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Abstract: The overuse of antibiotics in the past decades has led to the emergence of a large number
of drug-resistant microorganisms. In recent years, the infection rate caused by multidrug-resistant
microorganisms has been increasing, which has become one of the most challenging problems in
modern medicine. Plant-derived secondary metabolites and their derivatives have been identi-
fied to display significant antimicrobial abilities with good tolerance and less adverse side effects,
potentially having different action mechanisms with antibiotics of microbial origin. Thus, these
phyto-antimicrobials have a good prospect in the treatment of multidrug-resistant microorganisms.
Terpenoids, alkaloids, and flavonoids made up the predominant part of the currently reported phyto-
chemicals with antimicrobial activities. Synthetic biology research around these compounds is one
of the hotspot fields in recent years, which not only has illuminated the biosynthesis pathways of
these phyto-antimicrobials but has also offered new methods for their production. In this review, we
discuss the biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents—
using artemisinin and oleanolic acid (terpenoids), berberine and colchicine (alkaloids), and baicalin
(flavonoids) as examples—around their antimicrobial action mechanisms, biosynthesis pathway
elucidation, key enzyme identification, and heterologous production, in order to provide useful hints
for plant-derived antimicrobial agent discovery and development.

Keywords: phytochemicals; antimicrobial agents; biosynthetic pathway; secondary metabolites

1. Introduction

Infectious diseases caused by pathogenic microorganisms are becoming one of the
major causes of death worldwide [1]. Antibiotic refers to a chemical substance, with an
organic chemical of natural or synthetic origin, that has the capacity to inhibit the growth
of and even kill pathogenic bacteria and other micro-organisms [2]. The discovery and
development of antibiotics during the 20th century substantially reduced the threat of
infectious diseases [3,4]. However, it has been decades since antibiotics with a completely
novel mode of action were last delivered to the clinic. Specifically, in the first decade of
the 21st century, with the emergence of resistant strains of several important microbials,
including Pneumococci, Enterococci, Staphylococci, Plasmodium falciparum, and Mycobacterium
tuberculosis [5], people were faced with this continuing threat on a wider scale than ever
before. Multidrug-resistant pathogens are expected to kill about 300 million people pre-
maturely and will have costed the global economy up to USD 100 trillion by 2050 [6,7].
Several factors are involved in the rise of antibiotic resistance, including the existence
of efflux pumps, the lack of sensitive antibiotic targets, induction of a stress response of
bacterial cells (SOS reaction and RPOS regulation), the transport of drug-resistant genes
through the horizontal gene transfer (HGT) mechanism, and the inactivation of antibiotics
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by hydrolysis or modification, but the main reason is the overuse and misuse of antibiotics
in human and animal health and the lack of development of new antibiotics [8–10]. Thus,
there is an urgent need for new compounds with different mechanisms that can limit
antibiotic resistance.

In recent years, people have focused more attention on plants for new antibiotics dis-
covery and development since many experiments have proven that compounds from plants
have significant and potentially different antimicrobial effects compared with antibiotics of
microbial origin [11–13]. The antimicrobial compounds from medicinal plants may inhibit
the growth of bacteria, fungi, viruses, and protozoa by different mechanisms than those of
presently used antimicrobials and may have a significant clinical value in the treatment of
resistant microbial strains [5,14,15]. These agents could perform direct bactericidal action
by blocking bacterial DNA synthesis; inhibiting ATPase activity; inhibiting biofilm forma-
tion, membrane integrity, or permeability; and resisting the quorum sensing effect [16].
Moreover, many phytochemicals also showed effective antibiotic drug resistance reversal
activity, mainly through enzyme modification, plasmid curing, or drug efflux pump [9].
Although some of them do not hold substantial antibacterial potential on their own, their
application along with other drugs may considerably augment the antibiotic potential of
the drug against which the pathogen was resilient [17]. Moreover, compared with synthetic
drugs, plant-derived antibiotics usually have fewer side effects and a lower possibility of
drug resistance [10]. On the basis of these advantages, exploring plant-based metabolites is
a promising choice to identify new bioactive compounds, which can be used to develop
new and effective antimicrobial agents or multidrug-resistant reversal agents.

Secondary plant metabolites are molecules indirectly necessary for the life of plants,
which can serve as structural elements or as important tools for plants to adapt to their
environment and play a crucial role in many aspects of plant life activities [18]. According
to the different chemical structure skeletons and natural origins, plant-derived natural
products can be divided into diverse categories. Among them, there is no doubt that
terpenoids, alkaloids, and flavonoids compose the dominant part of phytochemicals in
the plant kingdom. Moreover, according to a large number of pharmaceutical reports,
these three kinds of natural products were also the major source of bioactive antimicrobial
candidates’ discovery. This review aims to focus on terpenoid, alkaloid, and flavonoid com-
pounds with antimicrobial activities (including antibacterial, antifungal, antiviral, and/or
antiparasitic activities) from medicinal plants, mainly discussing their action mechanisms,
biosynthesis pathway elucidation, and biosynthesis key enzyme identification, as well as
engineering strain construction.

2. Terpenoids

Terpenoids, also known as isoprenoids, are one of the largest natural product families,
constituting more than 40,000 primary and secondary metabolites, including monoterpenes
(53%), diterpenoids (1%), sesquiterpenes (28%), and others (18%). The basic unit of terpenes
is the isoprene unit (C5H8), which is a simple hydrocarbon. It is the main precursor and
could be post-modified through the cytosolic mevalonate (MVA) pathway or the plastid
methyl erythritol phosphate (MEP) pathway. Terpenoids are a major source of bioactive
natural products. Especially because of their lipophilic characteristics, terpenoids have
become one of the major kinds of antimicrobial agents against various microorganisms [19].

2.1. The Antimicrobial Mechanisms of Terpenoids

There are mainly five mechanisms through which terpenoids exhibit antimicrobial
action according to previous reports.

• Cell membrane destruction: Terpenoids mainly use their lipophilicity to destroy the
cell membrane of bacteria. Terpenoids can pass through the phospholipid bilayer of
bacteria and diffuse inward, showing antibacterial or bactericidal effects [20]. Since the
integrity of the cell membrane is very important for the normal physiological activities
of bacteria, the damage of terpenoids to the membrane will affect the bacteria’s basic
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physiological activities, and the important substances such as proteins and impor-
tant enzymes in the cell will be lost, finally achieving the antimicrobial effect [21].
It is reported that 1,8-cineole (Table 1), a monoterpene substance extracted from Eu-
calyptus globulus Labill, showed antibacterial effect against Acinetobacter baumannii,
Candida albicans, a methicillin-resistant Staphylococcus aureus (MRSA) strain, and Es-
cherichia coli by destroying the cell membrane [22]. In another study, the researchers
exposed Salmonella typhimurium, E. coli O157: H7, Pseudomonas fluorescence, Brochotrix
thermophacta, and Staphylococcus aureus cells to cinnamaldehyde (Table 1), carvacrol
(Table 1), thymol (Table 1), eugenol (Table 1), and limonene (Table 1), and observed
their membrane damage through scanning electron microscopy. These results found
that terpenoids can achieve bacteriostatic effects by destroying the membrane struc-
ture [23]. The mechanism of action and target sites on microbial cells are graphically
illustrated in [20,21].

• Anti-quorum sensing (QS) action: The QS system is an intercellular communication
system [20]. It is a communication mode for bacteria to coordinate the interaction
between bacteria and other organisms, which is also the main reason for the emergence
of antibiotic resistance [19]. The group sensing signal loop of Gram-positive and Gram-
negative bacteria has been introduced and illustrated in the literature [24]. Studies
have shown that a low concentration of cinnamaldehyde can effectively inhibit the
QS effect between bacteria [25]. Low concentrations of carvacrol and thymol can
effectively inhibit the self-inducer of bacteria, namely, acyl homoserine lactone (AHL),
thus achieving the inhibition of QS [26]. The action mechanism of cinnamaldehyde
inhibiting the acyl homoserine lactones and other autoinducers involved in the quorum
sensing is illustrated in [27].

• Inhibition of ATP and its enzyme: ATP is the most direct energy source in organisms,
and it is also a necessary element for microorganisms to maintain normal operation
and work. Terpenoids can act on the cell membrane, resulting in the difference in ATP
concentration inside and outside the cell, leading to the disorder of the cell membrane,
thus conducting the antibacterial activity [20]. For example, terpenoid eugenol and
thymol could target the cell membrane to show fungicidal activity against C. albicans by
inhibiting H+-ATPase, which will lead to intracellular acidification and cell death [28].
In another study, the researchers treated the target pathogen with the MIC of carvacrol.
The extracellular ATP concentrations of the samples were measured with the help of
a luminometer (Biotek). On the basis of absorbance analysis at 260 nm, this study
observed that carvacrol disrupted the E. coli membrane, while the release of potassium
ions and ATP was also detected [29].

• Inhibition of protein synthesis: The physiological activity of bacteria is inseparable
from protein synthesis. Terpenoids, as inhibitors of protein synthesis, can achieve an
antibacterial effect by blocking any process of the protein synthesis pathway. Some
studies have shown that cinnamaldehyde can reduce the in vitro assembly reaction
and the binding reaction of FtsZ (filamenting temperature-sensitive mutant Z)-type
protein, a prokaryotic homolog of tubulin that regulates cell division. In addition,
cinnamaldehyde can inhibit the hydrolysis of GTP and bind to FtsZ, as well as in-
terfere with the formation of z-loop of cell dynamics, thus showing antibacterial
activity against bacteria [30]. In the latest research, the researchers used calculations,
biochemistry, and in-vivo-based assays to verify that cinnamaldehyde is a potential
inhibitor of S. typhimurium (stFtsZ), and its inhibition rate of stFtsZ GTPase activity
and polymerization is up to 70% [31].

• The synergistic effect: For example, the synergistic antibacterial effect of eugenol with
carvacrol and thymol is due to the ability of carvacrol and thymol to penetrate the
extracellular membrane, thus making it easier for eugenol to enter the cytoplasmic
membrane or increasing the number, size, and duration of pores to bind to membrane
proteins for better antibacterial activity [32]. The reaction mechanism is shown in the
literature [27].
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Table 1. Summary of the antimicrobial effects of some plant-derived terpenoids, alkaloids, and flavonoids.

Compounds Chemical Structures Target
Microorganisms Antimicrobial Effects Reference

Terpenoids

1,8-cineole
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extracellular membrane, thus making it easier for eugenol to enter the cytoplasmic 
membrane or increasing the number, size, and duration of pores to bind to membrane 
proteins for better antibacterial activity [32]. The reaction mechanism is shown in the 
literature [27]. 

Table 1. Summary of the antimicrobial effects of some plant-derived terpenoids, alkaloids, and fla-
vonoids. 

 Compounds Chemical Structures Target Microorganisms Antimicrobial Effects Reference 

Terpe-
noids 

1,8-cineole 

 

A. baumannii￥C. albicans
￥MRSA strain￥E. coli 

Cell membrane destruc-
tion [22] 

cinnamalde-
hyde  

S. typhimurium￥E. coli 
O157: H7￥P. fluorescence
￥B. thermophacta￥S. au-

reus 

1. Cell membrane de-
struction￥2. Anti-

quorum sensing action
￥3. Inhibition of pro-

tein synthesis

[23,25,30,31] 

carvacrol 

 

S. typhimurium￥E. coli 
O157: H7￥P. fluorescence
￥B. thermophacta￥S. au-

reus￥P. fluorescens 
KM121 

1. Cell membrane de-
struction￥2. Anti-

quorum sensing action
￥3. Inhibition of nu-

cleic acid synthesis￥4. 
The synergistic effect￥

5. Inhibits cell move-
ment and bacterial in-

vasion

[23,26,27,29,
32] 

thymol 

 

S. typhimurium￥E. coli 
O157: H7￥P. fluorescence
￥B. thermophacta￥S. au-

reus￥P. fluorescens 
KM121 

1. Cell membrane de-
struction￥2. Anti-

quorum sensing action
￥3. Inhibition of nu-

cleic acid synthesis￥4. 
The synergistic effect

[23,26–
28,32] 

eugenol 

 

S. typhimurium￥E. coli 
O157: H7￥P. fluorescence
￥B. thermophacta￥S. au-

reus 

1. Cell membrane de-
struction￥2. Inhibition 
of nucleic acid synthe-
sis￥3. The synergistic 

effect

[23,27,28,32] 

limonene 

 

A. baumannii￥C. albicans
￥MRSA strain￥E. coli 

Cell membrane destruc-
tion [23] 

A. baumannii
C. albicans

MRSA strain
E. coli

Cell membrane
destruction [23]
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E. coli￥S. aureus￥Enter-
ococcus faecalis￥P. aeru-

ginosa 
Antibacterial [33] 

Alka-
loids 

piperine 

 

S. aureus￥B. subtilis￥
Salmonella sp. ￥E. coli Efflux pump inhibition [34,35] 

reserpine 

 

E. coli Efflux pump inhibition [36] 

berberine 
N

OCH3

OCH3

O

O

 

E. coli￥Micrococcus luteus
￥P. aeruginosa￥

Prevotella intermedia￥
Fusobacterium nucleatum

￥MRSA strain 

1. Efflux pump inhibition
￥2. DNA-intercalating
￥3. Growth inhibition

[37–39]￥ 

L-ephedrine 
 

Influenza A virus DNA-intercalating [40] 

D-
pseudoephed-

rine  
Influenza A virus DNA-intercalating [40] 

L-meth-
ylephedrine 

 
Influenza A virus DNA-intercalating [40] 

chelerythrine 
 

S. aureus￥MRSA strain
￥ESBLs-SA 

1. Nucleic acid synthesis 
and repair inhibition￥

2. Growth inhibition
[41] 

8-hydroxy 
quinoline 

 

S. aureus￥H. influenza￥
S. pneumoniae 

Permeability change of 
membrane

[42,43] 

michellamine 
b 

 

HIV Protein activity inhibi-
tion

[44] 

E. coli
S. aureus

Enterococcus faecalis
P. aeruginosa

Antibacterial [33]

Alkaloids

piperine
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Influenza A virus DNA-intercalating [40] 
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S. aureus￥MRSA strain
￥ESBLs-SA 

1. Nucleic acid synthesis 
and repair inhibition￥

2. Growth inhibition
[41] 

8-hydroxy 
quinoline 

 

S. aureus￥H. influenza￥
S. pneumoniae 

Permeability change of 
membrane

[42,43] 

michellamine 
b 

 

HIV Protein activity inhibi-
tion

[44] 

S. aureus
B. subtilis

Salmonella sp.
E. coli

Efflux pump inhibition [34,35]

reserpine
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S. aureus￥MRSA strain
￥ESBLs-SA 

1. Nucleic acid synthesis 
and repair inhibition￥

2. Growth inhibition
[41] 

8-hydroxy 
quinoline 

 

S. aureus￥H. influenza￥
S. pneumoniae 

Permeability change of 
membrane

[42,43] 

michellamine 
b 

 

HIV Protein activity inhibi-
tion

[44] 

E. coli
Micrococcus luteus

P. aeruginosa
Prevotella intermedia

Fusobacterium nucleatum
MRSA strain

1. Efflux pump inhibition
2. DNA-intercalating
3. Growth inhibition

[37–39]

L-ephedrine
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S. aureus￥MRSA strain
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1. Nucleic acid synthesis 
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2. Growth inhibition
[41] 

8-hydroxy 
quinoline 

 

S. aureus￥H. influenza￥
S. pneumoniae 

Permeability change of 
membrane

[42,43] 

michellamine 
b 

 

HIV Protein activity inhibi-
tion

[44] 

Influenza A virus DNA-intercalating [40]

D-pseudoephedrine
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8-hydroxy 
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S. aureus￥H. influenza￥
S. pneumoniae 

Permeability change of 
membrane

[42,43] 

michellamine 
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HIV Protein activity inhibi-
tion

[44] 

Influenza A virus DNA-intercalating [40]

L-methylephedrine
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S. aureus
MRSA strain
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S. aureus
H. influenza
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[44] HIV Protein activity inhibition [44]
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sanguinarine 

 

K. pneumoniae￥MRSA 
strain￥P. aeruginosa￥
Streptococcus pyogenes 

1. DNA-intercalating￥2. 
Growth inhibition [45,46] 

roemerine 

 

S. aureus￥B. subtilis 
1. Efflux pump inhibition

￥2. Permeability 
change of membrane

[47,48] 

dihydrochel-
erythrine 

 

S. aureus￥MRSA strain Growth inhibition [49] 

evodiamine 

 

M. tubercolosis 
Peptidoglycan biosynthe-

sis inhibitor [50,51] 

Flavo-
noids 

hesperidin 

 

S. aureus￥L. monocyto-
genes 

Inhibit bacterial growth 
by modulating the ex-

pression of virulence fac-
tors

[52]￥[53] 

oroxylin a 

 

B. subtilis￥S. aureus / [54] 

apigenin 
O

OH

HO

OH

O  

S. aureus￥B. subtilis￥E. 
coli￥P. aeruginosa. 

1. Inhibits peptidoglycan 
synthesis￥2. Increases 

cell membrane permea-
bility

[55] 

morin 

 

E. coli Inhibition of ATP synthe-
tase

[56] 

silymarin 

 

E. coli Inhibition of ATP synthe-
tase [56] 

epigallocate-
chin gallate 

 

S. maltophilia 
Inhibits dihydrofolate re-

ductase [57] 

K. pneumoniae
MRSA strain
P. aeruginosa

Streptococcus pyogenes

1. DNA-intercalating
2. Growth inhibition [45,46]

roemerine
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S. maltophilia 
Inhibits dihydrofolate re-

ductase [57] 

S. aureus
B. subtilis

1. Efflux pump inhibition
2. Permeability change of
membrane

[47,48]

dihydrochelerythrine
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E. coli Inhibition of ATP synthe-
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S. maltophilia 
Inhibits dihydrofolate re-

ductase [57] 
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L. monocytogenes

Inhibit bacterial growth
by modulating the
expression of virulence
factors

[52]
[53]
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2.2. Biosynthesis of Terpenoid Precursors

There are two important precursors for terpenoid biosynthesis, dimethylallyl py-
rophosphates (DMAPP) and isopentenyl diphosphate (IPP), which can both be produced
via the MVA or MEP pathways (Figure 1), depending on the organism. The MVA pathway
is based on the formation of IPP and DMAPP from acetyl coenzyme A (CoA) through
the precursor substance MVA, followed by further condensation of IPP and DMAPP to
form sesquiterpenes, triterpenes, and sterols by the action of polyisoprene pyrophosphate
synthase. The MEP pathway, on the other hand, is based on pyruvate and glyceraldehyde-
3-phosphate in the presence of 1-deoxyxylulose-5-phosphate synthase (DXS) to form DXP.
Then, under the catalysis of 1-deoxyxylulose-5-phosphate reductor isomerase (DXR), MEP
was formed, followed by further phosphorylation and cyclization to produce IPP, which will
be used in the downstream biosynthesis of monoterpenes, diterpenes, and other terpenoids.
In plants, both pathways can occur, with the MVA pathway acting in the cytoplasm and
the MEP pathway acting in the plastid. In bacteria, terpenoids are generally produced via
the MEP pathway, whereas terpenoids are mostly synthesized via the MVA pathway in
fungi. Although there are slight differences in the processes of these two pathways, the end
products are both DMAPP and IPP [66]. In general, the MEP pathway provides C5-pentenyl
diphosphate for the synthesis of C10 monoterpenes, C20 diterpenes, and C40 tetraterpenes,
while the MVA pathway provides the same generic precursors for the synthesis of C15
sesquiterpenes, C27–29 sterols, C30 triterpenes, and their saponin derivatives [67].

2.3. Discovery, Biosynthesis Investigations, and Engineering Strain Construction of the
Representative Terpenoid Antimicrobial Agent—Artemisinin
2.3.1. Discovery and Predicted Action Mechanism of Artemisinin

So far, there have been several reports about terpenoid compounds that displayed de-
sired antimicrobial activities [68]. Among them, the most representative one is undoubtedly
artemisinin (Figure 2). Artemisinin (Qinghaosu) is a sesquiterpene endoperoxide isolated
from the leaves of the plant Artemisia annua, which has a long history of use in traditional
Chinese medicine. Malaria, caused by Plasmodium falciparum, has been a life-threatening
disease for thousands of years [69]. Nowadays, 40% of the world’s population is at risk
of malaria infection, and artemisinin is designated as the first-line antimalarial drug by
the World Health Organization (WHO). Since the discovery of the antimalarial activities
of artemisinin by Chinese scientists in 1971, it has saved millions of lives and represents
one of the significant contributions of China to global health. On account of this, the 2015
Nobel Prize for Medicine was awarded to Professor Youyou Tu for her contributions to the
discovery and recognition of artemisinin [70].
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Figure 1. MVA and MEP pathways involved in terpenoid biosynthesis. AACT, acetoacetyl coen-
zyme A thiolase; HMGS, 3-hydroxy-3-methyl glutaryl coenzyme A synthetase; HMGR, 3-hydroxy-
3-methyl glutaryl coenzyme A reductase; MVK, mevalonate kinase; PMK, phosphomevalonate
kinase; MPD, mevalonate-5-pyrophosphate decarboxylase; IDI, isopentenyl diphosphate iso-
merase; DXPS, 1-deoxy-xylose-5-phosphate synthase; DXR, 1-deoxy-xylose-5-phosphate racemic en-
zyme; CMS, 4-diphoxphocyt-idyl-2-C-methyl-2-(E)-butenyl-4-diphosphate synthase; CDP, cytidine-4-
diphosphate; CDP-ME, cytidine-4-diphosphate-2-C-methylerythritol; CMK, 4-diphoxphocyt-idyl-2-C-
methyl-D-erythritol kinase; CDP-MEP, cytidine-4-diphosphate-2-C-methyl-D-erythritol-2-phosphate;
MCS, 2-C-methyl-D-erythritol-2,4-cyclodiphosphats synthase; MEcDP, 2-C-methyl-D-erythritol-2,4-
cyclophosphoric acid; HDS, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase; HMBDP,
1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate; IPK, isopentenyl monophosphate kinase.

Although widespread investigations have been carried out, the mechanism of action
of artemisinin is still incompletely clarified. It has been widely accepted that the anti-
malarial activity of artemisinin is largely dependent on the unusual endoperoxide since
derivatives lacking the endoperoxide bridge are discovered to be devoid of antimalarial
activity, and the activity could be enhanced by high oxygen tension and by the addition
of other free-radical-generating compounds, while some radical scavengers could block
the antimalarial activity [71]. Considerable evidence has proven that the killing parasite’s
ability of artemisinin-based combination therapies is mediated by free radicals, which are
produced from the endoperoxide bridge [72]. The degradation of the endoperoxide bridge
in a heme-dependent process could form carbon-centered radicals, which then alkylate
multiple targets including heme and proteins at the pathogenic Plasmodium blood stage and
lead to the conversion of heme to hemozoin and finally lead to the death of the parasite [73].
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Figure 2. Chemo-enzymatic synthesis of artemisinin. Yellow region shows the biosynthesis pathways
for artemisinic acid production. Green region shows the chemical conversion route of artemisinic acid
to artemisinin. tHMGR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; ADS, amorphadiene
synthase; CYP71AV1, amorpha-4; 11-diene monooxygenase; ADH1, artemisinic alcohol dehydroge-
nase; ALDH1, artemisinic aldehyde dehydrogenase 1; Dbr2, artemisinic aldehyde ∆11 (13) reductase;
CPR1, cognate reductase of CYP71AV1. Arrows with frames showed the gene elements manipulated
by Keasling’s team for artemisinic acid production engineering strain construction.
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2.3.2. Key Enzymes Involved in The Biosynthesis Pathway of Artemisinin

The large demand for artemisinin-based combination therapies has caused artemisinin
to fall in short supply. To provide more alternative sources, the biosynthesis pathway
of artemisinin has been investigated for many years and remarkable achievements have
been obtained. Like other regular sesquiterpenes, artemisinin’s biosynthesis precursor is
farnesyl pyrophosphate (FPP), which is formed by the condensation of three IPP molecules
by either the MVA or plastid non-MVA pathway, respectively [74]. To verify the origin of
the precursors, a plant of A. annua was grown in an atmosphere containing labeled 13CO2
for 100 min. Following a chase period of 10 days, artemisinin was isolated and analyzed
by 13C NMR spectroscopy. The result shows that the precursor IPP can be provided by
both the MVA pathway and the non-MVA pathway. As shown in Figure 2, DMAPP was
initially provided by MVA origin and then transferred to the plastid, where an IPP unit
of non-MVA origin is used for elongation to form geranyl diphosphate (GPP). In the
subsequent step, GPP is exported to the cytosolic compartment and converted into FPP
using IPP from the MVA pathway [75] (Figure 2). After FPP is formed, the first committed
step of artemisinin biosynthesis is the conversion of FPP to amorphadiene by the terpene
synthase enzyme amorphadiene synthase (ADS). To explore the catalysis mechanism of
ADS, deuterium-labeled FPP at H-1 position was used as the substrate to trace the H-1
hydrogen migration of FPP during cyclization. 1H NMR results of amorphadiene showed
that one of the hydrogen Ha-1 of FPP migrated to H-10 of amorphadiene, while the other
hydrogen Hb-1 remained at its position to label amorphadiene H-6. These observations
indicated that ADS may act through an initial formation of a bisabolyl cation intermediate
through 1,6-ring closure and one 1,3-hydride shift. Bisabolyl carbocation intermediate
would then undergo hydride shift through one direct suprafacial 1,3-shift of axial Ha-
1 to C-7 (Figure 2), resulting in the correct cis-decalin configuration at C-1 and C-6 of
amorphadiene [76–79]. Following the formation of amorpha-4,11-diene, a cytochrome P450,
CYP71AV1, was cloned from A. annua and characterized by expression in Saccharomyces
cerevisiae. CYP71AV1 could catalyze the multiple oxidation steps of amorpha-4,11-diene
to produce artemisinic alcohol and artemisinic aldehyde, and finally yield artemisinic
acid [80]. In addition, two genes encoding putative artemisinic alcohol dehydrogenase
(ADH1) and artemisinic aldehyde dehydrogenase 1 (ALDH1) were characterized from A.
annua glandular trichomes [81]. ADH1 is a NAD-dependent alcohol dehydrogenase of the
medium-chain dehydrogenase/reductase superfamily, with specificity towards artemisinic
alcohol. ALDH1 could effectively convert artemisinic aldehyde to artemisinic acid [82].

It is obvious that the ∆11 (13) double bond in amorpha-4,11-diene is reduced during
the biosynthesis of artemisinin, which is assumed to occur in artemisinic aldehyde. A
corresponding gene, Dbr2, was cloned and characterized from A. annua [83]. It could
specifically reduce artemisinic aldehyde to produce dihydroartemisinic aldehyde, which
could be then converted to dihydroartemisinic acid by ALDH1. Further study showed that
ALDH1 could also catalyze the oxidation of artemisinic aldehyde as CYP71AV1 did [49].
Conversely, CYP71AV1 cannot catalyze the oxidation of dihydroartemisinic aldehyde.
Meanwhile, experimental results showed that there was no direct enzymatic conversion
of artemisinic acid into dihydroartemisinic acid. Therefore, there should be two branches
that exist during artemisinin biosynthesis [84]. It is well accepted that the primary route
is through dihydroartemisinic acid, and the route through artemisinic acid is a side path-
way [85–87]. From dihydroartemisinic acid, biosynthesis of artemisinin still requires a
photooxidative formation of the endoperoxide ring. However, the details of this process,
such as the potential involvement of additional enzyme activities, are currently unclear. In
2004, there was a report that, through using the cell-free extracts of A. annua, realized the
bioconversion of artemisinic acid to artemisinin, but the activity was not observed when
using artemisinic acid as the only substrate [88]. Thus, the enzyme in charge of this reaction
is still a question. One possibility is that artemisinic acid could be converted into several
other compounds such as arteannuin B non-enzymatically, which is later transformed into
artemisinin [89]. Another possibility is that dihydroartemisinic acid could undergo rapid
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plant pigment photosensitized oxidation, followed by subsequent spontaneous oxidation
to form artemisinin [90].

2.3.3. Microbial Production of Artemisinic Acid

On the basis of the biosynthesis pathway elucidation, increasingly more attention on
artemisinin is now shifting to its microbial production. Particularly represented by Dr. Jay
D. Keasling, his team has made great achievements in this field [91]. They combined the
biological synthesis of the earlier steps to produce the precursor artemisinic acid and the
organic synthetic steps of artemisinic acid to produce artemisinin together and realized
the industrial production of semi-synthetic artemisinin for commerce needs. They first
constructed the biosynthesis pathway of amorphadiene in E. coli. Compared with the
expression of DXP pathway genes, a dramatic increase in isoprenoid precursor produc-
tion was observed when the S. cerevisiae MVA pathway was heterologously expressed in
E. coli. Thus, two plasmids were correspondingly designed. One encoded the MevT operon
(known as the ‘top pathway’), which comprises three genes (atoB, ERG13, and tHMG1) that
are needed for the conversion of acetyl-CoA to MVA. The second plasmid encoded the
MevB operon (known as the ‘bottom pathway’) comprising five genes (idi, ispA, MVD1,
ERG8, and ERG12) for the conversion of MVA to FPP. These two plasmids were subse-
quently expressed in E. coli with the codon-optimized amorphadiene synthase (ADS) gene
together. Combined with the optimization of the fermentation conditions, the production
of amorphadiene could reach 0.5 g per liter in E. coli [92–94]. Following this is the next
stage: after the identification of CYP71AV1, this project meets a quandary that although the
amorphadiene was produced with a higher yield in E. coli than in S. cerevisiae, E. coli is un-
suitable for the expression of the P450 enzyme CYP71AV1, which is crucial for the following
steps. Thus, in this stage, Keasling’s team switched the expression system of artemisinin
to S. cerevisiae. Following this, a series of gene manipulations were performed, including:
(1) The S. cerevisiae strain was engineered to overexpress the MVA pathway, and all genes
were integrated into the genome; (2) ADS and CYP71AV1 genes were constructed as plas-
mid borne; (3) overexpression of a 3-hydroxy-3-methylglutaryl-CoA reductase (tHMGR)
occurred to improve the production of amorphadiene; (4) downregulation of ERG9 oc-
curred, which encodes squalene synthase, catalyzing the first step in the sterol biosynthetic
pathway to inhibit the flux from FPP to sterol; (5) a methionine repressible promoter PMET3
was used to increase amorphadiene production; (6) the ADS gene was expressed under the
control of the GAL1 promoter; (7) the CYP71AV1 gene was expressed along with its cognate
reductase (CPR1); (8) yeast strain CEN.PK2 was chosen as the host, which is capable of
sporulating sufficiently; (9) every enzyme of the MVA pathway including ERG20 (the final
step for the production of FPP) was overexpressed in CEN.PK2 in an effort to increase
the production of amorphadiene; (10) the GAL80 gene was deleted to ensure constitu-
tive expression of the overexpressed MVA pathway enzymes and the A. annua-derived
genes; (11) the much cheaper glucose was used as the carbon source instead of galactose;
(12) another two enzymes, aldehyde dehydrogenase (ALDH1) and artemisinic alcohol
dehydrogenase (ADH1), were combinedly expressed with CYP71AV1, which resulted in
the highest production yield of artemisinic acid. With all the above manipulations coupled
with the development of the fermentation process, the production of artemisinic acid in the
engineering yeast strain was finally as high as 25 g per liter [81,95,96].

2.3.4. Chemical Conversion to Produce Artemisinin

The final stage for artemisinin chemo-enzymatic synthesis is the chemical conversion
of artemisinic acid to artemisinin (Figure 2). The chemical process involves a four-step
conversion that begins with the reduction of artemisinic acid to dihydroartemisinic acid.
Then, the esterification of the carboxylic acid moiety will be performed to block the sub-
sequent formation of side products. The third step is an ‘ene-type’ reaction of the C4–C5
double bond with singlet oxygen (1O2) to produce an allylic 3-hydroperoxide. Moreover,
in the final step, the allylic hydroperoxide undergoes an acid-catalyzed hock fragmentation
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and rearrangement to afford a ring-opened keto-aldehyde enol. Trapping of this enol
with 3O2 produces a vicinal hydroperoxide aldehyde, followed by a cascade reaction of
acid-catalyzed cyclization that could form an endoperoxide bridge to provide artemisinin at
last [81]. Finally, through the metabolic engineering of the earlier steps using multiple gene
manipulations and following synthetic organic chemistry, the anti-malaria drug artemisinin
production system was successfully established and effectively used for industrial produc-
tion by Sanofi company as the worldwide supplement [91]. Artemisinin is by far the most
successful and representative example of the perfect combination of biosynthetic pathway
research and industrial production.

2.4. Biosynthesis Pathway Investigation of the Terpenoid Antimicrobial Agent—Oleanolic Acid

Oleanolic acid (Table 1) is a pentacyclic triterpenoid originating from a number of
medicinal plants. It has desired antimicrobial activity against various bacterial pathogens
and viruses [33,97–100]. Furthermore, the study on this antimicrobial agent is of importance
because as a natural source product, there has been no resistance case toward oleanolic acid
found yet [101]. The biosynthesis pathway of oleanolic acid has been relatively clear [102].

In plant cells, acetyl CoA generates DMAPP and IPP through the MVA pathway
in the cytosol. IPP and DMAPP are isomerized into FPP under the action of farnesyl
pyrophosphate synthase (FPS), and FPP is then converted into squalene under the action
of squalene synthase (SQS). Squalene cyclooxygenase (SQE) then oxidizes squalene into a
precursor molecule for primary sterol metabolism, 2,3-oxsqualene [103]. From this step, the
different cyclizations of 2,3-oxidized squalene become a branching point between primary
sterol and secondary triterpene metabolism. For the biosynthesis of plant sterols, the
cyclization of 2,3-oxysqualene to the tetracyclic plant sterol precursor cycloartenol is mainly
catalyzed by cycloartenol synthase (CAS) [104]. Conversely, the oleanolic acid biosynthetic
pathway of our interest, 2,3-oxysqualene, is cyclized by β-amyrin synthase (BAS), which
was first cloned from the medicinal plant ginseng and subsequently from a variety of other
plants [104,105]. This pentacyclic carbon skeleton is assumed to be formed from (3S)-2,3-
oxidosqualene folded in pre-chair–chair–chair conformation [106]. Opening of the epoxide
ring followed by cation–π cyclization initially produces a tetracyclic dammarenyl cation.
Following ring expansion and the formation of fifth ring, the lupenyl cation is formed [105].
Another ring expansion followed by a series of stereospecific 1,2-hydride shifts and the
final abstraction of 12α proton produces β-amyrin [107] (Figure 3). The C-28 position of
β-amyrin is then oxidized in three consecutive steps by a single cytochrome P450 enzyme,
CYP716A12, to produce oleanolic acid. The key enzyme for this step—CYP716A12—was
first identified in Medicago truncatula, and the study found that erythrodiol, oleanolic
aldehyde, and oleanolic acid production were detected in the reaction solution catalyzed by
this enzyme [108,109]. Thus, it is suggested that CYP716A12 is a C-28 oxidase of β-amyrin,
catalyzing three sequential oxidation reactions of oleanane main chain C-28 rather than a
one-step generation. The oleanolic acid biosynthetic pathway is shown in Figure 3.

With the development of synthetic biology, some conventional biosynthetic pathways
were interfered with using genetic engineering to improve the target compound’s pro-
duction. For example, limonene, a cyclic monoterpene of plant origin, is antimicrobially
sensitive to Listeria monocytogenes and can damage its cell integrity and wall structure [110].
The most classical biosynthetic pathway of limonene is the condensation of IPP and DMAPP
to form GPP by the action of geranyl pyrophosphate synthase, and limonene synthase
(LS) uses GPP as a substrate to synthesize limonene. However, GPP can also subsequently
condense with a molecule of IPP to form FPP, and studies have shown that the synthesis
of excessive FPP hinders the efficient synthesis of monoterpenes. According to a recent
report, researchers have developed an FPPS mutant (F96W, N127W; FPPSF96W, N127W) that
can selectively produce GPP without further extension to FPP. In the yeast strain with
high isoprene production, fppsF96W, N127W genes were combined with nine plant LS genes,
and the N-terminal sequence of plasma-membrane-targeted transport peptide (TLS) was
truncated. The best effect of 15.5 mg L−1 limonene on Citrus lemon tls1 (cltls1) was achieved.



Antibiotics 2022, 11, 1380 13 of 32

Moreover, an orthogonal engineering pathway was constructed. In this pathway, limonene
could be produced through the condensation of IPP and DMAPP by neryl pyrophosphate
(NPP) synthase to form NPP, and limonene synthase can also use NPP as a substrate to
synthesize limonene. The expression of Solanum lycopersicum nerolidyl diphosphate syn-
thase (SlNDPS1) and Citrus limon tLS2 (CltLS2) genes in the same yeast strain made the
limonene yield higher than that of traditional methods (28.9 mg L−1). Under the action
of glucose-induced promoter HXT1, the production of limonene can be increased to
more than 900 mg L−1 by extensive pathway engineering using the FPPS competitive
gene [111].
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3. Alkaloids

Alkaloids are a class of structurally diverse nitrogen-containing organic compounds,
including more than 20,000 different molecules whose basic nitrogen atom can occur
in the form of primary amine (RNH2), a secondary amine (R2NH), or a tertiary amine
(R3N) [112]. From the perspective of chemical structure or natural origin, alkaloids can
be divided into two broad divisions. The first division contains the non-heterocyclic or
atypical alkaloids, also known as protoalkaloids or biological amines, containing nitrogen
in the side chain. The second division includes the heterocyclic or typical alkaloids (true
alkaloids), containing nitrogen in the heterocycle. Because of their structural complexity,
the second division can be further subdivided into 14 subgroups on the basis of the ring
structure, as shown in Figure 4 [113].
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3.1. Plant-Originated Alkaloids with Antimicrobial Bioactivities

Because alkaloids have a proton-accepting nitrogen atom, and one or even more
proton-donating amine hydrogen atoms in addition to functional groups, they can easily
form hydrogen bonds with proteins, enzymes, and receptors [113]. As a result, alkaloids
show a variety of pharmacological activities [8,114–116]. Nowadays, there are numerous
reports on the antimicrobial activity of plant-derived alkaloids. They could inhibit the
growth of fungi, bacteria, viruses, and protozoa through a variety of mechanisms, and
may have important clinical value in the treatment of resistant microbial strains [117].
Most alkaloids act as efflux pump inhibitors (EPIs) to exert antimicrobial effects—for ex-
ample, isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal
alkaloids are reported to be used as competitive inhibitors of efflux pumps in bacteria
and fungi [118]. Piperine (Table 1)—a piperidine-type alkaloid—has strong antimicrobial
activity against both Gram-positive and -negative bacteria [34], acting as an EPIs in S. aureus
when combined with ciprofloxacin [35]. Reserpine (Table 1)—an indole alkaloid—is known
to be a competitive inhibitor of both primary and secondary active transporter systems. In
particular, regarding this latter function, reserpine acts mainly on resistance nodulation
division (RND) and the major facilitator superfamily (MFS) [119,120]. In addition, reserpine
could reverse Bmr-mediated multidrug resistance by inhibiting drug transport [36,121].
Berberine (Table 1) is a kind of isoquinoline alkaloid. It displays a synergistic effect with
the carbapenem antibiotic to re-sensitize imipenem-resistant Pseudomonas aeruginosa by
inhibiting the MexXY-OprM efflux pump system [37–39]. Berberine has shown antibacterial
activity against selected oral pathogens and is more effective than saline as an endodontic
irrigant against selected endodontic pathogens [122]. Some alkaloids play an antimicrobial
role by inhibiting nucleic acid synthesis and repair—for instance, berberine is also an excel-
lent DNA intercalator that accumulates under the drive of cell membrane potential [123].
L-Ephedrine (Table 1), D-pseudoephedrine (Table 1), and L-methylephedrine (Table 1)
have antiviral effects on influenza A virus (IAV) in vitro by inhibiting viral replication
and altering inflammatory response [40]. Chelerythrine (Table 1), an isoquinoline alkaloid,
displays strong antibacterial activity against S. aureus, MRSA, and extended-spectrum
β-lactamase S. aureus (ESBLs-SA) through inhibition of cellular division and nucleic acid
synthesis [41]. Some alkaloids play an antimicrobial role by changing the permeability of
the membrane. 8-Hydroxyquinoline (Table 1) is one of the oldest antibacterial agents [124].
Its high lipophilicity allows it to penetrate bacterial cell membranes to reach its target
site of action [42], displaying activity against S. aureus, Haemophilus influenzae, and Strep-
tococcus pneumoniae [43]. Some alkaloids conduct antimicrobial effects by inhibiting the
activity of enzymes. For example, michellamine B (Table 1) obtained from the tropical plant
Ancistrocladus korupensis showed anti-HIV activity by inhibiting the enzymatic activities



Antibiotics 2022, 11, 1380 15 of 32

of reverse transcriptases from both HIV types 1-2 as well as by inhibiting human DNA
polymerases α and β [44]. Some alkaloids perform antimicrobial effects by inhibiting the
growth of bacteria, such as benzophenanthridine alkaloid sanguinarine (Table 1). It could
interfere with Z-ring assembly through inhibiting filamenting temperature-sensitive mutant
Z (FtsZ) binding, thus preventing cytokinesis in both Gram-positive and Gram-negative
bacteria [45]. Sanguinarine can also affect the binding of FtsZ protofilaments to have a
bacteriostatic effect [46].

3.2. Biosynthesis Investigation of the Representative Antimicrobial Alkaloid Compound—Berberine

Alkaloids are biosynthetically derived from amino acids such as phenylalanine (Phe),
tyrosine (Tyr), tryptophan, ornithine, and lysine. Building blocks from the acetate, shiki-
mate, or deoxyxylulose phosphate pathways are also frequently incorporated into alkaloid
structures. Nowadays, the synthetic pathways of multiple kinds of antimicrobial alka-
loids have been analyzed and confirmed, such as berberine, colchicine, benzylisoquinoline
alkaloids (BIAs), and tropane alkaloids (TAs).

Berberine is the main representative quaternary ammonium salt of protoberberines
produced from Berberis spp. with various antimicrobial activities, especially against Gram-
negative bacteria [125–128]. The generally accepted biosynthesis precursor of berberine
is L-Tyr [129]. Biosynthesis from L-Tyr to berberine has 13 steps involving different en-
zymatic reactions, and all the enzymes involved in this pathway have been biochem-
ically characterized, as shown in Figure 5 [130]. It begins with the formation of the
first committed intermediate (S)-norcoclaurine, which is formed through the conden-
sation of two Tyr derivatives, dopamine and 4-hydroxyphenylacetaldehyde (4-HPAA).
Dopamine and 4-HPAA are synthesized by Tyr decarboxylase (TYDC) and Tyr/tyramine
3-hydroxylase (3OHase), or L-Tyr aminotransferase (TyrAT) and 4-hydroxyphenylpuruvate
decarboxylase (4HPPDC), respectively, and they were further condensed by the formation
of C-C bonds under the action of (S)-norcoclaurine synthase (NCS) to generate the basic
1-benzylisoquinoline core (S)-norcoclaurine [131–133]. (S)-Norcoclaurine continues to be
methylated and oxidized to form (S)-reticuline, which is a key molecule to derive a series
of alkaloids, through four steps under the action of three methyltransferases (S-adenosyl-L-
methionine (SAM): (S)-norcoclaurine 6-O-methyltransferase (6OMT) [134,135], SAM: (S)-
coclaurine-N-methyltransferase (CNMT) [136,137], SAM: 3′-hydroxy-N-methylcoclaurine
4′-O-methyltransferase (4′OMT) [138,139], and one cytochrome P450 enzyme [P450, (S)-
N-methylcoclaurine 3′-hydroxylase (NMCH)) [140–142]. During this biosynthesis, 6OMT
catalyzes O-methylation at C6 on (S)-norcoclaurine to yield (S)-coclaurine [135], and (S)-
coclaurine further undergoes N-methylation under the action of CNMT to generate (S)-N-
methylcoclaurine [137]. Then, the P450 enzyme NMCH can convert (S)-N-methylcoclaurine
to (S)-3′-hydroxy-N-methylcoclaurine [140], and finally it catalyzes the transfer of the
S-methyl group of SAM to the previous product through 4′OMT to form an important inter-
mediate (S)-reticuline base for the synthesis of isoquinoline alkaloids [138]. Subsequently,
the key central ring closure is the conversion of the N-CH3 of (S)-reticuline to the berberine
bridge carbon, C8 of (S)-scoulerine, thereby forming the protoberberine carbon skeleton.
This step is accomplished by berberine bridge enzyme (BBE), which is also an important
step in the biosynthesis of other isoquinoline alkaloids including protopine, protoberberine,
and benzophenanthridine alkaloids [143]. BBE is a key rate-limiting enzyme in the syn-
thesis of (S)-scoulerine. More recently, Li et al. [144] achieved high expression of McBBE
derived from Macleaya cordata in S. cerevisiae through codon optimization, N-terminal
truncation, and CRISPR-Cas9 technology, obtaining a genetically stable S. cerevisiae strain
with high McBBE expression. Further methylation of (S)-scoulerine was performed by
O-methyltransferase (SAM: scoulerine 9-O-methyltransferase (SMT)) [145,146] to yield
(S)-tetrahydrocolumbamine, which is stereospecifically converted to (S)-canadine under
formation of the methylenedioxy bridge through (S)-canadine synthase [147]. Finally,
(S)-canadine is oxidatively aromatized to berberine through tetrahydroprotoberberine
oxidase [147,148]. The above is the detailed process of berberine biosynthesis from Tyr,
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and it has been reported that by combining enzymes from the same or different sources,
this pathway could successfully synthesize berberine and a series of important intermedi-
ates [130,149–151] (Figure 5).
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rine 6-O-methyltransferase; CNMT, (S)-coclaurine N-methyltransferase; NMCH, N-methylcoclaurine
3′-hydroxylase; 4′OMT, SAM: 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase; BBE, berber-
ine bridge enzyme; SMT, SAM: scoulerine 9-O-methyltransferase; CAS, (S)-canadine synthase; STOX,
(S)-tetrahydroprotoberberine oxidase.

3.3. Biosynthesis Investigations of the Antimicrobial Alkaloid Compound—Colchicine

Colchicine is an FDA-approved, available, safe, and effective anti-inflammatory drug
derived from Colchicum and Gloriosa species [152–154]. On the basis of its unique efficacy
as an anti-inflammatory agent, colchicine has been used in the therapy of cardiovascular
diseases. Most recently, there have numerous reports suggesting that colchicine could
also be used in the treatment of coronavirus disease 2019 (COVID-19) [155,156]. The
antiviral activity of this alkaloid is attributed to its ability to bind tubulin dimers and
inhibit microtubule assembly, which not only promotes anti-inflammatory effects but also
makes colchicine a potent mitotic poison [154,157]. In addition, colchicine may inhibit
inflammasome signaling and reduce proinflammatory cytokines, which is a purported
mechanism of COVID-19 pneumonia [158].

For the biosynthesis of colchicine, since Leete conducted the first biosynthetic ex-
periments on colchicine in 1960 [159], the chemical origins of colchicine have been thor-
oughly studied through an abundance of feeding studies with isotope-labeled substrates in
Colchicum plants, as well as the structural characterization of colchicine-related alkaloids
isolated from species of the Colchicaceae family that helped to define a well-established
biosynthetic hypothesis [160–163] (Figure 6). It has been established that colchicine orig-
inated from Phe and Tyr [164]. Similar to the former part of the berberine biosynthetic
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pathway, the phenethylisoquinoline skeleton of colchicine is also formed by the condensa-
tion of an aldehyde with an amine [162]. Namely, the initial amino acids Phe and Tyr are
processed into 4-hydroxydihydrocinnamaldehyde (4-HDCA) and dopamine, respectively,
which are joined through a Pictet–Spengler reaction to form a 1-phenethylisoquinoline
scaffold [162,163,165]. The scaffold then undergoes a series of methylations and phenyl
ring hydroxylations to yield (S)-autumnaline [163], which proceeds to para–para phenol
coupling to create a bridged tetracycle [166]. An unusual oxidative ring expansion followed,
yielding the characteristic tropolone ring of the colchicine carbon scaffold, which is essen-
tial for the tubulin-binding activity of colchicine [167]. The biosynthesis of colchicine is
further accomplished through final processing and N-acetylation of the extruded nitrogen
atom [168].
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3.4. De Novo Biosynthetic Production of Colchicine in Nicotiana benthamiana

In view of the above research, Sattely et al. [169,170] established a metabolic pathway
of tropolone-containing colchicine alkaloids by using a combination of transcriptomics,
metabolic logic, and pathway reconstitution. The first stage is the generation of the key pre-
cursor 1-phenethylisoquinoline scaffold, which requires the Pictet–Spengler condensation
of 4-HDCA and dopamine derived from the amino acids Phe and Tyr. Labeling studies
have shown that 4-HDCA is produced from Phe through a metabolic pathway analogous
to the biosynthesis of monolignols [164,171]. Through hierarchical clustering analysis of
Gloriosa superba transcriptomic data utilizing the other identified colchicine biosynthesis
genes, the researchers demonstrated co-clustering of many monolignol biosynthetic gene
orthologs (GsPAL, Gs4CL, GsCCR, GsAER, GsC4H, and GsDAHPS), and their heterologous
co-expression in N. benthamiana resulted in the production of 4-HDCA. For dopamine for-
mation, the incorporation of L-Tyr and tyramine into colchicine demonstrated the activity
of L-Tyr/L-DOPA decarboxylase (TyDC/DDC) and 3′-hydroxylase enzymes [161]. The re-
searchers identified a TyDC/DDC homolog (GsTyDC/DDC) highly co-expressed with other
identified colchicine biosynthesis genes in the public G. superba transcriptome via a similar
analysis approach, combining it with 3′-hydroxylase BvCYP76AD5 from Beta vulgaris to pro-
duce L-DOPA successfully [169,172]. Furthermore, the modified (S)-norcoclaurine synthase
from Coptis japonica (CjNCS) was utilized to catalyze the condensation of 4-HDCA with
dopamine to produce the first alkaloidal precursor 1-phenethylisoquinoline. The NCS is a
previously characterized plant Pictet–Spenglerase, which condenses 4HPAA and dopamine
within the biosynthesis of benzylisoquinoline alkaloid (BIA) [173]. It can also condense
a wide range of aldehyde substrates with dopamine [174,175]. The precursor will yield
(S)-autumnaline by further modification (hydroxylations, methylations). (S)-Autumnaline
then undergoes enzyme-catalyzed phenolic coupling together with further modification to
produce O-methylandrocymbine, which is then converted to colchicine via homoallylic ring
expansion [176,177]. On the basis of the above information, the researchers utilized eight
genes (GsOMT1, GsNMT1, GsCYP75A109, GsOMT2, GsOMT3, GsCYP75A110, GsOMT4,
and GsCYP71FB1) explored from G. superba to act on 1-phenethylisoquinoline for the
biosynthesis of the colchicine precursor N-formyldemecolcine, which contains the charac-
teristic tropolone ring and pharmacophore of colchicine. Combining all the above genes,
the authors engineered a biosynthetic pathway (16 enzymes in total) in N. benthamiana
and realized the de novo biosynthetic production of N-formyldemecolcine starting from
amino acids Phe and Tyr in the commonly used model plant [169]. Subsequently, enzymes
that catalyze the N-demethylation, N-deformylation, and N-acetylation (GsCYP71FB1,
GsABH1, GsNAT1) of N-formyldemecolcine were further excavated and transferred into
N. benthamiana. Ultimately, through the heterologous system of 20 genes from G. superba
(17 genes) and other plants (3 genes), total biosynthesis of enantiopure (-)-colchicine was
successfully achieved from primary metabolites [170] (Figure 6).

3.5. Biosynthesis Investigations of Other Antimicrobial Alkaloids

As a major source of bioactive natural products, in addition to the above-discussed
berberine and colchicine, there are still many alkaloids that showed desirable antimicrobial
activities whose biosynthesis pathways have also been clarified. Quinoline alkaloids such
as 8-hydroxyquinoline are important kinds of nitrogen-containing heterocyclic aromatic
compounds with a broad range of antimalarial, antibacterial, antifungal, and antiviral
activities. Quinoline alkaloids mainly exist in the Rutaceae family, and their biosynthesis is
derived from 3-hydroxyanthranilic acid, a metabolite formed through a series of enzymatic
reactions of tryptophan. Specifically, 3-hydroxyanthranilic acid and malonyl-SCoA are
condensed and then cyclized to yield quinoline alkaloids [178]. Monoterpenoid indole
alkaloids (MIAs)—a large group of natural products derived from plants, such as camp-
tothecin, quinine, and vinblastine—exhibited anticancer, antimalarial, and antibacterial
effects [179,180]. Secologanin is the terminus of the monoterpenoid biosynthesis branch
and is coupled to tryptamine by strictosidine synthase (STR) to form strictosidine, which is
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the universal MIAs precursor in plants. The tomato plant, S. lycopersicum L., produces the
cholesterol-derived steroidal alkaloids tomatine and tomatidine. Tomatidine selectively
and potently inhibits small-colony variants of S. aureus that cause opportunistic infections
in patients with cystic fibrosis [181], and also has potent fungistatic activity against Candida
spp. with low toxicity to human cells [182]. Their biosynthesis begins from the precursor
dehydrotomatidine via enzymatic dehydrogenation, isomerization, and sequential reduc-
tions [183]. Scopolamine is a kind of TA that is present in many different plants of the
Solanaceae family and is classified as essential medicine by the WHO. Scopolamine showed
considerable antifungal activity [184,185]. Smolke et al. [186] realized the construction
of a modular biosynthetic pathway by engineered baker’s yeast for the production of
medicinal TA scopolamine, starting from simple sugars and amino acids. Genetic-level
manipulations they performed included functional genomics to identify missing pathway
enzymes, protein engineering to enable expression of functional acyltransferases through
trafficking to the vacuole, heterologous transporters to facilitate intracellular routing, and
strain optimization to increase titers.

The enormous potential of alkaloids as drug precursors is far from exhausted, and
various pharmacological effects continue to be reported and reviewed [187]. In addi-
tion, emerging biotechnologies have been optimized for plants, including metabolomics,
CRISPR-based gene editing, and heterologous yeast platforms, enabling the production of
diverse and complex plant compounds. It is reasonable to expect that with an increased un-
derstanding of the biosynthesis of other antimicrobial alkaloids, increasingly more alkaloid
antimicrobial agents could be explored and mass produced in the near future.

4. Flavonoids

Flavonoids widely exist in plants, being the general name of a series of compounds de-
rived from 2-phenyl chromogenic ketones. According to the chemical properties, positions,
and types of substituents on the ring, flavonoids can be divided into several subclasses,
such as flavones, flavonols, dihydroflavones, dihydroflavonols, isoflavones, chalcone, au-
rone, and anthocyanidin, among others [188]. The abundance and diversity of chemical
structures of flavonoids determined their wide-spectrum biological activities. In addition
to the traditional antioxidant, anti-radiation, radicals scavenging, anti-inflammatory, and
anti-tumor activities, flavonoids are also reported to possess remarkable antimicrobial
bioactivities [189]. They could effectively inhibit bacteria, viruses, and fungi, having good
therapeutic effects on infections caused by various pathogenic microorganisms, including
S. aureus, Bacillus subtilis, P. aeruginosa, E. coli, S. typhimurium, C. albicans, and Aspergillus
flavus. These compounds are not easy to produce drug resistance and have high clinical
therapeutic values. For example, oral candidiasis is one of the most common types of
oral mucosal infection caused by the yeast-like fungus Candida. The elderly and children
with low immunity are very susceptible to infection. Phloretin (Table 1) can inhibit the
pathogenicity and virulence factors of C. albicans both in vivo and in vitro, and is consid-
ered to be an effective candidate for the treatment of oral candidiasis [64]. Other flavonoids
such as apigenin (Table 1) and quercetin (Table 1) have been proven to have significant
antibacterial and antiviral activities [190,191]. Quercetin, when taken together with vitamin
C, is helpful to prevent and treat patients with early respiratory tract infections. According
to the report, when quercetin is used for phytotherapy, patients with mild COVID-19
symptoms have a shorter time to clear the virus [192]. Thus, the plant-originated flavonoids
can be used as an ideal natural source to explore novel antimicrobial agents [193].
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4.1. Structure–Activity Relationship Study on Antimicrobial Activity of Flavonoids

The antibacterial activity of flavonoids has attracted extensive attention from re-
searchers. Correspondingly, the relationship between the chemical structure and biolog-
ical activity has been discussed in depth. It was found that the antibacterial activity of
flavonoids was mainly related to the existence of hydroxyl groups on the aromatic skele-
tons of flavonoids and the types of substituents. In particular, flavonoids substituted by
hydrophobic groups, such as propenyl, acyl, alkyl amino chain, alkyl chain, and nitrogen-
containing or oxygen-containing heterocyclic groups, have been proven to have better
antibacterial potential [194]. Smejkal et al. [195] tested the antibacterial activities of eight
flavonoids isolated from Paulownia tomentosa towards S. aureus. The results showed that
hydroxylation at the C-5 position of ring A was very important to enhance the antibac-
terial activity of flavonoids. The in vitro antibacterial activities of a variety of chalcone
derivatives towards MSSA and MRSA were tested. The results showed that chalcones
with hydroxyl substitution at the 2 or 4 positions of the B ring had antibacterial activity.
However, the methylation of the active hydroxyl groups generally eliminated or weakened
its antibacterial activity [196]. Celiz et al. [52] found that acylated flavonoid derivatives
usually showed a high inhibitory effect on Gram-positive bacteria. For example, the activity
of hesperidin (Table 1) against S. aureus and L. monocytogenes can be greatly increased by
connecting the saturated fatty chain containing 10-12 carbon atoms to the ring of hesperidin.
Similar results were also obtained by Babu et al. [54]. They found that the introduction
of the acyl group at the C-7 position of oroxylin A (Table 1) can significantly enhance the
antibacterial activity. When the acyl group contains long-chain alkyl or phenyl, derivatives
of oroxylin A showed even stronger antibacterial activity. Moreover, the antibacterial
potential of nitrogen-containing flavone derivatives was also investigated. It was found
that the antibacterial activity of nitrogen-substituted apigenin derivatives was much higher
than that of apigenin [55].

4.2. Antibacterial Effects and Action Mechanisms of Flavonoid Antimicrobial Agents

The antimicrobial mechanism of flavonoids mainly includes the following aspects:
inhibiting the energy metabolism of bacteria, interfering with the cell wall of bacteria,
destroying the integrity of the cell membrane and increasing its permeability, inhibiting
bacterial efflux pumps, inhibiting the metabolism of bacterial nuclear acid, inhibiting bacte-
rial mobility, and reducing the expression of virulence factors to weaken the pathogenic-
ity [194]. Chinnam et al. [56] reported that flavonoids such as hesperidin, morin (Table 1),
and silymarin (Table 1) can inhibit the F1Fo ATPase activity of E. coli by binding to the
polyphenol binding bag of ATP synthase, thus inhibiting the energy metabolism of bacteria
and further exerting the bacteriostatic effect. Navarro-Martinez found for the first time
that the epigallocatechin gallate (Table 1) in green tea has strong antibacterial activity
against Stenotrophomonas maltophilia, mainly by inhibiting the dihydrofolate reductase of
S. maltophilia [57]. The flavonol compound quercetin could inhibit the growth of various
drug-resistant microorganisms. It can suppress the herpesvirus and poliovirus by inhibiting
viral polymerase and viral nucleic acid. The flavonol compound galangin (Table 1) could
directly destroy the plasma membrane or weaken the cell wall of S. aureus, which will lead
to osmotic lysis, thus resulting in a bacteriostatic effect [59]. Catechin (Table 1), a flavonoid
in green tea, could inhibit the bacterial DNA gyrase by binding to the ATP binding site
of the B subunit of the bacterial gyrase, the inactivation of which will cause the death of
the bacteria [60]. Studies have shown that bacteria can migrate on semi-solid surfaces in a
flagella-driven manner, and this coordinated movement form is considered to be related
to the antibiotic resistance of various human pathogens [197]. Pejin et al. [58] discussed
the antibacterial mechanism of catechin, caffeic acid, quercetin, and morin against P. aerug-
inosa PAO1. The results showed that quercetin could inhibit the formation of its biofilm
at 0.5 MIC concentration. P. aeruginosa biofilm formation also depends on the flagellum
(swimming motility) and type IV pili (twitching motility). Moreover, among the four
compounds tested, quercetin was the only one found to effectively reduce the convulsive
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movement of P. aeruginosa. Fathima et al. [61] used the Gram-positive bacteria B. subtilis
and Gram-negative bacteria E. coli as model organisms to prove that catechins play an
antibacterial role mainly by producing active oxygen to cause bacterial cell membrane
rupture. Wang et al. [65] reported that silybin (Table 1), a flavonoid compound, com-
bined with ciprofloxacin can improve the antibacterial efficiency by inhibiting the efflux
pump of MRSA. Liu et al. [64] established a mouse oral candidiasis model to explore the
inhibitory effect of phloretin on the pathogenicity of Candida albicans. The results show that
phloretin can eliminate virulence factors in vitro, such as inhibition of biofilm formation,
yeast-to-hyphae transition, and secretion of protease and phospholipase, in order to play
an inhibitory role.

4.3. Plant Type III Polyketide Synthase

The key enzyme involved in the biosynthesis of flavonoids in plants is type III polyke-
tide synthase (PKS), which not only is the key rate-limiting enzyme in the biosynthesis
and metabolism pathway of flavonoids but also determines the formation of the basic
molecular skeleton of these compounds. Plant type III PKS can repeatedly catalyze the
initiation, extension, and cyclization reactions to form polyketone products. At present,
nearly 30 plant PKSs genes with different functions have been successively explored and
verified in the biosynthetic pathway of various polyketides, such as chalcone syntheses
(CHS), benzophenone synthase (BPS), 2-pyrone syntheses (2-PS), pentaketide chromone
synthase (PCS), and benzalacetone synthase (BAS). Among them, CHS is involved in the
synthesis of all flavonoids of plant origin and has been deeply studied [198]. This enzyme
was first cloned from parsley. It could catalyze the three acetyl groups of malonyl CoA
to be connected to the molecule of 4-coumaroyl CoA through a continuous condensation
reaction, and then generate naringenin chalcone through Claisen-type cyclization reaction,
which is the critical intermediate for the biosynthesis of many flavonoid compounds [199],
and will be then converted to various flavonoid compounds by downstream tailoring en-
zymes such as chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavone synthase
(FNS), flavonol synthase (FLS), isoflavone synthase (IFS), and polyketide reductase [200]
(Figure 7). Since then, researchers have isolated hundreds of CHS genes from lily, rice,
corn, alfalfa, and other plants. The protein structure and catalysis mechanism of CHS have
also been elucidated [200]. In 1999, Ferrer and his colleagues reported the X-ray crystal
structure of Medicago sativa CHS2 at 1.56 Å resolution [201]. Through crystallography and
site-directed mutagenesis, it was clarified that the key amino acid residues that determined
CHS catalytic activities were Cys164, His303, and Asn336 [198]. During the formation of
flavonoids, Cys164 acts as a nucleophilic active site and an attachment site for intermedi-
ates, while His303 and Asn336 play an important role in the decarboxylation of malonyl
CoA. In addition to the key ternary amino acid residues, its internal active site also includes
a coenzyme, a binding tunnel, a promoter-substrate-binding pocket, and a cyclization
pocket. In recent years, with the elucidation of flavonoids’ biosynthetic metabolic pathway
and the development of synthetic biology, it is possible to obtain large-scale flavonoids
by building microbial cell factories. E. coli and S. cerevisiae are common microbial hosts.
Genetic engineering strategies such as optimization of culture conditions, modular co-
culture technology, and iterative high-throughput screening methods have been used in
the construction and improvement of the engineering strains to obtain high-yield target
compounds [202,203].
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derived flavonoid compounds. (C) Biosynthetic pathway of flavonoid antimicrobial agent baicalin.
CHS, chalcone syntheses; BPS, benzophenone synthase; 2-PS, 2-pyrone syntheses; PCS, pentaketide
chromone synthase; BAS, benzalacetone synthase; PAL, phenylalanine ammonia lyase; CH4, cinnamic
acid 4-hydroxylase; 4CL, 4-coumarin CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase;
IFS, isoflavone synthase; FNS, flavone synthase; F3H, flavanone 3-hydroxylase; DFR, dihydroflavonol
4-reductase; FLS, flavonol synthase; ANS, anthocyanidin synthase; LCR, leucoanthocyanidin reduc-
tase; SbCLL-7, cinnamate CoA ligase; SbCHS-2, pinocembrin chalcone synthase; SbFNS II-2, flavone
synthase; SbF6H, flavone 6 hydroxylase; UGAT, UDP-glucuronic acid transferase [188,204].
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4.4. Biosynthesis Investigations of the Antimicrobial Flavonoid Compound—Baicalin

Baicalin (Table 1) is one of the representative flavonoid antimicrobial agents isolated
from Scutellaria baicalensis. It has been applied as a natural antibacterial agent against
foodborne pathogens such as Salmonella and Staphylococcus spp. [62]. Moreover, this com-
pound also showed significant anti-HIV-1 activity as a nonnucleoside reverse transcriptase
inhibitor [205]. Meanwhile, it can prevent the entry of HIV-1 into animal cells by perturbing
the interaction between HIV-1 Env protein and HIV-1 co-receptors on the cell surface [206].
As one of the popular lead natural products from medicinal plants for preventing HIV
infection, the biosynthesis pathway of baicalin has been fully analyzed, as shown in
Figure 7 [188,204]. There are two different biosynthetic metabolic pathways existing in
S. baicalensis, namely, the aerial flavone part pathway and the root-specific flavone pathway.
Baicalein, the precursor of baicalin, is synthesized through the root-specific flavone pathway.
The reaction process is as follows: amino acid Phe was used as a biosynthesis precursor that
could generate cinnamic acid under the action of SbPAL. Subsequently, cinnamic acid forms
cinnamoyl CoA under the catalysis of cinnamate CoA ligase (SbCLL-7). Then, pinocembrin
chalcone synthase SbCHS-2 will catalyze cinnamoyl CoA to generate pinocembrin chalcone,
which will be further converted to dihydroflavone pinocembrin by SbChI. Next, pinocem-
brin could be catalyzed by flavone synthase (SbFNSII-2) to form chrysin, finally leading
to the production of baicalein under the catalysis of flavone 6-hydroxylase (SbF6H) [207].
As the 7-O-glucuronic acid product of baicalein, baicalin could be biosynthesized by UDP
glycosyltransferase (UGT) to transfer glucuronic acid to the 7-hydroxyl group of baicalein.
Pei et al. [208] identified the baicalin metabolic accumulation pattern and tissue-specific
expression patterns of a total of 124 UGTs in S. baicalensis. Combined with phylogenetic
analysis, four SbUGAT genes were screened out to be able to use UDP-glucuronic acid
as a sugar donor to catalyze the conversion of baicalein to baicalin. On the basis of the
illumination of the biosynthesis pathway, heterologous production of baicalin has been
successfully realized in both E. coli [209] and model plant Lycopersicon esculentum [210].

5. Conclusions and Perspective

Currently, plant-derived antimicrobial agents are still in the early stage of research.
The developed plants only account for a very small number of global plants. In addition, the
potential synergy or antagonism between plant compounds and antibiotics is still uncertain.
Moreover, there is no research showing the resistance of plant antimicrobial agents, so
whether there is resistance is unknown. Moreover, some plant compounds have not been
tested to prove their effectiveness and safety. Furthermore, studies on the mechanisms
of action, exploring the potential synergistic or antagonistic effects and improving the
bioavailability, stability, and physicochemical property of the candidate compounds, were
also very important before their clinic uses.

Terpenoids, alkaloids, and flavonoids made up the predominant part of the currently
reported phytochemicals with antimicrobial activities. Synthetic biology research around
these compounds is one of the hotspot fields in recent years. It can be seen that even
for artemisinin—one of the most famous antimalaria drugs with in-depth biosynthesis
investigation—its whole biosynthesis pathway still has several key enzymes to be discov-
ered, let alone many plant-originated compounds whose biosynthesis pathway is obscure.
Thus, a lot of challenges have remained in the investigations of plant-derived compounds.

In our opinion, one of the greatest challenges may be the discovery of genes because
normally functional genes in plants are not clustered. Although recently there are reports
that found that the co-expression of physically linked genes occurs frequently, it is still
very difficult to explore a new gene through gene cluster searching, especially considering
the limited number of plant species with the known whole-genome sequence. In addition,
plants usually have different organs and tissues, and the gene expression level could be
tissue specific, which makes the selection of the gene extraction material more complex.
Moreover, genes in plants often exist in homologs, and their expression could be different
and affected by multiple factors such as the environment, living position, temperature,
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and developmental stages. Currently, the frequently used method for gene discovery in
plants is homology-based cloning. However, it is hard to realize in those enzymes with new
functions or that do not have enough known templates. With the rapid development of
sequencing and transcriptomic advances, enzymes can be discovered by the ‘omics’ tools,
such as genomics, transcriptomics, proteomics, and metabolomics. By comparing transcrip-
tome, proteome, and metabolome data from different conditions, candidate genes could
be selected and subsequently tested for their putative activity—this approach has been
successfully used in the discovery of a large number of unknown genes in phytochemical
substances’ biosynthesis pathways.

The other important field that synthetic biology focuses on is the biosynthetic path-
ways reconstructing and optimizing the production of secondary metabolites. Recent plant
genome editing/engineering methods such as transcription activator-like effector nucleases
(TALENS), zinc-finger nucleases (ZFNs), and CRISPR-Cas open new avenues for ration
design of the biosynthesis pathway. Using these approaches, genes of interest could be
constructed in a highly effective way; meanwhile, the side pathways could be eliminated to
a large extent. The targeted antimicrobial or resistance–reversal agents could be produced
in the transgenic microorganisms or plants, which have had great success in the production
of artemisinin [91], as well as other valuable compounds such as vinblastine [211,212],
etoposide aglycone [213], vindoline, and catharanthine [212]. Lastly, with the continu-
ous discovery of new phytochemicals, deep clarification of pharmacological mechanisms,
and comprehensive understanding of specific biosynthesis pathways, plant-derived natu-
ral products will become increasingly more useful therapeutic antimicrobial candidates
in the future.
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