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Abstract. Submillimeter-Wave Limb-Emission Sounder-2 (SMILES-2) is a satellite mission proposed in Japan to probe the

middle and upper-atmosphere (20–160 km). The main instrument is composed of 4-K cooled radiometers operating near 0.7

and 2 THz. It could measure the diurnal changes of the horizontal wind above 30 km, temperature above 20 km, ground-state

atomic oxygen above 90 km, atmospheric density near the mesopause, as well as abundance of about 15 chemical species. In

this study we have conducted simulations to assess the wind, temperature and density retrieval performance in the mesosphere5

and lower thermosphere (60–110 km) using the radiometer at 760 GHz. It contains lines of water vapor (H2O), molecular

oxygen (O2) and nitric oxide (NO) that are the strongest signals measured with SMILES-2 at these altitudes. The Zeeman effect

on the O2 line due to the geomagnetic field (B) is considered, otherwise, the retrieval errors would be underestimated by a

factor of 2 above 90 km. The optimal configuration for the radiometer’s polarization is found to be vertical linear. Considering

a retrieval vertical resolution of 2.5 km, the line-of-sight wind is retrieved with a precision of 2–5 m s−1 up to 90 km and10

30 m s−1 at 110 km. Temperature and atmospheric density are retrieved with a precision better than 5 K and 7% up to 90 km

(30 K and 20% at 110 km). Errors induced by uncertainties on the vectorB are mitigated by retrieving it. The retrieval ofB is

described as a side-product of the mission. At high-latitudes, precisions of 30–100 nT on the vertical component and 100–300

nT on the horizontal one could be obtained at 85 and 105 km (vertical resolution of 20 km). SMILES-2 could therefore provide

the first measurements ofB close to the electrojets’ altitude, and the precision is enough to measure variations induced by solar15

storms in the auroral regions.
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1 Introduction

The mesosphere and lower thermosphere (MLT) is a transitional region (60–110 km) between atmospheric layers with very

different characteristics, namely the stratosphere (15–60 km) and the thermosphere (90–400 km) (Smith, 2012; Shiotani et al.,

2019). In the stratosphere, O3 controls the chemical and radiative processes, hence it also regulates the temperature and the20

dynamics. In the thermosphere, the chemistry and the radiative balance are mainly controlled by the oxygen atoms. In this

region, wind and temperature exhibit large diurnal variations and are strongly influenced by tides generated in the lower

atmosphere. The thermosphere is also the region of interactions between the ionized (plasma) and neutral atmosphere.

The mean physical characteristics of the MLT (wind, temperature and density) are primarily established by energy transfered

from the troposphere via small-scale gravity waves (GWs) (Fritts and Alexander, 2003; Tsuda, 2014). Hence, the MLT state25

deviates significantly from the radiative equilibrium as illustrated by the occurrence of the coldest point of the Earth system

(≈ 150 K) in the summer polar mesopause. Waves with planetary scales also contribute to the upper atmosphere climate

(general circulation) through their momentum and energy transport/deposition (Forbes et al., 2006; Pancheva and Mukhtarov,

2011). In particular, tides that are mainly driven by diurnally varying diabatic heating in the troposphere and the stratosphere,

propagate upward, with their amplitude reaching a maximum in the MLT (Chapman and Lindzen, 1970; Sakazaki et al., 2015).30

Hence, the MLT plays a key role in connecting the lower and upper atmosphere and also in linking both hemispheres (Xu

et al., 2009; Karlsson and Becker, 2016). Furthermore, the increase of anthropogenic CO2 is responsible for a cooling of

1–3 K/decade in the MLT that has been measured since the early 1990s (Beig, 2011).

The processes behind these phenomena are still not well quantified. The difficulty arises from the non-linear interactions

between the GWs, tides, planetary waves, the background wind and the electromagnetic field (Sato et al., 2018; Immel et al.,35

2006). The system is further complicated by the interconnections between the dynamics and highly variable chemical species,

as well as the very different temporal and spatial scales of these processes. Observations of the MLT, in particular of wind,

temperature and density, are therefore essential to further our understanding of this region (Smith, 2012).

Continuous measurements of temperature and wind are performed from ground-based stations using lidars (Steinbrecht

et al., 2009; Baumgarten, 2010), radars (Jacobi et al., 2015; Tsutsumi et al., 2017) and, up to 70 km, with millimeter radiome-40

ters (Rüfenacht et al., 2014). Density was recently monitored using meteor radars (Yi et al., 2018) but measurements remain

scarce. Satellite observations of the MLT have also been performed for several decades. The missions currently in operation

and capable of measuring at these altitudes are listed in Tab. 1. Temperature is measured with various techniques and spectral

domains (Schwartz et al., 2006; Sica et al., 2008; Sheese et al., 2010; Christensen et al., 2015; Eastes et al., 2017; Englert et al.,

2017), but discrepancies larger than 10 K can be found between these measurements above 80 km (García-Comas et al., 2014).45

Baron et al. (2013) and Shepherd (2015) described the past and current wind measurements from space. Currently only TIDI

and MLS (and soon MIGHTI) are capable of measuring MLT winds but with a poor sensitivity below 80 km (Niciejewski

et al., 2006; Wu et al., 2008; Englert et al., 2017), and MLS, which is equipped with a single antenna, can only measure one

component of the wind vector (it was not designed for wind measurement).
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Table 1. Current and future satellites and instruments capable of measuring the MLT (60–110 km).

Satellites in operation Launch year

Odin 2001

Thermosphere Ionosphere Mesosphere Energetics and Dynamics, TIMED 2001

Atmospheric Chemistry Experiment, ACE 2004

Aura 2004

Ionospheric Connection Explorer, ICON Second quarter of 2019

Instruments Main products

Sub-Millimeter limb sounder, SMR (Odin) T, H2O,NO

Optical Spectrograph and InfraRed Imaging System, OSIRIS (Odin) T, airglow

Sounding of the Atmosphere using Broadband Emission Radiometry, SABER (TIMED) T, O

TIMED Doppler Interferometer, TIDI (TIMED) W, T, airglow

Microwave Limb Sounder, MLS (Aura) T, (W) ; < 90 km

Michelson Interferometer for Global High-resolution Thermospheric Imaging, MIGHTI (ICON) W, T, airglow ; > 90 km

Planned missions

Mesospheric Airglow/Aerosol Tomography Spectroscopy, MATS (Innosat), 2019 GWs,T,NLC ; 90–100 km

Stratospheric Inferred Winds, SIW (Innosat), 2023 W, T ; < 80 km

W, T and NLC denote wind, temperature, and noctilucent cloud.

In the future, we clearly risk a lack of satellite observations since all the current missions (except ICON) have already50

exceeded their theoretical lifetime. Sweden is preparing two Innosat-based missions that are of interest for the study of the

MLT (Tab. 1). The MATS mission aims at characterizing the 3D structure of the GWs near 90–100 km using the oxygen

A-band emission and the ultraviolet light scattered by noctilucent clouds (Gumbel et al., 2018). Information on temperature

will also be retrieved. The other mission is SIW, a sub-millimeter limb sounder that will measure horizontal wind, temperature

and trace gases up to about 80 km (Baron et al., 2018). The MATS and SIW missions will be operational for 2 years between55

2019–2021 and 2023–2025, respectively. Other projects have not been selected yet and remain uncertain. For example, Wu

et al. (2016) proposed a THz limb sounder (TLS) to measure the atomic oxygen line at 2 THz. Such an instrument could fly

together with a new version of SABER (Mlynczak and Yee, 2017). The European Space Agency (ESA) is studying a limb

sounder operating between 0.8–4 THz for the retrieval of the abundance of chemical species such as atomic oxygen (O) or the

hydroxyl radical (OH) (Gerber et al., 2013). TALIS, a limb sounder using similar spectral bands as Aura MLS, is being studied60

in China (Wang et al., 2019). Kaufmann et al. (2018) described a concept for a limb sounder onboard a cubeSat to measure

temperature with high horizontal resolution using the molecular oxygen (O2) A-band infra-red emission.

Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2) is a middle and upper atmospheric satellite

mission proposed to the Japan Aerospace Exploration Agency (JAXA) (Ochiai et al., 2017, 2019; Shiotani et al., 2019). If

selected, it will be launched around 2026 on a JAXA M-class satellite. The objectives are to provide geophysical information65
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with unprecedented precision and altitude coverage such as the temperature between 15–160 km, horizontal wind between

30–160 km, atmospheric density up to 110 km, ground state of atomic oxygen between 90–160 km and more than 15 trace

gases’ abundance (Baron et al., 2019a, b). The proposed satellite will be equipped with two antennas for the limb measure-

ment of horizontal winds, and three radiometers near 0.7 and 2 THz cooled at 4 K, a technology successfully tested with

JEM/SMILES (Kikuchi et al., 2010). With a precessing orbit and the high receiver precision, it will be possible to retrieve70

diurnal variations of very weak signals as demonstrated with JEM/SMILES (Sakazaki et al., 2013; Khosravi et al., 2013).

In this study we discuss the potential for SMILES-2 to measure the main characteristics of the neutral MLT, namely wind,

temperature and atmospheric density. An essential source of information is the O2 transition at 773.8 GHz. As a magnetic

dipole, O2 is subject to the Zeeman effect induced by the Earth’s magnetic field (B). Special care is taken to properly include

this effect in the simulations in order to correctly assess the measurement performance. Retrieval errors induced by uncertainties75

onB are mitigated by retrieving its three components simultaneously with other atmospheric parameters. The scientific interest

of the retrieval of B is also discussed. In Sect. 2, the characteristics and principle of the observations are presented in details.

Sections 3 and 4 describe the Zeeman model and the retrieval setting, respectively. The retrieval errors are discussed in Sect. 5.

Finally, we summarize the results and discuss future analysis for SMILES-2.

2 Measurement principle80

2.1 Observation method

The observation characteristics are summarized in Table 2. The atmospheric limb is scanned from about 20 to 180 km. Scans

are performed alternatively with two antennas looking at perpendicular directions to each other. Both antennas can probe the

same atmospheric column with a 7 min delay (Fig. 1), allowing us to derive the 2D horizontal winds. The same method will

be used for SIW and more information is given in Baron et al. (2018). The limb geometry provides a high vertical resolution85

of 2–3 km, and the zonal and meridional samplings at the equator are about 20◦ (2200 km) and 6◦ (650 km), respectively.

The orbit precesses with a period of about 3 months. The satellite orientation is reversed after every half precession cycle in

order to keep the solar panels properly illuminated and the radiative-cooling panels in the shadow side. The latitude coverage

is between 50◦S–80◦N or 80 ◦S–50 ◦N depending on the satellite orientation. At low and mid latitudes, the same latitude is

observed twice per orbit, with LT differences close to 12 hours. Hence, gathering the observations between each maneuver90

allows us to piece together the complete diurnal cycle of the retrieved parameters.

2.2 Spectral bands

Three spectral bands near 638 GHz, 763 GHz and 2 THz are measured simultaneously (Ochiai et al., 2018). The band at

638 GHz contains a strong stratospheric and lower mesospheric signal from ozone (O3). This band is the same as that selected

for SIW and its main characteristics are described in Baron et al. (2018). Two THz bands are measured alternatively, one95
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Table 2. SMILES2 observation characteristics.

Satellite altitude 550 km

Latitude range 50◦S–80◦N or

80 ◦S–50 ◦N

Scan altitude 20–200 km (4.27 ◦)

Scan velocity 0.1 ◦ s−1 (43 s/scan∗)

Spectrum integration time 0.25 s (1.1 km at 80 km∗∗)

Antenna diameter 75 cm

Frequency⇔ velocity at 760 GHz 1 m s−1⇔ 2.5 kHz

∗Calibration measurements will be performed over the upper-range.
∗∗ Tangent point vertical displacement during the integration time.

contains OH lines and the second one an O line (Ochiai et al., 2017; Baron et al., 2019a). The O line is used to retrieve

between 90–160 km, the abundance of O in its ground-state, wind and temperature (Baron et al., 2015, 2019b).

Table 3. The 763-GHz spectral band.

Local oscillator Lower sideband Upper sideband DSB Tsys Vertical

(GHz) (GHz) (GHz) Resolution resolution

763.5 750.0–756.0 771.0–777.0 180 K 0.0366 ◦

H2O at 752 GHz O2 at 773 GHz 0.5 MHz 1.9 km∗

∗ Estimated for a tangent height of 80 km including the antenna FOV and the scan velocity.

The 763-GHz band (Table 3) is the band considered in this study. It contains lines of water vapor (H2O) at 752.03 GHz

and O2 at 773.84 GHz (Fig. 2) that provide a strong signal in the MLT. It also contains other molecular lines, weaker but still

suitable for our study: nitric oxide (NO, 751.67–752.00 GHz and 773.02–773.05 GHz), O3 (754.46 GHz and 776.66 GHz)100

and carbon monoxide isotopologue (13CO) at 771.183 GHz. The bands have changed compared to those originally described

by Ochiai et al. (2017), a change motivated to reduce the power consumption. In the new setting, the CO line is about 50 times

weaker than that previously selected.

2.3 Qualitative description of the information content

Most of the lines in the spectral bands are emitted by chemical species in their ground state under local thermodynamic105

equilibrium. The molecular abundance and the temperature are retrieved from the amplitude of the lines. Their Doppler shift
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Figure 1. SMILES-2 orbit over the northern hemisphere. The red and purple lines show the forward and aftward line-of-sights (LOSs). The

circles show the tangent-point footprints (Ochiai et al., 2017).

Figure 2. (a) Spectra at the Equator in daytime for tangent heights of 50, 70 and 90 km. The x-coordinates are the intermediate frequency

(IF). The yellow dashed lines indicate the noise standard deviation (2-σ). The gray area shows the frequency range of 200 MHz in which the

Zeeman radiative transfer model is used (only for the upper-side band). (b) Same as (a) but for 80◦N and nighttime winter conditions. The

red labels indicate molecular lines in the upper-side band. The LO frequency is 763.5 GHz.

(2.5 kHz for 1 m s−1) is used to retrieve the line-of-sight (LOS) wind. The atmospheric density is derived from the O2

abundance considering that the volume mixing ratio of O2 is well known below 110 km (Schwartz et al., 2006).

Above about 70 km, the lines are broadened by the random molecular motions, i.e., Doppler broadening, and they do not

carry direct information on the pressure (Appendix A). Consequently, the density of the molecule can be retrieved and not the110

volume-mixing ratio (VMR) as in the lower altitudes.
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Figure 3. Left panel: Energy levels of the O2 transitions measured with MLS at 119 GHz (Schwartz et al., 2006), SMR at 487 GHz (Larsson

et al., 2014) and SMILES-2. The degenerated energy levels (M=−J . . .J) are indicated with black horizontal strokes. Right panel: Strength

and polarization of the Zeeman components of the line chosen for SMILES-2. The components’ frequency is computed for a magnetic field

of 60 µT (0.6 Gs). The representation of the polarization states is adapted from Fig. 3.1 in Landi Degl’Innocenti and Landolfi (2004). The

dashed-lines represent perpendicular and parallel LOSs with respect to B (gray thick arrow).

Molecular oxygen is a magnetic dipole that interacts with B. It is subject to the Zeeman effect (Lenoir, 1968) and the

selected spectroscopic transition is split into σ± and π components with different polarization states depending on the LOS

orientation (Fig. 3). The frequency separation of the spectral components is proportional to the amplitude ofB.

2.4 LOS altitude115

In this study, we consider LOS tangent heights between 60 and 110 km. They are provided as input for the inversion algorithm,

therefore they must be known before inverting the spectra. Height registration for a complete scan is calculated differently in

the lower part of the scan and in the range of interest (between ∼20–60 km and 60–110 km, respectively).

Between 20 and 60 km, an approach similar to that used for Aura MLS (Schwartz et al., 2006) can be used. The LOS tangent

pressure and atmospheric temperature would be retrieved simultaneously from the O2 line near 763 GHz and from O3 lines120

in the 638 GHz band. The height of the pressure levels would then be derived from the hydrostatic equilibrium equation. The

resulting precisions are estimated to be better than 1% and 75 m for the LOS tangent pressure and height, respectively (Baron

et al., 2019b).

In the altitude range of interest (> 60 km), the LOS tangent heights are inferred from the extrapolation of those calculated

previously for the lower altitudes and attitude data from the star-trackers and GPS onboard the satellite. Based on JEM/SMILES125

results, the expected precision on the retrieved LOS tangent heights will be 100 m or better (Ochiai et al., 2013).
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3 Zeeman effect modeling

The Zeeman effect on atmospheric molecular-oxygen lines has been extensively studied (Lenoir, 1968; Pardo et al., 1995;

Schwartz et al., 2006; Larsson et al., 2014; Navas-Guzmán et al., 2015). In this study, we describe the polarized radiance with

Stokes vectors as in Landi Degl’Innocenti and Landolfi (2004) (e.g., Eq. 1.32), Larsson et al. (2014) and Steiner et al. (2016).130

The magnetic field characteristics (amplitude and orientation angles with respect to the LOS) are defined at the LOS tangent

height (Fig. 4) and are assumed constant over the LOS. This approximation is the same as that used by Yee et al. (2017) and it

is justified since most of the retrieved information comes from a thin altitude range around the tangent point.

3.1 Absorption matrix

The interaction between the radiation and the atmosphere are described by the 4x4 absorption matrixK:135

K = ka I + Ko (1)

where I is the identity matrix, ka is the scalar absorption coefficient andKo is a matrix with off-diagonal components:

Ko =


0 q u v

q 0 v′ −u′

u −v′ 0 q′

v u′ −q′ 0

 (2)

The scalar absorption coefficient is computed using a line-by-line model and the Zeeman effect is only applied on the O2

transition:140

ka(ν,z) =
∑
M,t nM (z)St(z)F (ν,νt,ΓM,z) + (3)

nO2(z)Sx(z)
2

(
sin2(θ)

∑
π [sπF (ν,νπ,ΓO2,z) ] +

(
1 + cos2(θ)

)∑
σ+,σ−

[
sσ
2 F (ν,νσ,ΓO2,z)

])
where ν is the frequency, z the altitude, t denotes a spectroscopic transition of the species M that is not affected by the

geomagnetic field, nM (nO2) is the number density of M (O2), St is the line strength, F is the Voigt function (Schreier

et al., 2014; Larsson et al., 2014) and Γt,z represents the parameters related to the linewidth (Appendix A). The angle θ is the145

inclination angle of the magnetic field with respect to the LOS (Fig. 4, left panel).

The frequencies νσ,π (Hz) are those of the Zeeman components (Fig. 3). They are dependent on the magnetic field (Larsson

et al., 2014):

νσ,π =−µb
hp
|B|gsβm = 2.80209 · 1010 |B|βm (4)

where gs = 2.002064, µb is the Bohr magneton (9.27401 ·10−24 J T−1), hp is the Planck constant (6.62618 ·10−34 m2 kg s−1)150

and

βm =

(
Ju(Ju + 1) +S(S+ 1)−Nu(Nu + 1)

2(Ju + 1)Ju
mu−

Jl(Jl + 1) +S(S+ 1)−Nl(Nl + 1)

2(Jl + 1)Jl
ml

)
. (5)
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Figure 4. Left panel: Cartesian and spherical frames used for the radiative transfer calculation. The x- and z-axis are along the vertical axis

(W) and the LOS, respectively. Right panel: Frame for describing the observation of the same air mass from the forward (ANT1) and aftward

(ANT2) antennas. The background geomagnetic field (B) is at first approximation in the meridional plane.

Table 4. Zeeman transitions characteristics for the O2 line at 773.84 GHz (J : 4→ 4 and S = 1). The relative strengths are normalized such

as
∑
sπ =

∑
sσ+ =

∑
sσ− = 1 (Tab. 3.1 in Landi Degl’Innocenti and Landolfi (2004)). The frequency shift factors βm are from Eq. 5.

mu−ml ml sπ,σ βm

π {−4 . . .4} m2
l

60
9
20
ml

σ+ {−4 . . .3} 20−ml (ml+1)
120

(
9
20
ml− 1

5

)
σ− {−3 . . .4} 20−ml (ml−1)

120

(
9
20
ml + 1

5

)

where the lower scripts u and l denote the upper and lower levels of the transition, respectively, N , J , S and m are quantum

numbers associated with the angular momentum, the spin, the total momemtum N +S and the projection of J on the B axis.

The coefficients ofKo are derived from Landi Degl’Innocenti and Landolfi (2004) (Eq. 5.36):155

q =
sin2(θ)cos(2φ)

2

( ∑
π [sπF (ν,νπ,Γx,z) ] −

∑
σ±

[
sσ
2 F (ν,νσ,ΓO2,z)

] )
u=

sin2(θ)sin(2φ)

2

( ∑
π [sπF (ν,νπ,Γx,z) ] −

∑
σ±

[
sσ
2 F (ν,νσ,ΓO2,z)

] )
(6)

v = cos(θ)

( ∑
σ± ± sσ±

2 F (ν,νσ± ,ΓO2,z)

)
The parameters u′,v′ and q′ are computed by replacing the term F with F ′, the dispersive part of the complex Voigt function

(See Appendix A and (Schreier et al., 2014)).160
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3.2 Radiative transfer

The LOS is divided in narrow ranges of size ds (typically 5 km long) in which the atmospheric parameters are considered

constant. The change of the polarized radiance passing through an homogeneous range is derived from a matrix equation

which is similar to the scalar radiative transfer one used for a non-polarized radiation (Semel and López, 1999):

ba(s+ ds) =
(
I −Λ(s,s+ ds)

)
· bp(s) + Λ(s,s+ ds) · ba(s), (7)165

where ba(s) is the Stokes vector at the position s on the LOS (the frequency dependence is omitted), "·" is the matrix multipli-

cation operator, bp(s) = [P (s),0,0,0]T describes the non-polarized source function between s and s+ ds, P (s) is the Planck

function, and Λ(s,s+ ds) is 4× 4 evolution operator matrix defined as:

Λ(s,s+ ds) = exp(−K(s)ds). (8)

The integration over the LOS is performed by applying the scalar equation given by Urban et al. (2004) to Stokes parameters:170

ba(sat) =

N−1∑
i=0

Λ(i+ 1,sat) ·
(
I −Λ(0, i+ 1) ·Λ(0, i+ 1)

)
·
(
bp(i)− bp(i+ 1)

)
(9)

+
(
I −Λ(0,sat) ·Λ(0,sat)

)
· bp(N)

where ba(sat) is the Stokes vector representing the radiation state at the antenna position, i is the index of the level at si (i= 0

for the tangent point) and N is the number of levels above the tangent point. The cosmic background radiation is neglected.

We use the relationship Λ(i, j) = Λ(k,j) ·Λ(i,k) with i < k < j (the two matrices on the right-side of the equality do not175

commute).

4 Measurement and retrieval setting

4.1 Measured radiance

The measured radiance for antenna a (a=1 or 2) at the elevation angle θ and the IF ν is:

yaθ,ν =
1

2

(
Ru
θ,ν ~y

a,u(νLO + ν) + Rl
θ,ν ~y

a,l(νLO − ν)
)
, (10)180

where ya,u and ya,l are the atmospheric specific intensities in the upper and lower sidebands around the local oscillator

frequency νLO, Rθ,ν represents the antenna and spectrometer functions and ~ is the convolution operator (Baron et al.,

2018). A simple case with a constant upper and lower sideband ratio is considered. The Zeeman model is only used within a

bandwidth of 200 MHz encompassing the O2 line (upper sideband). Outside this range, the non polarized radiative transfer

model described in Baron et al. (2018) is used. In order to transform the Stokes vector (Eq. 9) to the specific intensity associated185

with the radiometer’s polarization, we first rotate the vector from the atmospheric frame to the detector frame as:

bd = Mr(αd) · ba, (11)
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Figure 5. Upper panels: O2 lines simulated for antenna-1 (blue) and antenna-2 (yellow) at 80◦N over the ascending orbit. Panels from left

to right show the results for a detector with horizontal, +45◦, vertical, -45◦ and right-circular polarization. The dashed and full yellow thin

lines are spectra calculated with an angular tilt of the antenna-2 detector of -20◦ and +20◦. The black dashed lines are the measurement noise

STD×10 for antenna-1. Lower panels: Same as upper panels but for Equator.

where bd is the Stokes vector in the instrument frame andMr(αd) is the Mueller matrix for a rotation αd:

Mr(αd) =


1 0 0 0

0 cos(2αd) sin(2αd) 0

0 −sin(2αd) cos(2αd) 0

0 0 0 1

 (12)

The specific intensity y corresponding to the detector polarization is190

y = bd[1] + m bd[n], (13)

where bd[n] is the nth component of the Stokes vector and (m,n) is (−1,1), (1,1), (−1,2), (1,2), (−1,3) and (1,3) for

horizontal, vertical, +45◦, −45◦, right and left circular polarizations, respectively.

Figure 5 shows simulated spectra of the O2 line over the equator and at 80 ◦N when the satellite is moving toward north

(ascending orbit branch). The tangent height is 100 km and the atmospheric conditions are representative of the northern195

hemisphere in wintertime (Baron et al., 2018). The magnetic field characteristics are zonal means inferred from a quiet solar

day (Fig. 6). Spectra are shown for different radiometer’s polarizations. Over the equator, B is along the meridional direc-

tion and clear differences are seen between the radiances measured with both antennas, except if the detector has a vertical

polarization. In that case, the radiometer detects only the σ± lines independently of the LOS orientation. The antenna-1 spec-

trum measured with a radiometer with a horizontal polarization is sensitive to the π components which gives the visible200
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Figure 6. Magnetic field (θ1,2, φ1,2,|B| and Φb) and LOSs (Φ1,2) parameters (Fig. 4) with respect to latitudes. The blue (yellow) lines are

for ANT1 (ANT2) data. The circle-dashed (square-full) lines are data on the descending (ascending) orbit branch. The gray arrows in panels

2 and 5 indicate the direction of the satellite motion.

double line shape. A receiver with a right-circular polarization measures mainly the σ+ components since the antenna-1 is

nearly aligned with the magnetic field (θ1 = 20◦ in Fig. 6). The spectrum looks like a single line with a frequency shift of

∆ν ≈ 420 (βm=−1 +βm=0) = −21 kHz (Eq. 4), equivalent to a LOS wind of 8 m s−1.

Over the polar region, the spectra measured by both antennas are very similar since the vector B is almost vertical and

perpendicular to both LOSs (Fig. 6). Only the Zeeman components π are detected with the receiver with vertical polarization205

while the horizontally polarized one detects σ± components (Fig. 3).

4.2 Retrieval setting

The geomagnetic field may exhibit rapid temporal and spatial variations that can be as large as hundreds nT (Doumbia et al.,

2007; Yee et al., 2017). Such variations will be difficult to take into account when processing the data and may lead to retrieval

errors with the same magnitude as those induced by the measurement noise.210

Such errors are mitigated by retrieving the three components of B simultaneously with other atmospheric parameters. It is

done by using the scans of the same atmospheric column measured with the two antennas (Fig. 4). The measurement vector y

is defined accordingly as:

yT = [ ya1 , ya2 ] , (14)

where the superscripts a1 and a2 denote that the parameters are associated with the antennas 1 and 2, respectively. The vector215

x describing the retrieved parameters contains the profiles of the chemical species having the most significant features in the

MLT spectra, namely O2, H2O, O3, NO and HDO (Fig. 2). It also includes the profiles of temperature T, LOS winds (LW)
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and the three components ofB. It is defined as:

xT = [ xa1

O2, · · · , x
a1
T , xa1

LW,

xa2

O2, · · · , x
a2
T , xa2

LW, (15)220

xBw, xBu, xBv ] ,

where xBw, xBu, and xBv are the profiles of the vertical, zonal and meridional components of B. The abundance and temper-

ature profiles are retrieved for each antenna in order to account for differences between both scan locations. This is a similar

approach as that used by Hagen et al. (2018) for the measurement of winds with the ground-based radiometer WIRA.

The retrieval error induced by the measurement noise is (Rodgers, 2000)225

ε2
n = diag

{(
KT S−1

y K + U−1
)−1
}
, (16)

whereK = dy
dx is the Jacobian matrix of the retrieved parameters x andU is a diagonal matrix to ensure a stable inversion but

with values large enough to allow us to neglect its effects in the altitude range where the retrievals are relevant (Baron et al.,

2018). The matrix Sy is the diagonal covariance matrix associated with the measurement noise:

Syi,i =
(Tsys + yi)

2

δν δt
, (17)230

and Syi,i is the noise induced variance on the ith component of the measurement vector y, Tsys is the system temperature

(Tab. 3), δν the frequency resolution (0.5 MHz) and δt the spectrum integration time (0.25 s).

The radiative transfer model computes the Jacobian KB = ∂yai/∂xB with respect to antenna-i frame ({xi,yi,zi} in left

panel of Fig. 4). The matrixKB is then computed in the atmospheric frame (Fig. 4):

∂yai

∂Bq
=

∑
k={xi,yi,zi}

∂yai

∂Bk

∂Bk

∂Bq
, (18)235

where q = {u,v,w} denote the atmospheric frame axes, and

Bxi = Bw (19)

Byi = cos(Φi)Bu + sin(Φi)Bv

Bzi = −sin(Φi)Bu + cos(Φi)Bv

where Φi is the angle between the antenna-i LOS and the meridional direction (left panel of Fig. 4).240

5 Retrieval errors

Figure 8 shows the retrieval errors on the atmospheric density, temperature, LOS wind and the main chemical species at three

latitudes (50◦S, Equator, 80◦N). For the instrumental setting, we considered a radiometer with a linear vertical polarization

and the forward-looking antenna (antenna-1). The vertical resolution of the retrieved profiles is 2.5 km for the main parameters

(temperature, LOS wind, H2O and O3), 5 km for NO, and 20 km for the components ofB. Errors are computed for the same245
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Figure 7. Vertical profiles of atmospheric number density, temperature and VMRs of O2, H2O, O3, and NO. They are representative of a

northern hemisphere winter period (DJF), daytime at 50◦S and Equator (dashed-grey and red lines, respectively), and polar night at 80◦N

(blue lines).

winter (DJF) climatology described in the previous section. The corresponding atmospheric state includes a stable polar vortex,

and does not show any NO enhancement due to energetic particle precipitation. The results at the Equator and the southern

hemisphere (SH) mid-latitudes (50◦S) are for daytime conditions, while the northern hemisphere (NH) results at 80◦N are

representative of the polar night. We did not find significant differences between daytime and nighttime except for the relative

error on O3 retrieval, which is photo-dissociated between 60–80 km.250

The results for the full band are compared with those computed for the inversion of a 200 MHz band containing only the

O2 line. The purpose is to isolate and characterize the contribution of the H2O, O3 and NO spectral lines to the retrieval of

MLT parameters, in terms of altitude range and impact on the retrieval errors. Latitudinal differences are induced by the mean

meridional circulation (from the summer pole to the winter pole). In the winter hemisphere, it is responsible for an increase

of NO and a decrease of H2O, especially over the polar region. The largest sensitivity to NO is found in the upper part of the255

MLT. The precision is better than 10% above 95 km at 50◦S and above 78 km over the winter polar region (NH in this study).

A precision of 10% or better is achieved above 95 km at 50◦S and 78 km in the winter polar region. The sensitivity to H2O

decreases with increasing altitude, more sharply above 90 km. The precision is better than 1% up to 75 km in the SH and

65 km in the NH polar region.

The relative error on O3 retrieval is ∼1% around 60 km and strongly increases with increasing altitude and outside of the260

polar night, because of the daytime photo-dissociation of O3.

5.1 Atmospheric density, temperature and LOS wind

The achieved precision of the atmospheric density (or O2) profile is better than 5% up to about 95 km at all latitudes. Above

90 km, the signal intensity drops significantly and errors quickly increase, up to 20% at 110 km. Outside of the 70–90 km
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Figure 8. Errors on atmospheric density, temperature, LOS wind, H2O, O3 and NO profiles. Only errors induced by the measurement noise

are shown, for profiles retrieved from the antenna-1 signal using a radiometer with linear vertical polarization. The pink and blue curves

show the results for the 200 MHz narrow band around the O2 line and for the full bandwidth, respectively. Upper panel: results at 80◦N

(polar night). Middle and lower panels: results for daytime conditions at the Equator (middle) and 50◦S (bottom). The vertical resolution for

the retrievals is set to 2.5 km for all profiles, except for NO for which 5 km is used.
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range, there are significant differences between the error profiles calculated for the full- and narrow-band inversions. This265

shows that spectral lines from other molecular species also have an impact on the O2 retrievals. This impact probably occurs

through the temperature retrieval. For instance, over the winter polar region, the strong NO signal significantly improves the

temperature retrievals, thus indirectly improves the O2 abundance retrieval. Similarly, including H2O and O3 lines leads to an

improvement of the O2 retrieval quality below 70 km.

For all latitudes, the temperature retrieval error is better than 5 K below 90 km and 30 K at 110 km. The O2 line is the main270

source of information on the temperature near 90 km.

The LOS wind, a key product for SMILES-2, is retrieved with a precision of 2–4 m s−1 up to 90 km. Above this altitude,

the retrieval errors strongly increase, up to 20 m s−1 or more at 110 km. The O2 line is the main source of information on the

LOS wind above 70 km. Over the polar region and above 100 km, spectral lines of NO contribute significantly to the LOS

wind retrievals.275

Figures 9 and 10 show the achieved retrieval precisions for temperature and LOS wind, at altitudes between 80 and 110 km

and for different polarization settings. Results are shown within the latitude range 50◦S–80◦N, for both antennas and for both

the ascending and descending orbit branches. The results obtained withB = 0 are also presented.

For atmospheric temperature and below 90 km, the Zeeman effect has a negligible impact on the retrieval errors. Differences

can be seen only at high latitudes, where the decrease of the H2O abundance explains the larger impact of the O2 line on the280

retrieval. In terms of LOS wind retrieval, the Zeeman effect is negligible below 80 km. Above 90 km, the approximationB = 0

leads to a significant underestimation of the retrieval errors, with differences of up to a factor of 2. This clearly shows that the

retrieval errors depend on the radiometer polarization, the LOS orientation and on the characteristics of the magnetic field.

Best overall precision is found for a radiometer with a linear vertical polarization. For instance, at NH high latitudes, the

LOS wind retrieval error at 99 km is 6 m s−1 using a linear vertical polarization, but degrades to about 10 m s−1 for other285

polarization settings. Furthermore, using the linear vertical polarization yields homogeneous results for different observation

geometries: we could not find significant differences between ascending and descending orbits or between the two antennas.

5.2 Geomagnetic field

Figure 11 shows the retrieval errors on the three components of B at 85 km and 105 km (vertical resolution of 20 km). The

results strongly depend on the radiometer’s polarization. Best performance is achieved with a ±45◦ linear polarization. Errors290

are clearly smaller when the retrieved component is aligned with the background magnetic field: the error on Bv is smallest

at the equator where B is horizontal and in the meridional plane, and the error on Bw minimizes at high latitudes where B is

nearly vertical. The best sensitivity is found at 85 km where the precision is better than 400 nT for all components and at all

latitudes, except for the zonal component (Bu) in the tropics. At high latitudes, errors are between 50–100 nT for the vertical

component (Bw) and 100–200 nT for the horizontal ones (Bu and Bv). At 105 km, errors increase, for example to 80–500 nT295

outside the tropics.

Contrary to the results shown in Sect. 5.1 where it was the optimal configuration, the linear vertical polarization yields a

worse retrieval performance forB. In this case, the retrieval errors onBw andBu over the tropics are much larger than those
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Figure 9. Retrieval errors on the temperature profile induced by the measurement noise, for a radiometer with horizontal (H), 45◦ (45),

vertical (V) and -45◦ (-45) linear polarizations, and right circular (RC) polarization. The colored dashed lines are results for the descending

orbit branch while the full lines ones are those for the ascending branch. The blue (yellow) lines show the results for antenna-1 (antenna-2).

The black dashed lines show the errors if the Zeeman effect is not considered. Vertical resolution of the retrieved profiles is 2.5 km.

Figure 10. Same as Fig. 9 but for LOS wind retrievals.

17



Figure 11. Same as Fig. 9 but for the geomagnetic fields components and altitudes between 85 and 105 km. The retrieval vertical resolution

is 20 km.

found with a slant polarization. Only the meridional component (Bv) can still be retrieved with a reasonable precision of 100–

400 nT. At mid- and high latitudes, best precision is found forBw (30–50 nT at 85 km and 50–70 nT at 105 km). At 85 km,300

the error on Bv and Bu are between 200–300 nT and 300–2000 nT, respectively. Large errors on Bu are found at 40◦S and

70◦N where the LOS is aligned with the U and V axes (Φ1 or Φ2 = 0, Fig. 6).

Our results show that the sensitivity of the SMILES-2 instrument is high enough to potentially measure the electrojet induced

variations ofB at high latitudes even under quiet sun conditions, provided that the data are properly averaged. Yee et al. (2017)

used the Zeeman effect on the AURA/MLS O2 line to derive variations of 100–200 nT on the intensity of B. During solar305

storms, the amplitude of the perturbations in the auroral regions could be considerably larger (several hundreds of nT) (Yee

et al., 2017; Yamazaki and Maute, 2017) and could be detected with single measurements along the vertical and at least one

horizontal component ofB. Hence, SMILES-2 could allow us to infer information on the 3D variations of the auroral electrojet.

Perturbations of the geomagnetic field near the equator (30 nT and 80 nT for the surface vertical and horizontal components

ofB) are much smaller than the retrieval precision (Doumbia et al., 2007). Therefore, extracting interesting information on the310

equatorial jet will be more challenging and a receiver with a slant polarization could be necessary.

6 Conclusions

This analysis demonstrates the potential of SMILES-2 for the measurement of the temperature, atmospheric density and LOS

wind in the MLT (60–110 km). The retrieval precision was assessed, focusing on the SMILES-2 band at 760 GHz, the most
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suitable for such measurements. Special care was taken to properly include the Zeeman effect on the O2 line. Our results315

showed that neglecting it could lead to underestimating the retrieval errors by a factor of up to 2 above 90 km. Because the O2

line is polarized, the radiometer’s polarization configuration had to be investigated. We found that the optimal configuration

was vertical linear. The LOS wind is retrieved with a precision of 2–5 m s−1 up to 90 km (30 m s−1 at 110 km) and a vertical

resolution of 2.5 km. Temperature and atmospheric density are retrieved with a precision better than 5 K (30 K) and 7%

(20%) up to 90 km (110 km), respectively. The achieved precision of the wind measurements, a key product for SMILES-2, is320

comparable to the requirements for the new ICON mission (Englert et al., 2017). However, unlike optical sensors, SMILES-2

can acquire high-precision measurements during day and night, and at all latitudes, even during auroral events. The low noise

level achieved by the 4-K super-cooled radiometers is essential to achieve good performance above 90 km, where sensitivity

becomes critical due to significantly weaker signals.

The retrieval of the geomagnetic field using the O2 line was also discussed. We showed that valuable information on the325

horizontal and vertical components of B could be determined directly near the E-region auroral electrojets. Yee et al. (2017)

highlighted the need for such observations since, currently, only measurements from the ground or from low-orbit satellites

near 400 km are available. Yee et al. proposed a cubeSat constellation, with the purpose of measuring the O2 line at 119 GHz to

produce high spatial and temporal observations ofB perturbations. It is worth mentioning that this methodology, based on O2

spectral lines, has also been proposed to measure the Martian residual magnetic field (Larsson et al., 2013). Further analyses330

should be conducted, to characterize more precisely the potential of SMILES-2 for the study of the 3D ionospheric electrojets.

The final instrumental setup is still under discussion. In terms of possible instrumental developments, the spectral bandwidth

of the 763-GHz band might be reduced in the definitive configuration of SMILES-2. Narrowing the bandwidth by a factor of 2

(while ensuring a correct adjustment of the LO frequency) would cause minimal degradation of the measurement performance,

limited to altitudes below about 40 km.335

Future work to improve MLT retrievals will include the two other SMILES-2 bands. Indeed, the atomic oxygen line at 2 THz

contains temperature and wind information above 100 km. This line can help us to improve the wind retrieval precision to

10 m s−1 at 110 km (Baron et al., 2019b). In the 638-GHz band, a strong signal from O3 will be measured below about 70 km

in daytime and 90 km in nighttime. Furthermore, new parameters for the Zeeman model became recently available (Larsson

et al., 2019). Applying the updated parameters should induce a change of the O2 and O line intensities, of up to a few percent.340

The Zeeman effect on other spectral lines: OH, NO and ClO, should also be studied.

Code availability. Model is available upon request.

Appendix A: Spectroscopic parameters
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Table A1. Parameters of O2 lines in the ground electronic and vibrational levels between 100 and 1000 GHz. Values are taken from the

HITRAN-2008.

Frequency Strength @ 296K EL N J

MHz cm−1 molecule−1 cm2 cm−1 lower,upper lower,upper

118750.3408 9.956e-26 0.0000 1,1 0,1

368498.3839 2.213e-26 3.9611 1,3 1,2

424763.1626 2.414e-25 2.0843 1,3 2,2

487249.4142 1.031e-25 2.0843 1,3 2,3

715393.1236 6.246e-26 18.3372 3,5 3,4

773839.7019 3.943e-25 16.3876 3,5 4,4

834145.7729 1.359e-25 16.3876 3,5 4,5

The spectroscopic parameters are taken from the HITRAN database (Rothman et al., 2009). The line strength at the temper-345

ature T is:

S(T ) =
CH
riso

SH(T0)
e−CEEL/kbT

e−CEEL/kbT0

(
1− e−CE ν̄0/kbT

1− e−CE ν̄0/kbT0

)
Q(T0)

Q(T )
(Hz m2 molecule−1 ) (A1)

where kb = 1.380662× 10−23 J K−1 is the Bolzmann constant, ν̄0 (cm−1) is the transition wavenumber, SH(T0) is the HI-

TRAN line strength (cm−1 cm2 molecule−1), T0 = 296 K, EL (cm−1) is the lowest energy of the transition. The partition

function Q is calculated from tabulated values between 120 and 500 K, a range that encompasses the temperatures found350

between 50 and 130 km (Q(296) = 215.77). The constants CE = 102hp c and CH = 10−2 c allow the conversion of the HI-

TRAN units to the International System (SI) ones. The isotopic ratio riso is taken away from SH and added to the density

profile instead. The table A1 shows parameters of the main O2 millimeter lines.

Above the altitude of about 70 km, the real part of the Voigt function F (Eq. 3) is close to the Gauss function that describes

lines broadened by random molecular velocities (Doppler broadening):355

F (ν) =
1

∆νd

(
ln2

π

) 1
2

e
− ln2

(
ν−ν0
∆νd

)2

(Hz−1) (A2)

with

∆νd =
ν0

c

(
2ln2RT

M

) 1
2

(Hz), (A3)

and ∆νd is the Doppler broadening parameter, i.e., the Half Width at Half Maximum (HWHM) of F , ν0 is the frequency of the

transition, c= 2.997924× 108 m s−1 is the speed of light in vacuum, R = 8.31446 J K−1 mol−1 the gas constant and M the360

molar mass (0.031980 kg mol−1 for O2). At 80 km, ∆νd is about 0.6–0.7 MHz for the O2 line at 773 GHz, while the pressure

broadening HWHM is only 0.01–0.02 MHz.

The dispersion profile used for the calculation of the coefficient q′, u′ and v′ (Eq. 2) is given by:

F ′(ν) =
√

2F (ν)erfi(v) (Hz−1), (A4)
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with v = ln2
(
ν−ν0

∆νd

)
and erfi(v) =

√
2/π

∫ v
0

exp(t2)dt is the imaginary error function (Eq. 5.54 in Landi Degl’Innocenti and365

Landolfi (2004)).

Appendix B: Matrix exponential

The computation of the matrix exponential in Eq. 1 is the performance bottleneck in our implementation of the radiative

transfer solver if we use a general algorithm. A significantly faster algorithm has been implemented using the symmetry in370

Ko (Eq. 2). The evolution operator Λ (Eq. 8) is written as exp(−ka ds) exp(K̃o) with ka the scalar absorption coefficient

(Eq. 3) and K̃o =−Ko ds. The Cayley-Hamilton theorem is used to compute exp(K̃o):

exp(K̃o) =

3∑
k=0

κk K̃
k
o , (B1)

where K̃0
o is the identity matrix. The coefficient κk are derived using the 4 eigenvalues of K̃o:

expλ1 = κ0 +κ1λ1 +κ2λ
2
1 +κ3λ

3
1

exp−λ1 = κ0 −κ1λ1 +κ2λ
2
1 −κ3λ

3
1

expj λ2 = κ0 + j κ1λ2 −κ2λ
2
2 − j κ3λ

3
2

exp−j λ2 = κ0 − j κ1λ2 −κ2λ
2
2 + j κ3λ

3
2

375

where λ1,2 are positive real-valued numbers that determine the 4 eigenvalues ±λ1 and ±j λ2 of K̃o. This gives:

κ0 =
λ2

2 cosh(λ1) + λ2
1 cos(λ2)

λ2
1 +λ2

2

(B2)

κ1 =
λ2

2 sinh(λ1)/λ1 + λ2
1 sin(λ2)/λ2

λ2
1 +λ2

2

κ2 =
cosh(λ1) − cos(λ2)

λ2
1 +λ2

2

κ3 =
sinh(λ1)/λ1 − sin(λ2)/λ2

λ2
1 +λ2

2

380

The eigenvalue parameters are λ1 =−ds
√

(A+B)/2 and λ2 =−ds
√

(A−B)/2, where

A = [ 8 (q q′ v v′ + uu′ q q′ + uu′ v v′) + q4 + u4 + v4 + q′4 + u′4 + v′4

+ 2 ( q2(u2−u′2 + v2− v′2 + q′2) +

u2 (u′2 + v2− v′2− q′2) +385

v2 (−u′2 + v′2− q′2) +

v′2 (u′2 + q′2) +

u′2 q′2 ) ]
1
2 .
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and B = q2− q′2 + u2−u′2 + v2− v′2.
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