EHzürich

Research Collection

Other Conference Item

A latent variable exponential family modeling approach to estimate suppressed demand effects for increasing car travel costs

Author(s): Schmid, Basil

Publication Date: 2017-09-14

Permanent Link: https://doi.org/10.3929/ethz-b-000263468 →

Rights / License: In Copyright - Non-Commercial Use Permitted →

This page was generated automatically upon download from the <u>ETH Zurich Research Collection</u>. For more information please consult the <u>Terms of use</u>.

A latent variable exponential family modeling approach to estimate suppressed demand effects for increasing car travel costs

Basil Schmid

IVT ETH Zurich

6th hEART Symposium Haifa, September 14, 2017

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Post-Car World: A multi-stage travel survey

- Motivation: Understanding travel behavior in a hypothetical world where privately owned cars are substituted by various forms of shared mobility
- Investigation of pricing mechanisms as a driving force to achieve behavioral reactions
- $\rightarrow\,$ Main focus: Transition towards (and not actual state of) such a (Pre-)Post-Car World
 - One week travel diary and mobility tool data (stage I) as empirical basis for behavioral experiments (stage II & III)
 - Data collection: Canton of Zurich, 2015 2016
 - Average response rate: 55%, N=220 households

Adaptations in daily scheduling

- How would respondents change their daily travel in the **short-run**, given the increase in travel costs?
- Personalized stated adaptation interviews with mode-specific total RP travel cost R_{tc,n}

Mode	Sc. 1 [in CHF]	Sc. 2 [in CHF]	Sc. 3 [in CHF]	Sc. 4 [in CHF]
Car	$R_{tc,n} \cdot 1.5 + 0.4$	$R_{tc,n} \cdot 2 + 0.8$	$R_{tc,n} \cdot 4 + 1.4$	$R_{tc,n} \cdot 8 + 2$
PT	$\frac{R_{tc,n} \cdot 1.5 + 0.2}{R_{tc,n} \cdot 1.1}$	$\frac{R_{tc,n} \cdot 12 + 0.4}{R_{tc,n} \cdot 1.2}$	$\frac{R_{tc,n} \cdot 4 + 0.7}{R_{tc,n} \cdot 1.3}$	$\frac{R_{tc,n} * 0 + 1}{R_{tc,n} \cdot 1.5}$
CS	$R_{tc,n} \cdot 1.1$	$R_{tc,n} \cdot 1.2$	$R_{tc,n} \cdot 1.3$	$R_{tc,n} \cdot 1.5$
CP	$R_{tc,n} \cdot 1.5$	$R_{tc,n} \cdot 2$	$R_{tc,n} \cdot 4$	$R_{tc,n} \cdot 8$

- Experimental framing:
 - Road tolls, fuel and congestion taxes
 - Future policy developments to reduce MIV usage
 - Promotion of shared mobility (PT, CS, CP)

Adaptations in daily scheduling

Durchschnittlicher OEV-Takt: 3 min.

Zeit zum naechsten Carsharing Fahrzeug: 3min

Zeit zum naechsten Carpooling Fahrzeug: 3min

Aktivitaet:	Zu Hause	Einkauf Ifr. Bedar	Arbeit/Ausbildun	Dienstlich	Zu Hause
Ort der Aktivitaet:	Zu Hause 💌	Tomac3 💌	Arbeit/Ausbildun	Dienstlich5 💌	Zu Hause 💌
Strasse:	Nordstrasse 21	Sihlfeldstrasse 53	Seebahnstrasse 8	Plantaweg 21	Nordstrasse 21
Stadt:	Zuerich	Zuerich	Zuerich	Chur	Zuerich
Ankunftszeit:	00:00	08:17	08:24	11:31	14:34
Laenge der Aktivitaet:	08:05	00:05	01:55	01:40	00:44
Abfahrtszeit:	08:05	08:22	10:19	13:11	15:18
Zu Fuss					
Auto(Fahrer)			۲	۲	
Auto(Mitfahrer)					
Velo	۲	۲		\bigcirc	
OEV					
Carpooling(Mitfahrer)	0		0	\bigcirc	
Carsharing				\bigcirc	
Motorrad					
Zurueckgelegte Distanz:	2.78	0.88	134.19	134.10	2.43
Reisezeit:	00:12	00:02	01:12	01:23	00:13
Reisekosten	0.00	0.00	36.23	36.21	2.20
	Entfernen	Entfernen	Entfernen	Entfernen	Entfernen

Summe Reisekosten (in CHF):

79.04

Focus of today:

- Suppressed demand effects for MIV (car driver, car passenger, motorbike) usage: What is the effect on daily mileage driven, given the increase in travel costs?
- "Aggregate" response function (given low sample size) using highly disaggregate data (activity-based perspective)
- Assumption: Cost minimizing behavior, given underlying (unobserved) preferences for daily plan
- "Two-step approach" for modeling (unobserved) heterogeneity

- envil: Higher fuel prices should subsidize public transport
- envi2: Daily life without car is impossible
- envi3: Car driving is bad for the environment
- envi4: I could imagine to give up car usage completely
- envi5: Zurich without cars is inconceivable
- envi6: Environmental problems get too much attention
- **envi7:** The never-ending discussions about the greenhouse effect is exaggerated
- **envi8:** Fuel prices should increase to reduce pollution of the environment

... and socio-demographic characteristics

- N = 162 respondents, 810 initial choice scenarios
- Dependent variable: Distance traveled by MIV
 - $y_{n,t} \equiv km_{n,t}$ after adaptation in **current** scenario
 - Highly right-skewed data with some zeros (respondents might choose not to use MIV anymore)
 - Pseudo-balanced panel: After drop-out, respondents are excluded (\rightarrow 735 actual choice observations)
- Main explanatory variable: Average MIV travel cost per km $x_{n,t} \equiv \log(CHF_{n,t-1})$ after adaptation in **previous** scenario

Adaptation patterns in distance traveled

Change in MIV travel cost

Modeling framework: GLM

- Log-linear OLS model is inconsistent
 - $E[\log(\eta_{n,t})|X_{n,t}] \neq 0$ if CEF is exponential $(\eta_{n,t} \text{ is LN})$ and presence of heteroscedasticity (*Jensen's inequality*)
 - Incompatible with mass point at zero
- Exponential family modeling approach using *pseudo* maximum likelihood techniques (Gourieroux et al., 1984)

$$f(Y_{n,t}|X_{n,t},z_n,\Lambda) = \exp\left(\frac{Y_{n,t}f(X_{n,t},z_n,\Lambda) - b(f(X_{n,t},z_n,\Lambda))}{a(\phi)} + c(\phi,Y_{n,t})\right)$$

- \rightarrow FOC score vector: GLM **consistent** as long as CEF is correctly specified (Santos-Silva and Tenreyro, 2006)
 - Poisson: $E[Y_{n,t}|X_{n,t}, z_n] = \exp(f(X_{n,t}, z_n, \Lambda))$
 - Heterosced.: $E[Y_{n,t}|X_{n,t}, z_n] = Var[Y_{n,t}|X_{n,t}, z_n] = \lambda_{n,t}$
 - Globally concave, simple and fast in convergence

- Large variety in respondents' characteristics and their daily plans (unobserved heterogeneity)
- Starting point: Poisson regression for a continuous, non-negative dependent variable with mixed effects (Hausman test: H₀ plausible → RE more efficient)
- Hausman et al. (1984): Equidispersion assumption further relaxed by the RE specification $Var[Y_{n,t}|X_{n,t}] = \lambda_{n,t} + \theta \lambda_{n,t}^2$
- Huber/White sandwich estimator for SEs (Arellano, 1987)

Modeling framework: Log-linear index

$$\begin{split} \lambda_{1,n,t} &= \epsilon_n \cdot \exp\left(\alpha + \beta_{COST} \cdot \log(CHF_{n,t-1}) \cdot \left(\frac{dist_{n,0}}{dist}\right)^{\omega_{DIST}}\right) \\ \lambda_{2,n,t} &= \epsilon_n \cdot \exp\left(\alpha + \alpha_{INC} \cdot inc_n + \alpha_{ENVI} \cdot envi_n + \left(\beta_{COST} + \beta_{INC} \cdot inc_n + \beta_{ENVI} \cdot envi_n\right) \cdot \log(CHF_{n,t-1}) \cdot \left(\frac{dist_{n,0}}{dist}\right)^{\omega_{DIST}}\right) \\ \lambda_{3,n,t} &= \epsilon_n \cdot \exp\left(\alpha - \exp(\beta_{COST} + \psi_n) \cdot \log(CHF_{n,t-1}) \cdot \left(\frac{dist_{n,0}}{dist}\right)^{\omega_{DIST}}\right) \\ \lambda_{4,n,t} &= \epsilon_n \cdot \exp\left(\alpha + \alpha_{INC} \cdot inc_n + \alpha_{ENVI} \cdot envi_n - \exp(\beta_{COST} + \beta_{INC} \cdot inc_n + \beta_{ENVI} \cdot envi_n + \psi_n) \cdot \log(CHF_{n,t-1}) \cdot \left(\frac{dist_{n,0}}{dist}\right)^{\omega_{DIST}}\right) \end{split}$$

Modeling framework: Estimation (1)

• Analytical solution (random intercept): Assuming that $\epsilon_n \sim \Gamma(1, \theta)$ and $y_{n,t}$ is distributed Poisson with mean $\widetilde{\lambda_{s,n,t}} \equiv \lambda_{s,n,t}/\epsilon_n$, the likelihood of observing the sequence $Y_{n,t}$ given $X_{n,t}$ and z_n of respondent n is given by

$$\mathcal{LL}_n(Y_{n,t}|X_{n,t}, z_n, \Lambda) = \log \Gamma\left(1/\theta + \sum_{t=1}^{T_n} y_{n,t}\right) - \sum_{t=1}^{T_n} \log \Gamma\left(1 + y_{n,t}\right) - \log \Gamma(1/\theta) + 1/\theta \cdot \log(u_n) + \log(1 - u_n) \sum_{t=1}^{T_n} y_{n,t} + \sum_{t=1}^{T_n} y_{n,t} \cdot \log\left(\widetilde{\lambda_{s,n,t}}\right) - \left(\sum_{t=1}^{T_n} y_{n,t}\right) \log\left(\sum_{t=1}^{T_n} \widetilde{\lambda_{s,n,t}}\right)$$

Modeling framework: Estimation (2)

Simulation (random coefficient or LV): The expected likelihood *L*^{*}_n(.) over all possible values of ψ_n or *LV_n* is given by the integral of the exponent of the log-likelihood function over the distribution of ψ_n or *LV_n*

$$\mathcal{L}_{n}^{*}(Y_{n,t}, I_{w,n}|X_{n,t}, z_{n}, \Omega) = \int_{\psi_{n}, LV_{n}} \exp\left(\mathcal{L}\mathcal{L}_{n}(Y_{n,t}|X_{n,t}, z_{n}, \Lambda, \psi_{n})\right) u(I_{w,n}|LV_{n}, \tau_{I_{w}}, \sigma_{I_{w}}\right)$$

$$\times h(\psi_{n}|R) g(LV_{n}|z_{n}, \rho_{z}, \eta_{LV_{z}}) d\psi_{n} dLV_{n}$$

$$\widetilde{\mathcal{L}}_{n}^{*}(Y_{n,t}, I_{w,n}|X_{n,t}, z_{n}, \Omega) = \frac{1}{R} \sum_{r=1}^{R} \exp\left(\mathcal{L}\mathcal{L}_{n}(Y_{n,t}|X_{n,t}, z_{n}, \Lambda, \psi_{n})\right) u(I_{w,n}|LV_{n}, \tau_{I_{w}}, \sigma_{I_{w}})$$

$$\max \widetilde{\mathcal{L}\mathcal{L}}(\Omega) = \sum_{n=1}^{N} \log\left(\widetilde{\mathcal{L}}_{n}^{*}(Y_{n,t}|X_{n,t}, z_{n}, \Omega)\right)$$

 $\rightarrow\,$ Posterior analysis of cost elasticity

Estimation results

	REP Coef./(SE)	REPS Coef./(SE)	LVREP Coef./(SE)	MEP Coef./(SE)	MEPS Coef./(SE)
α α _{INC}	3.20*** 	3.15*** 0.17 -0.13***	3.06*** 0.16 -0.62***	3.08*** 	3.05*** 0.16 0.11**
θ	0.65***	0.59***	0.51***	1.32***	1.27***
$\beta cost$ $\omega dist$ βinc $\beta envi$ $\sigma cost$	-0.43*** 0.43*** - - -	-0.44*** 0.47*** 0.03 -0.05***	-0.87^{***} 0.58^{***} -0.08 0.65^{***}	-0.72*** 0.56*** - 1.09***	$\begin{array}{r} -0.70^{***} \\ 0.58^{***} \\ -0.28^{**} \\ 0.08 \\ 1.06^{***} \end{array}$
# param. # respond. # obs. # draws \mathcal{LL}^*_{final} AICc	4 162 735 - - 7029 14066	8 162 735 - -6911 13840	30 162 735 2000 6621 13154	5 162 735 2000 6047 12104	9 162 735 2000 6039 12097

Robust standard errors: *** : p < 0.01, ** : p < 0.05, * : p < 0.1

Note: LV model coefficients not reported in the table.

Results: Distribution of cost elasticities

Results: Distance dependency

Conclusions

- Median elasticity: If MIV travel costs increase by 1%, distance decreases by ≈ 0.3 to 0.4% (re-weighted by MZMV distances)
- Remaining issues: Potential endogeneity of dist_{n,0}
- Strong, *positive* distance dependency
- Relatively high elasticities compared to related literature; usually between -0.1 (SR) and -0.4 (LR)
 - Sampling bias / low sample size
 - Survey design (daily travel, activity-based approach, etc.)
 - Very high variation in travel cost
- Respondents with pro-environmental traits travel less **and** show a stronger adaptation behavior

Questions?