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Resumen 

Introducción: Proponemos una nueva metodología para establecer la similitud entre imágenes 

segmentadas de la red vascular de la retina. El método está basado en vincular  métricas estándar 

con propiedades estructurales a través de la dimensión fractal.  

Método: Aplicamos nuestra metodología para comparar la vascularidad de imágenes de la retina 

extraídas de forma automática contra segmentaciones hechas de forma manual.  

Resultados: Demostramos que existe una fuerte correlación entre las métricas estándar y la 

dimensión fractal y que esta prevalece incluso si se divide la imagen en sub-imágenes. 

Discusión o Conclusión: Mostramos que la dimensión fractal esta correlacionada con el 

rendimiento del algoritmo de segmentación y por tanto puede ser usado como métrica. 

 

Abstract 

Introduction: We propose a novel approach for the assessment of the similarity of retinal vessel 

segmentation images that is based on linking the standard performance metrics of a segmentation 

algorithm, with the actual structural properties of the images through the fractal dimension.  

Method: We apply our methodology to compare the vascularity extracted by automatic 

segmentation against manually segmented images.  

Results: We demonstrate that the strong correlation between the standard metrics and fractal 

dimension is preserved regardless of the size of the subimages analyzed.  

Discussion or Conclusion: We show that the fractal dimension is correlated to the segmentation 

algorithm’s performance and therefore it can be used as a comparison metric.  



Escobar, Marco A. et al. 

Nº 22, Vol. 11 (1), 2019. ISSN 2007 – 0705, pp.: 224 - 245 

- 225 - 

Introduction 

Digital retinal images are used in the diagnosis of some ophthalmic pathologies, such as diabetic 

retinopathy. Common approaches to identify retinal pathological conditions rely on 

comprehensive dilated eye exams such as visual acuity, tonometry (internal eye pressure), pupil 

dilation, and optical coherence tomography (Fong et al., 2004; Lee, Wong, & Sabanayagam, 

2015). In these approaches, the physicians search for a number of indicators including 

progressive changes in the retinal vasculature, leaking vessels, signs for potential vessel leakage 

(fat deposits), pupil structural integrity, damage of the nerve tissue, among others. Unfortunately, 

all these indicators manifest clearly only until advanced stages. It is the identification of minute 

changes in the retinal vasculature which can allow for reliable diagnosis at early stages. Thus, 

suitable computer-aided diagnosis tools are needed for the automated image detection of retinal 

pathology, and in general for the segmentation of the vascular tree, as it is an important indicator 

not only of diabetes-related conditions but also for the diagnosis, screening, treatment, and 

evaluation of various cardiovascular, neurovascular, and ophthalmologic diseases such as 

hypertension, arteriosclerosis, and choroidal neovascularization (Abràmoff et al., 2010; 

Muangnak et al., 2015; O’Hara, 2004). 

According to the World Health Organization, diabetes is at epidemic levels worldwide, 

and developing countries face the greatest risk (King & Rewers, 1993; Popkin et al., 2012). In 

those countries, a number of public health issues are rooted in the high levels of obesity that are 

now one of their typical characteristics. For instance, in Mexico, diabetes is at pandemic levels, 

data from 2016 suggested that the prevalence of diagnosed diabetes increased from 7.6% to 9.4% 

in ten years (Arredondo, 2018; Instituto Nacional de Salud Pública, 2016). A common 

consequence of chronically high blood sugar levels from diabetes is the damage of the retinal 

vasculature, which leads to diabetic retinopathy, and eventually to blindness (Fong et al., 2004). 

In this regard, diabetic retinopathy is the most frequent cause of vision loss worldwide (Lee et al., 

2015) and, in the particular case of developing countries, it is the first cause of blindness in 

working-age adults (Cervantes-Castañeda et al., 2010).  

The assessment of anomalies in retinal vessels used to be a time-consuming task since 

high skilled technicians were required to assess the images and the diagnostic was based on their 

experience (Niemeijer et al., 2004). This methodology presented serious drawbacks due to i) the 

scarce availability of such skilled technicians, and ii) the diagnostic was prone to appreciation 
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errors. For these reasons, there has been an increasing interest in the development of automatic of 

assessment techniques (Fathi & Naghsh-Nilchi, 2013; Kuri, 2015; Siddalingaswamy & Prabhu, 

2010). These new tools do not intend to deprecate medical diagnosis but to contribute to it. At the 

same time, these implementations have to be efficient regarding computation time and data 

management to reduce the human workload, to overcome the bottlenecking problems associated 

with screening programs, and to enable high-throughput workflows (Jelinek & Cree, 2009). 

Moreover, those automatic tools are desired to operate based on self-contained metrics, in order 

to eliminate human biases. However, one of the biggest challenges is the determination of the 

accuracy in the vessels detection in the presence of discontinuities in the vascular structures 

(Gegundez-Arias et al., 2012; Yan et al., 2018). 

In this study, a method for comparison of segmented retinal blood vessel images is 

presented. The method is used to compare the vessel segmentation obtained by a simple 

automatic segmentation against manually segmented images. Our approach is based on linking 

the standard performance metrics, which are calculated blindly from the outcomes of a generic 

segmentation algorithm, with the actual structural properties of the images by using the fractal 

dimension (FD). Unlike other studies, here we do not attempt to give a diagnosis relying on the 

value of the FD, but to use it as an auxiliary figure of merit to optimize the performance of the 

segmentation algorithm. The methodology presented i.e., correlations between structure and 

segmentation metrics, is general and it does not depend on the particular segmentation algorithm 

used. Standard linear regression analysis shows that some of the standard metrics strongly depend 

on the image complexity regardless of the sub-regions in which the original image is divided. Our 

results show that the FD of the bit-wise difference between two images contains information 

statistically insightful on the algorithm’s capability to segment the vasculature. 

 

Method 

A plethora of techniques, algorithms, and methodologies for the segmentation of retinal blood 

vessels can be found in the literature (Abràmoff et al., 2010; Fathi & Naghsh-Nilchi, 2013; Felkel 

et al., 2001; Garg & Gupta, 2016; Jelinek & Cree, 2009; Kolar et al., 2013; Kuri, 2015; 

Siddalingaswamy & Prabhu, 2010). A particularly useful reference for the present work is Ref. 

(Vostatek et al., 2017) as it includes algorithms (both supervised and unsupervised) with publicly 

available implementations. Often in solving a segmentation problem, multiple techniques are 
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used together. Thus, a unique classification of the different algorithms is not feasible. Based on 

the image processing methodology employed, the techniques used for the segmentation of the 

retinal vascularity can be classified in a more or less consistent manner as supervised and 

unsupervised classification methods, matched filtering approaches, morphological operations, 

and deformable models (Garg & Gupta, 2016). Other more specific categorizations propose 

vessel tracking, multi-scale approaches, and vessel profiling as independent classifications from 

the more general morphology-based techniques (Fraz et al., 2012; Kirbas, C. Quek, 2004), and 

intensity-based segmentation algorithm (Gonzalez & Woods, 2001). However, we would like to 

emphasize that our approach is not exclusive to a particular algorithm and the same methodology 

i.e., correlation analysis between standard performance metric and FDs, can be used 

irrespectively of the segmentation algorithm of choice. 

The retinal images are from the DRIVE database (Niemeijer et al., 2004), which contains 

TIFF color images of 565 × 584 pixels. For each original, colored image, this database provides 

two manually labeled masks (binary images) where the retinal vasculature is indicated. Ideally, 

these two reference masks should be equal, however, as it will be shown later, they are not. The 

first step is to split the red, green, and blue channels of the original image. Fig. 1 shows the 

original image and the grayscale images of the red, green, and blue channels, respectively. In our 

case, only the green channel was used since it provides the best contrast with respect to the 

others. 

Fig. 1. The original image (a), grayscale images of the (b) blue, (c) green, and (d) red 

channels respectively 

 

Despite inherently providing the best contrast, the green channel can be improved, since in some 

regions information can be lost due to over-brightness (see Fig. 2). To solve this problem, the 

CLAHE adaptive histogram equalization is used (Pizer et al., 1987; Zuiderveld, 1994). The 

image is divided into 17×17 sub-images, and then each of these blocks is histogram equalized, 

with a contrast limit of 2. In other words, if any histogram bin is above the specified contrast 



Una propuesta para medir la similaridad entre imágenes segmentadas de la red vascular de la retina 

Nº 22, Vol. 11 (1), 2019. ISSN 2007 – 0705, pp.: 224 - 245 

- 228 - 

limit, those pixels are clipped and distributed uniformly to other bins before the histogram 

equalization. After equalization, a bilinear interpolation is applied in order to remove artifacts in 

the tile borders. Then, a Gaussian blurring is performed over the image (see Fig. 2(c)).  

 

 
 

 Fig. 2. Comparison between: (a) the green channel, (b) adaptive histogram equalized green 

channel, (c) Gaussian blurred image 

 

The main goal of this process is to reduce the effects of high-contrast pixelation, which can be 

clearly noticed in Fig. 2(b). The Gaussian filter is applied using a mirror of 9 × 9 pixels, and the 

corresponding standard deviation of 2. The resulting image is further enhanced by applying a 

Laplacian operator and then performing a bit-wise subtraction to the blurred image. The last step 

is a Gaussian adaptive thresholding operation using a block size of 27 pixels. At this stage, 

morphological operations like erosion and dilation can be applied to improve the image in the 

case of pixelation. A summary of the algorithm is shown in Fig. 3. 

Next, we describe our method for the comparison of segmented retinal blood vessel 

images that is based on linking the standard performance metrics with the structural properties of 

the images through the FD. Our approach can be readily extended to a more complete assessment 

by including metrics of the connectivity, area, and length of the segmented vessels (Aquino, 

Gegúndez, Bravo, & Marín, 2010; Garg & Gupta, 2016; Kolar et al., 2013). 
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Fig. 3. Schematic overview of the segmentation method used for these tests. The method 

comprises of green channel extraction, histogram equalization, Gaussian blurring, image 

enhancing and thresholding 

 

Fig. 4 shows an example, from one of the images processed, of the original retinal picture, the 

automatically obtained image (generic algorithm; described in the next section), and the manually 

labeled images. It should be clear that despite the binary images look similar; they are not the 

same.  

For our numerical experiments, we made use of the retinal images from the DRIVE 

database (Staal et al., 2004). Quantitative evaluation of the algorithm’s performance and the 

accuracy of the extraction of the vascular tree was done based on the difference between images 

resulting from the bit-wise (pixel-based) subtraction with the manual mask 2 as a reference, i.e. 

the difference between the binary images in Fig. 4.  

 

 
 Fig. 4. Comparison of the different vascular images, (a) original image, (b) automati-

cally extracted, (c) manually-labeled mask 1, (d) and manually-labeled mask 2 
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Fig. 5 shows the difference images obtained between the automatically extracted image and the 

manually labeled 2 (between panels (b) and (d) in Fig. 4), as well as between the manually 

labeled images (between panels (c) and (d) in Fig. 4). There are important aspects that need to be 

highlighted. One can clearly see that there can be significant differences between the manually 

labeled images. These differences occur mainly in the small vessels, which are inherently 

difficult to identify and extract. More importantly, it can be seen that the small vessels in the 

difference image actually preserve their structure which means that even the manually labeled 

images can miss entire vascular ramifications. Realizing the existence of these differences 

between manually labeled images is of critical importance as they are used as the reference in 

automated processing. Conversely, when we compare the outcome of generic algorithm with the 

manually-labeled mask 2 (Fig. 5(a)), there is certainly an error, but there are not well defined 

vascular structures, and the white pixels are more uniformly distributed over the image. Thus, the 

algorithm can recover vascular structures, including thin vessels, with a small error, i.e. only 

short portions of the ramifications go undetected. 

Both the segmentation algorithm and the evaluation algorithm were programmed in 

Python using OpenCV libraries, and the retina images and manual segmentations are taken from 

the DRIVE database.   

 

Results 

Standard metrics are commonly used to quantify the performance of the classifiers implemented 

for the extraction of retinal blood vessels from the fundus image. Given the nature of pixel-based 

classification i.e., whether the pixel belongs to a vessel or the surrounding tissue, four possible 

events can take place including correct and incorrect classifications. These are the so-called true 

 
 Fig. 5. The bit-wise difference (pixel based subtraction) between the automatically 

extracted (a) and manually-labeled mask 2, and between the two manually labeled 

masks (b) 
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positive (TP), true negative (TN), false positive (FP), and false negative (FN). TP and TN 

correspond to the correct classification of a pixel as part of a vessel or background, respectively, 

while FP and FN refer to the pixel’s misclassification. These four classification labels can then be 

used to construct the following performance metrics: 

 

1. TPR (True Positive Ratio) is the ratio of pixels correctly detected as vessel pixels to the 

number of pixels present in vessel area i.e. 𝑇𝑃𝑅 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  

2. TNR (True Negative Ratio) is the ratio of number of pixels correctly identified as non-

vessel pixel to the number of pixels present in the non-vessel area i.e. 𝑇𝑁𝑅 =

𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄ . 

3. FPR (False Positive Ratio) is the ratio of pixels erroneously identified as vessel pixels 

to the number of pixels present in the non-vessel area i.e. 𝐹𝑃𝑅 = 𝐹𝑃 (𝑇𝑁 + 𝐹𝑃)⁄ = 1 −

𝑇𝑁𝑅. 

4. FNR (False Negative Ratio) is the ratio of pixels erroneously identified as non-vessel 

pixels to the number of pixels present in the vessel area i.e. 𝐹𝑁𝑅 = 𝐹𝑁 (𝑇𝑃 + 𝐹𝑁)⁄ =

1 − 𝑇𝑃𝑅. 

5. Accuracy (ACC) is the ratio of total number of true events (TP+TN) to the total 

population (total number of pixels in the image) i.e. 𝐴𝐶𝐶 = (𝑇𝑃 + 𝑇𝑁) 𝑁𝑡𝑜𝑡𝑎𝑙⁄ . 

6. Sensitivity (SN), which a different name for TPR, is a measure of the ability of the 

segmentation process to detect the vessel pixels and is defined as 𝑆𝑁 = 𝑇𝑃𝑅 =

𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄ = 1 − 𝐹𝑁𝑅. The larger SN the better the identification of vessel pixels. 

7. Specificity (SP), which a different name for TNR, is a measure of the ability of the 

segmentation algorithm to detect background or non-vessel pixels and is defined as 𝑆𝑃 =

𝑇𝑁𝑅 = 𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄ = 1 − 𝐹𝑃𝑅. The larger SP the better the identification of non-

vessel pixels. 

8. The area under the Receiver Operating Characteristic (ROC) curve, or Area Under 

Curve (AUC), which is the plot of (1-SP) versus SN. The performance of the system is 

better if the curve approaches closer to the top left corner and equals 1 for optimal 

systems.  
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These metrics quantify the precision in the correct classification of the segmented pixels as part 

of the vessels or the background. Detailed comparisons between the performances of various 

retinal segmentation techniques, performing on databases available in the literature, especially 

DRIVE and STARE which are currently the most common datasets for the evaluation of retinal 

vessel segmentation methods, can be found in Refs. (Fraz et al., 2012; Garg & Gupta, 2016; 

Vostatek et al., 2017).  

In Fig. 6 we summarize the standard performance metrics for the case where the 

automatically extracted mask is compared to the manually labeled mask 2, and for the case where 

the two manually labeled masks are compared to each other. The average value and the standard 

deviation are calculated from the 20 images tested. Both the table corresponding to the values 

shown in Fig. 6 (Table 1) and an extended table showing all the values obtained can be found in 

Tables 3-6 in the Appendix, at the end of this document. 

From Fig. 6 it can be seen that the accuracy of generic algorithm is slightly lower than 

that from the manually labeled masks but, more importantly, the accuracy of manually labeled 

images does not reach 100% due to differences in the manual labeling. In any case, see Table 1 in 

the Appendix, it is the relative 2.3% error with respect to what can be manually labeled what can 

be taken as the accuracy of our approach. 

Up to here, we have presented the results obtained by using standard metrics alone. In 

doing so, we noticed that vessels annotated by different observers may vary both in thickness and 

in location thus resulting in manually-labelled images that can be significantly different, as seen 

in Fig. 5 and Fig 6. These limitations impose the need for automatic, self-contained metrics that 

can reduces, or even eliminate, the human biases possibly involved.   

 

 
Fig. 6. Graphical representation of the average value and the standard deviation for the 

standard metrics 
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In the following, we use the FD as an auxiliary self-contained metric that can help to connect the 

standard metrics of the algorithm, which are calculated blindly from the outcomes of the 

segmentation algorithm, to the actual structural properties of the image. It is well known that 

fractal geometry is an effective tool for the characterization of irregular shapes and that the FD 

can be a good descriptor of their complexity. In our case, since we are working with two-

dimensional objects, i.e. planar images, the FD can lay between 1 and 2. 

Some properties of fractals have been used in medical image analysis, for example for 

texture analysis (Chen, Daponte, & Fox, 1989; Lopes & Betrouni, 2009). In the case of the 

analysis of human retinal vessels, it has been reported that a healthy eye has an FD of around 1.7 

(Family, Masters, & Platt, 1989; Mainster, 1990; Popovic et al., 2018). However, it has also been 

shown that, due to its underlying dependence on the structural properties of the image, the FD is 

sensitive to a number of other factors from both biological origin e.g., age, cataracts, and lens 

opacity (Cheung et al., 2012), changes in blood pressure due different origins (Sng et al., 2010; 

Zhu et al., 2014), existing diabetic condition (Aliahmad et al., 2014), and cognitive dysfunctions 

(Taylor et al., 2015), as well as numerical origin e.g., size and location of the region of interest 

(Aliahmad et al, 2014; Huang et al., 2015) or the specific stages in the pre-processing procedure 

(Che Azemin et al., 2016). Due to this overall ‘instability’ of the FD, which can be significant in 

some cases, one should not rely a quantitative analysis for diagnosis purposes solely on the value 

of the FD (Huang et al., 2015). In our approach, we do not attempt to provide a diagnosis using 

the FD, but to suggest its use as a feedback to the segmentation algorithm through its correlation 

with the standard metrics (see Fig 7). 
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Fig. 7. Flow diagram of the proposed fractal dimension-based correlation analysis. The 

upper dashed rectangle indicates the image segmentation (generic, intensity based algorithm 

in our case) while the bottom one indicates the proposed correlation-based analysis. 

Potentially, the outcome of this analysis can be used to calibrate the parameters involved in 

the segmentation to optimize the algorithm’s performance, as indicated by the dotted arrows 

 

Following the so-called box counting method which is a common approach for this estimation, 

the FD can be approximated by the number of boxes needed to cover the object (N), and it 

typically increases slowly as we decrease the box size (r), then the FD is given by 𝐹𝐷 =

lim
𝑟→0

(
log [𝑁(𝑟)]

log (1/𝑟)
) (Sarkar & Chaudhuri, 1994). Using this approach, the FD was calculated for the 

manually segmented masks 1 and 2, as well as for the automatically segmented mask. 

Additionally, besides applying it on the entire images, we extended this box-counting calculation 

to subregions of the original image and averaged the FD obtained from all the sub-images. This 

was done for 4 (2x2), 9 (3x3), 16 (4x4), and 25 (5x5) sub-images, respectively. 

In Fig. 8, the FD is presented as a function of the number of subdivisions for the raw 

binary masks (Fig. 8(a)) and for the difference images (Fig. 8(b)). The values plotted correspond 

to the average obtained from the 20 images processed; the error bar represents the standard 

deviation. From Fig. 8(a), the FD obtained from our approach closely matches that from the 

manually labeled mask 2. In terms of the difference images (Fig. 8(b)), the subtraction of the 

manually labeled masks leads to a smaller FD due to the presence of more organized structures 

i.e., conversely, the subtraction of the automatically extracted mask from the manually labeled 
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one has larger FD due to the random pattern that covers the image more uniformly. The complete 

data set from which these values were extracted can be found in the Appendix. 

 

 

Fig. 8. Fractal dimension, as a function of the number of sub-images: of the raw binary 

masks (a), and of the difference images obtained from the bit-wise (pixel-based) 

subtraction (b) 

 

To quantitatively evaluate the relation between the FD and the standard metrics, a linear 

regression analysis was performed, and the Pearson’s correlation coefficient was calculated for 

the different data sets, e.g., the correlation between TNR and the FD using a different number of 

sub-images. Fig. 9 summarizes the correlation between all these datasets, the corresponding 

numerical values can be found in Table 2 in the Appendix. The algorithm is mildly sensitive to 

the identification of vessel pixels with respect to structure complexity, as indicated by the 

relatively low correlation between TPR and the FD, but its specificity i.e. identification of 

background, non-vessel pixels, strongly depends on the complexity of the structure. In other 

words, this means that the identification of vessel pixels is not critically compromised if the 

structure’s complexity increases, but the correct identification of background pixels will be more 

effective for simple structures.  

To exemplify one of the correlations in Fig. 9, the linear regression analysis is shown in 

Fig. 10(a) for the case where the FD is correlated with the TNR, for a different number of sub-

images, as indicated. Fig. 10(b) shows the slope calculated from the linear regression analysis as 

a function of the number of sub-images. In this example, this plot indicates that the correlation 

between the FD and the TNR becomes stronger with increasing number of sub-images, but it 

also shows that this correlation saturates after a certain amount of sub-divisions. 
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 Fig. 9. Pearson’s correlation between the standard metrics and fractal dimension as a function 

of the number of subimages analyzed 

 

 
 Fig. 10. a) Scatter plot showing the strong correlation, obtained from linear regression, 

between the fractal dimension of the difference images (automatic – manual 2) and the TNR 

standard metric. The strong correlation remains regardless of the number of sub-images. b) 

Dependence of the linear regression slope on the number of sub-images. The error bars 

indicate the standard error of the linear regression 

 

Discussion 

A method for comparison of segmented retinal blood vessel images based on the FD was 

presented. As an example, the method was used to compare the vessel segmentation obtained by 

automatic segmentation against manually segmented images. Linear regression analysis, on the 

standard metrics and image subdivision, showed that standard metrics strongly depend on the 

image complexity regardless of the sub-regions in which the original image is divided. As a 

consequence, small relative errors are found when using only standard metrics as a comparison. 
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The use of the FD as an auxiliary, self-contained metric, together with subdividing the images 

under study, help us to further identify the nature of the differences between segmentations 

methods. Thanks to the fact that the strong correlation between the standard metrics and the FD is 

preserved regardless of the size of the sub-images, the FD can be used as an automatic, self-

contained feedback in an iterative segmentation algorithm, for instance, to optimize the size of 

the region of interest in order to minimize the dependence of the algorithm’s performance on the 

actual properties of the image, that can be roughly summarized as Improvement =

 max{𝑅𝑥𝑦 [standard metrics,   𝐹𝐷(Image1 − Image2 )]}, where Rxy is the correlation 

coefficient. 

Finally, we highlight that our approach is compatible, and can be used in a 

complementary manner, with similarity assessment approaches which are based on other aspects 

the image’s structure such as connectivity, area, and the length of the segmented vessels 

(Vostatek et al., 2017), or the so-called skeleton maps (Fraz et al., 2012; Kirbas, C. Quek, 2004). 

This may lead to the development of calibration and optimization approaches that are based on a 

set of automatic, self-contained geometrical descriptors simultaneously, all of which are related 

to different aspects of the images structure. In clinical applications, such an approach could 

greatly improve the quality and accuracy of the outcome of a segmentation stage. 
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Appendixes 

  

Table 1. Summary of the standard performance results 

Standard 

Metrics 

Automatically Ex-

tracted vs Manually 

Labeled 2 

Manually La-

beled 1 vs 

Manually La-

beled 2 

TPR 0.6591 ± 0.0450 0.8066 ± 0.0443 

TNR 0.9612 ± 0.0096 0.9674 ± 0.0093 

FPR 0.0388 ± 0.0096 0.0326 ± 0.0093 

FNR 0.3409 ± 0.0450 0.1934 ± 0.0443 

ACC 0.9239 ± 0.0072 0.9473 ± 0.0048 

 

Table 2. Summary of the Pearson’s correlation coefficient between the 

standard performance metrics and the fractal dimension of the differ-

ence images 

 1 4 9 16 25 

TPR 0.5368 0.7016 0.6977 0.6157 0.5707 

TNR -0.8620 -0.9145 -0.9246 -0.9356 -0.9297 

FPR 0.8620 0.9145 0.9246 0.9356 0.9297 

FNR -0.5368 -0.7016 -0.6977 -0.6157 -0.5707 

ACC -0.2061 -0.1627 -0.1819 -0.2664 -0.3070 
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Table 3. An extended table of the standard performance metrics obtained for the case where 

the automatically extracted mask (generic algorithm) is compared to the manually labeled 

mask 2 

Image # Automatically extracted vs. Manually-labeled mask 2 

 TPR TNR FPR FNR ACC SN SP 

1 0.7122 0.9674 0.0326 0.2878 0.9346 0.7122 0.9674 

2 0.7019 0.9683 0.0317 0.2981 0.9290 0.7019 0.9683 

3 0.6310 0.9695 0.0305 0.3690 0.9254 0.6310 0.9695 

4 0.6687 0.9598 0.0402 0.3313 0.9228 0.6687 0.9598 

5 0.6574 0.9698 0.0302 0.3426 0.9330 0.6574 0.9698 

6 0.5835 0.9699 0.0301 0.4165 0.9177 0.5835 0.9699 

7 0.7184 0.9432 0.0568 0.2816 0.9199 0.7184 0.9432 

8 0.6489 0.9634 0.0366 0.3511 0.9327 0.6489 0.9634 

9 0.5778 0.9682 0.0318 0.4222 0.9225 0.5778 0.9682 

10 0.6821 0.9641 0.0359 0.3179 0.9347 0.6821 0.9641 

11 0.6928 0.9425 0.0575 0.3072 0.9124 0.6928 0.9425 

12 0.6673 0.9565 0.0435 0.3327 0.9229 0.6673 0.9565 

13 0.6122 0.9661 0.0339 0.3878 0.9142 0.6122 0.9661 

14 0.7185 0.9530 0.0470 0.2815 0.9274 0.7185 0.9530 

15 0.7008 0.9410 0.0590 0.2992 0.9150 0.7008 0.9410 

16 0.6752 0.9582 0.0418 0.3248 0.9233 0.6752 0.9582 

17 0.6774 0.9642 0.0358 0.3226 0.9332 0.6774 0.9642 

18 0.6413 0.9596 0.0404 0.3587 0.9172 0.6413 0.9596 

19 0.6355 0.9704 0.0296 0.3645 0.9221 0.6355 0.9704 

20 0.5792 0.9695 0.0305 0.4208 0.9171 0.5792 0.9695 

Avg 0.6591 0.9612 0.0388 0.3409 0.9239 0.6591 0.9612 

Std 0.0450 0.0096 0.0096 0.0450 0.0072 0.0450 0.0096 
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Table 4. An extended table of the standard performance metrics obtained for the case where 

the two manually labeled masks are compared to each other 

Image # Manually-labeled mask 1 vs. Manually-labeled mask 2 

 TPR TNR FPR FNR ACC SN SP 

1 0.8122 0.9694 0.0306 0.1878 0.9492 0.8122 0.9694 

2 0.8359 0.9690 0.0310 0.1641 0.9494 0.8359 0.9690 

3 0.8317 0.9569 0.0431 0.1683 0.9406 0.8317 0.9569 

4 0.8223 0.9669 0.0331 0.1777 0.9485 0.8223 0.9669 

5 0.8499 0.9597 0.0403 0.1501 0.9467 0.8499 0.9597 

6 0.7872 0.9598 0.0402 0.2128 0.9365 0.7872 0.9598 

7 0.8745 0.9535 0.0465 0.1255 0.9453 0.8745 0.9535 

8 0.8504 0.9527 0.0473 0.1496 0.9427 0.8504 0.9527 

9 0.7712 0.9692 0.0308 0.2288 0.9461 0.7712 0.9692 

10 0.8225 0.9623 0.0377 0.1775 0.9477 0.8225 0.9623 

11 0.8170 0.9645 0.0355 0.1830 0.9468 0.8170 0.9645 

12 0.8286 0.9675 0.0325 0.1714 0.9513 0.8286 0.9675 

13 0.7762 0.9674 0.0326 0.2238 0.9393 0.7762 0.9674 

14 0.8334 0.9697 0.0303 0.1666 0.9549 0.8334 0.9697 

15 0.7676 0.9767 0.0233 0.2324 0.9541 0.7676 0.9767 

16 0.8261 0.9670 0.0330 0.1739 0.9496 0.8261 0.9670 

17 0.8369 0.9631 0.0369 0.1631 0.9495 0.8369 0.9631 

18 0.7400 0.9812 0.0188 0.2600 0.9491 0.7400 0.9812 

19 0.7576 0.9868 0.0132 0.2424 0.9538 0.7576 0.9868 

20 0.6908 0.9840 0.0160 0.3092 0.9446 0.6908 0.9840 

Avg 0.8066 0.9674 0.0326 0.1934 0.9473 0.8066 0.9674 

Std 0.0443 0.0093 0.0093 0.0443 0.0048 0.0443 0.0093 
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Table 5. An extended table of the fractal dimension, for a different number of image sub-

divisions, of the difference image obtained from the bitwise (pixel-based) subtraction 

between the automatically extracted (generic algorithm) and the manually labeled mask 2 

Image # Fractal Dimension 

 1 4 9 16 25 

1 1.8431 1.6719 1.4667 1.3223 1.0948 

2 1.8430 1.6568 1.4614 1.3182 1.1513 

3 1.8457 1.6709 1.4553 1.3140 1.0820 

4 1.8399 1.6539 1.4525 1.3473 1.1617 

5 1.8552 1.6201 1.4028 1.2940 1.1144 

6 1.8354 1.6113 1.3976 1.2881 1.1074 

7 1.8913 1.7615 1.5950 1.4941 1.3133 

8 1.8515 1.6857 1.5069 1.3615 1.1542 

9 1.8631 1.6493 1.4431 1.3421 1.1637 

10 1.8655 1.6715 1.4680 1.3463 1.1766 

11 1.8899 1.7601 1.5743 1.4744 1.2780 

12 1.8838 1.7230 1.5374 1.4293 1.2579 

13 1.8470 1.6380 1.4308 1.3122 1.1106 

14 1.8752 1.7327 1.5437 1.4345 1.2153 

15 1.8855 1.7589 1.5908 1.4458 1.2932 

16 1.8685 1.6938 1.5000 1.3783 1.1993 

17 1.8561 1.6855 1.4620 1.3487 1.1749 

18 1.8632 1.6924 1.4921 1.4011 1.2122 

19 1.8278 1.6027 1.3900 1.2552 1.0868 

20 1.8335 1.6067 1.3828 1.2673 1.0870 

Avg 1.8582 1.6773 1.4777 1.3587 1.1717 

STD 0.0194 0.0502 0.0646 0.0681 0.0719 
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Table 6. An extended table of the fractal dimension, for a different number of image sub-

divisions, of the difference image obtained from the bitwise (pixel-based) subtraction 

between the manually labeled mask 1 and the manually labeled mask 2 

Image # Fractal Dimension 

 1 4 9 16 25 

1 1.7869 1.5952 1.4720 1.2916 1.0671 

2 1.7932 1.6023 1.4539 1.2790 1.1228 

3 1.7879 1.6339 1.4906 1.4029 1.1700 

4 1.7872 1.6078 1.4678 1.3693 1.2386 

5 1.8065 1.6563 1.5171 1.3917 1.1986 

6 1.7962 1.6517 1.5231 1.3969 1.2370 

7 1.7961 1.6528 1.5338 1.4322 1.2488 

8 1.7807 1.6151 1.5308 1.4038 1.2401 

9 1.7767 1.5954 1.4896 1.3162 1.1643 

10 1.7838 1.6262 1.5044 1.3964 1.2468 

11 1.8236 1.6612 1.5267 1.4127 1.2264 

12 1.7692 1.6290 1.4477 1.2887 1.1532 

13 1.7970 1.6407 1.4600 1.2992 1.1532 

14 1.7737 1.6019 1.4376 1.3504 1.1035 

15 1.7202 1.4898 1.3330 1.2373 1.0192 

16 1.7755 1.5769 1.4093 1.3028 1.0996 

17 1.7710 1.5763 1.4389 1.3222 1.1087 

18 1.6972 1.4090 1.2258 1.1480 0.9547 

19 1.7094 1.4340 1.2119 1.0110 0.9217 

20 1.6855 1.4280 1.2983 1.1301 0.9720 

Avg 1.7709 1.5842 1.4386 1.3091 1.1323 

STD 0.0375 0.0791 0.0972 0.1088 0.1022 

 

 


