57% 23.83 % 21.74%
Cross validation error 22.65% 25.14% 23.69% 22.86% 22.86%
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Figure 8. Pruned trees with ten and six internal nodes. Note: BMI and BP represent body mass index and blood
pressure, respectively.

To check the model’s predictive ability, we ran eight-fold cross-validation for the
model, which gives a prediction error rate equal to 22.86%. This is slightly higher than
that given in Table 7. Results provide evidence that model 6 with four interaction terms
performs better than any combinations of covariates for the Pima Indian diabetes dataset.
Thus, we propose the following model:

Logit(π) = −25.4 + 1.28 ∗ Pregnancy + 0.16 ∗ Glucose + 0.09 ∗ BMI

+1.73 ∗ Pedigree + 4.4 ∗ Age− 0.04 ∗ Insulin− 0.32 ∗ Pregnancy× Age

−0.03 ∗ Glucose× Age− 0.01 ∗ Pedigree× Insulin + 0.01 ∗ Age× Insulin.

Table 7. Confusion matrix of proposed model.

Predicted

Actual

No Yes

No 442 58

Yes 109 159

5. Discussion

Diabetes has become one of the leading causes of human death in recent decades.
The incidence of diabetes has been continuously increasing every year due to several
reasons including eating habits, sedentary lifestyle, and prevalence of unhealthful foods.
Diabetes prediction model can contribute to the decision-making process in clinical man-
agement. Knowing the potential risk factors and identifying individuals at high risk in
the early stages may aid in diabetes prevention. A host of prediction models for diabetes
have been developed and applied, out of which logistic regression [21] and a machine
learning algorithm-based classification tree [20] are among the most popular methods.
Habibi et al. [6] suggest that a simple machine learning algorithm, a classification tree,
could be used to screen diabetes without using a laboratory. However, the validity of these
models for different locations, populations with different diets, lifestyle, races, and genetic
makeup is still unknown. Additionally, only a limited number of the reliable predictive
equation has been suggested for Pima Indian Women. Their prediction performance and
validity vary considerably. To fill this gap in the literature, this study used logistic regres-
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sion and a classification tree from the Pima Indian dataset to identify the important factors
for type 2 diabetes. We selected variables based on the goodness of fit test and model
selection criteria such as AIC, BIC, and Mallows’ Cp. The decision trees were plotted, and
the prediction accuracy and cross-validation error rate were calculated for the purpose
of validation. Variables selected from the logistic regression and decision tree are very
similar, suggesting that the variable identified helps predict diabetes and may be used as a
decision tool.

A higher BMI, reduced insulin secretion and action, a family history of diabetes, blood
pressure, smoking status, and pregnancy status are considered common risk factors for
type 2 diabetes [33,34]. Our study shows five main predictors for diabetes are frequency
of pregnancies in women, glucose, pedigree, BMI, and age. These variables were also
used in previous studies to predict diabetes. For example, Bays et al. [35] reported that
increased BMI was associated with an increased risk of diabetes mellitus. A study in
Finland developed a diabetes risk score to predict diabetes and found that age, parental
history of diabetes, BMI, high blood sugar level, and physical activities are among the
predictors of diabetes [36]. People with higher glucose are more likely to develop diabetes.
It may be because glucose is associated with insulin response [37]. Lyssenko et al. [33]
reported that a family history of diabetes could double the risk of the disease. The pedigree
provides a synthesis of the diabetes mellitus history in ancestors and the genetic relationship
with the subject. It utilizes information from a person’s family history to predict how likely
a subject can get diabetes. A higher BMI results in obesity, which could increase the
fat content of the pancreas and might affect the function of pancreatic cells. Obesity
could also lead to insulin resistance [38,39]. Age is a risk factor for the onset of diabetes.
Pancreatic cells lead to the decline of glucose sensitivity and impaired insulin secretion
with aging [40]. The validation shows that our model has a relatively good predictive
performance. The prediction accuracy of 78% from our preferred specification is close
to previous studies on diabetes risk factors. For example, Lyssenko et al. [33] report
accuracy rates of 74% to 77% for two different locations in the study of diabetes risk
factors. Zou et al. [20] predict diabetes with accuracy values of 77% and 81% for the Pima
Indian and Luzhou datasets, respectively. As indicated by Wilson et al. [41], we also found
that complex models are not necessary to predict diseases; instead, logistic regression
and classification tree techniques can be equally useful in predicting diabetes. However,
validation of the proposed model among different groups of the population should be
carried out.

We acknowledge the limitations of our analysis. First, only a few predictors were
considered to predict the risk of diabetes due to data limitations. Thus, our conclusion
may not be generalizable to larger datasets with several predictors. Second, even the best
predictive models and variable selection processes may yield different results according to
location, type of dataset, and the algorithms used. Finally, we replaced missing values with
medians of the respective variables which, although a common practice, could alter results.
Future studies could incorporate several other risk factors such as genetic traits, gender,
socio-economic status, physical activities, smoking, health information and attitude, food
consumption, and spending to predicting diabetes in a more generalized population.

6. Conclusions

Identifying individuals at high risk of developing diabetes is a critical component of
disease prevention and healthcare. This study presents a predictive equation of diabetes
to provide a better understanding of risk factors that could assist in classifying high-risk
individuals, make the diagnosis, and prevent and manage diabetes. Five critical variables
identified in predicting type 2 diabetes are age, BMI, pedigree, glucose and frequency of
pregnancies. We conclude that our proposed model has a prediction accuracy of 78.26%
with a cross-validation error rate of 22.86%. As for the case of a classification tree, we would
choose the tree with six nodes since it has the highest prediction accuracy (74.48%) than
other possible subtrees. The results imply that if we control these five predictors by taking
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the necessary steps, it could lower type 2 diabetes prevalence. In addition, accurately
predicting diabetes might help design interventions and implement health policies that
may aid in disease prevention.
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