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Abstract 

Over the past decade, financial companies have merged diverse areas including investment 

banking, insurance, retail banking, and trading operations. Despite this diversity, many global 

financial firms suffered severe losses during the recent recession. To reduce enterprise risks and 

increase profits, we apply a decentralized risk management strategy based on a stochastic 

optimization model. We extend the decentralized approach with the CVaR risk-metric, showing 

the advantages of CVaR over traditional risk measures such as Value at Risk. An example taken 

from the earthquake insurance area illustrates the concepts. 

                                                 
1 Corresponding Author: Address: E313 Equad; Email address: herkan@princeton.edu (Hafize G. Erkan); Phone: 609-240-3944. 

Princeton  
University 
Research 

 



 2

JEL classification: G0, G3. 

Keywords: Risk Management; Decentralized Optimization; Conditional Value-at-Risk; Risk Measures; Utility Optimization. 

1 Description of Centralized Optimization Model 

Large, global insurance companies can be managed via an integrated optimization framework to 

reduce enterprise risks and increase total profits. The topic of integrated risk management goes 

by several names, depending upon the application area.  In banks and pension plans, it is referred 

as Asset and Liability Management, whereas it is called Enterprise Risk Management and 

Dynamic Financial Analysis (DFA) for non-financial and insurance companies, respectively.  

See Laster and Thorlacius (2000), Lowe and Stanard (1996), Mango and Mulvey (2000), Cariño 

et al. (1994), Mulvey et al. (2000) for applications of DFA. Also, see Boender (1997), Consigli 

and Dempster (1998) for applications in other financial domains.   

 

In the insurance area, portfolio managers and underwriters require sophisticated analytical tools 

to achieve enterprise goals. For example, the insurance underwriter needs to understand the 

effects of adding an additional insurance account to the company’s current portfolio (book) of 

activities.  A developed decision support system, called SmartWriter, answers these questions for 

one application area, the property/catastrophe (P/C) business.  SmartWriter employs data from 

earthquake and hurricane modeling systems to evaluate the effects of adding a new account(s) or 

subtracting an existing account(s) from the current portfolio. In addition, SmartWriter optimizes 

the portfolio composition to produce a portfolio meeting user-specified characteristics regarding 

risks and expected returns. See references Mulvey et al. (1998) for details, as well as Boender 

(1997), Kouwenberg (2001), Mulvey et al. (2000), and Cariño et al. (1998) for scenario-

generation methods of economic factors/variables. 
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Managing a global insurance company via a centralized DFA system requires, however, the 

close coordination between the divisions (groups) and the company’s headquarters.  Mulvey et 

al. (2005) describes in detail a DFA system for the Towers Perrin Company and its Tillinghast 

business. This system has been implemented by global insurance companies, including AXA. 

 

 

 

 

 

 

 

 

 

To define the multi-divisional DFA model, assume D= {1,…,d} divisions, a single time period, 

and a set of scenarios (S= {1,…,s}) depicting the uncertain quantities. To define the full set of 

decisions (x, y, w), we introduce the variables below. 

xd – vector of asset decisions related to division d∈D. 

yd – vector of liability decisions related to division d∈D. 

wd – vector of borrowing decisions related to division d∈D. 

(x0, y0, w0) – enterprise-level decisions; the headquarters is defined as division d=0. 

cd – capital allocated to division d∈D (total capital = C). 

z(d) – vector of statistics related to division d∈D. (e.g. profit, Value at Risk). 

Insurance Company– x1,y1,w1  Bank – x2,y2,w2 

Headquarters 

Brokerage Firm – x3,y3,w3 

Allocate Capital 
(risk) 

Decisions 

(x0, y0, w0 )– Capital Structure 

Figure 1: Coordination among headquarters and divisions - The headquarters decides 
on the capital allocation and the overall asset-liability management of the company.  
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The property/casualty insurance area operates, in most cases, on an annual basis. Insurance 

contracts are issued for a single year at a time, with no guarantee of renewal. Hence, for 

simplicity, the DFA model consists of a single time-period in this paper.  Mulvey et al. (2005) 

provides a comprehensive description of a full enterprise DFA for an insurance company. 

 

The overall objective is to maximize the company’s shareholder value as defined by a multi-

criteria utility function (with m objectives): 

                                                Max U [z1(0),…,zm(0)]            (1) 

where    zn(0) = gn(0) (x0, y0, w0)    for n = 1,..,m 

and z1(0)… zm(0) describe the relevant enterprise-wide statistics for each objective,  for example, 

the expected surplus at the end of planning period, the probability of credit downgrade over the 

next year, or the volatility of the profit/loss distribution. Other typical examples of objectives 

include the Value at Risk (VaR) at the end of the first year or the end of the planning period. The 

VaR objective is often employed by regulators and other stakeholders for financial applications. 

However, as we will see, there are problems with employing this function for optimizing the 

enterprise. A standard approach for DFA employs two objectives: the first z1(0) is the expected 

enterprise profit and the second z2(0) is an enterprise risk measure such as VaR. 
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The following scheme visualizes the centralized DFA model of a large-scale enterprise: 

 

                     

 

 

In centralized DFA, all major decisions are made within a unified planning environment. Thus, 

the company is able to deploy its resources in a company-optimal fashion. The impact of any 

new activity or of any change in existing activities can be immediately evaluated with respect to 

the enterprise. See Lowe and Stanard (1996) for a successful application of DFA for the 

Renaissance Reinsurance Company in Bermuda.  

 

Unfortunately, the centralized approach is impractical for large, global organizations because of 

informational limits and complex local regulations within each country.  Thus, the division’s 

optimal solution may be very different compared to the solution of the enterprise-wide 

optimization problem. The AXA insurance company depicts a global insurance company, with 

headquarters in Paris, France, for which a tightly managed, centralized DFA is difficult to 

implement.  To come to a compromise among the divisions and the headquarters we introduce 

the decentralized approach to the DFA. 

 

Figure 2: Centralized DFA Scheme 
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2 Formal Decentralized Optimization for DFA 

The motivation behind introducing decentralized DFA is to design a practical system for 

analyzing and managing a large-scale global financial organization. Many, anticipatory scenarios 

are generated stochastically with the aim of providing information about the distribution of some 

important variables, like surplus or loss ratio at the division level. 

 

The first step in planning for most global financial companies is to allocate capital to each 

division -- given cd as the capital allocated to the division d, with constraint dc C≤∑ , where C is 

the enterprise capital. Typically, the headquarters decides on the capital allocated based on 

several factors. For instance, a division may be asked to compute its expected profit and 

volatility of profit based on historical values.  Alternatively, the divisions may estimate their 

projected profit/loss in a deterministic fashion, based on a single scenario. To develop these 

values, the division must face its own asset and liability related decisions.  

 

A simple approach would be to estimate the expected profit - (d)E z   , (d)std z   , and correlation 

of ( (d ) (0)z , z ). The typical structure today extends this approach where the divisions will be 

evaluated by means of a stochastic analysis. Namely once the capital is allocated, the divisions 

report to the headquarters their profit/loss estimates s
(d)z  under each scenario s∈S. Ideally, the 

decentralized DFA approach requires sending the profit/loss estimates between the divisions and 

the headquarters back and forth in an iterative scheme. 

 

The critical issues in decentralized DFA arise in evaluating the performance of each division in a 

coordinated fashion. These issues can be adjusted with respect to the risk during the capital 
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allocation for example, by means of risk adjusted return on capital (RAROC). Following 

RAROC approach, the capital allocation decisions should be based on the perceived risk of each 

division as defined for instance, on the quantile estimation of the profit/loss distribution 

associated to each division (VaR). Taking cost of capital into account would maximize the 

shareholders’ value and augment the riskiness of the division. A required return on the capital 

allocated above the riskless rate and risk adjusted profit calculations would also implement the 

RAROC approach to the optimization. Froot and Stein (1998) have developed a framework other 

than RAROC for analyzing the capital allocation and capital structure decisions facing financial 

institutions where they show how bank-level risk management considerations should factor into 

the pricing of the risks that cannot be easily hedged.  

 

However, these approaches generally assume multinomial distributions for profits and other 

statistics.  Unfortunately, this assumption is unrealistic in the P/C insurance domain since 

insurance losses possess extremely fat tails -- a very low probability of an enormous set of 

losses. This greatly underestimates the tail risk and hence the capital needs. And correlations are 

often unstable due to linkage with one or more underlying factors. Therefore, we should project 

future scenarios on an anticipatory, stochastic basis and calculate the implied profit s
( d )z  for 

division d under scenario s and s
1(0)z enterprise profit under scenario s.  

 

To develop a decentralized risk management system, we can turn to several alternative 

approaches. Perhaps, the most famous is the Dantzig and Wolfe (1961) method, which was 

originally intended to be a computational technique for solving large linear programs that have a 

special structure. The steps of the Dantzig-Wolfe algorithm can be interpreted as an economic 
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model for managing a distributed organization; see, for example, Baumol and Fabian, (1964). 

The master decision-maker (headquarters) must coordinate the solutions of the divisions to 

satisfy the corporate-wide constraint and maximize the enterprise objective function. The 

decomposition (Bradley et al., (1977)) is applied to problems with the structure where the 

constraints are divided into multiple groups. Usually the problem is much easier to solve if the 

complicating aij constraints are omitted, leaving only the easy subproblem constraints. Consider 

any subproblem solution – called a proposal.  Given (x,y,w) (a feasible solution to the 

subproblem constraints), we may compute the amount of resource zn(0) used in the nth 

complicating constraint (objectives in our case), such as  profit z1,(0) associated with the proposal: 

zn(0) = gn(0) (x0, y0, w0)   for n = 1,..,m.  

When k proposals to the subproblems are known, the procedure acts to weigh these proposals 

optimally. Decomposition in this context extends the interpretation to decentralized decision 

making. It provides a mechanism by which Lagrange multipliers (prices) can be used to 

coordinate the activities of multiple decision makers.  

 

For our purposes to illustrate the concepts, we interpret the DFA problem as utility maximization 

for an insurance firm with two divisions. There are two levels of decision-making - headquarters 

and division. Subsystem constraints reflect the divisions’ allocation of their own resources that 

are not shared. The complicating constraints limit corporate resources, which are shared and used 

in any proposal from either division. The main disadvantage of the centralized decision-making 

by optimizing the firm as a single entity arises because of the expense of gathering detailed 

information about the divisions in a form usable by either corporate headquarters or other 
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divisions. It is often best for each division and corporate headquarters to operate somewhat in 

isolation, having privacy and responsibility as much as possible.  

 

In the decentralized approach where the decomposition algorithms can be applied, the 

information sent between the headquarters and the divisions are the state-prices (not just 

allocated capital), and proposals, from the divisions to the corporate coordinator. The state-price 

coordination is summarized in Figure 3.  More will be said about this approach in the later 

sections. 

 

 

 

 

 

 

 

 

 

3 Running the Two-Division Example 

The purpose of this example is to illustrate the decentralized approach with a real-world 

application. As such, we have simplified the DFA model. Instead of employing multiple 

objectives as illustrated in (1), another approach would be to maximize the expected profit while 

incorporating a constraint on a risk measure such as VaR. However, it is difficult to optimize on 

Headquarters 
Sets cost of resource and/or capital 

according to the proposals passed from 
the divisions by solving the decentralized 

optimization problem 

Division 1 
Generate new proposal 
satisfying the division’s 
constraints based on the 
state prices passed from 

the headquarters 

Division 2 
Generate new proposal 
satisfying the division’s 
constraints based on the 
state prices passed from 

the headquarters 

State Prices

New proposal  New proposal 

Figure 3: State-Price Coordination among the headquarters and the divisions 
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VaR since the problem becomes non-convex and this risk measure cannot be decomposed. 

Hence, as an approximation, we interpret the problem as a utility maximization of the certainty 

equivalent for an insurance firm with two divisions located in USA and Europe (US and EU). 

There are 216 accounts to invest and 50,000 scenarios for uncertain losses associated with each 

account. The loss data for each account is summarized by the SmartWriter system. There are two 

levels of decision-making – headquarters and division. This large-scale convex programming 

problem is solved and analyzed numerically by using the software LOQO. An extended analysis 

of the centralized and decentralized problem, and further decomposition results can be found in 

Mulvey and Erkan (2003) and Mulvey and Erkan (2004). 

 

3.1 The Multi-Divisional Model 

Indices: 

acc US: {1,2,…,AUS}, where AUS is the total number of accounts the US division can invest in 

(108 US accounts) 

acc EU: {1,2,…,AEU}, where AEU is the total number of accounts the EU division can invest in 

(108 EU accounts) 

Parameters: 

 
lj,

s: loss matrix includes all the loss data regarding each account US EUj (acc acc )∈ ∪  and s S∈  

rj:  revenue generated from the investment in each account US EUj (acc acc )∈ ∪   

C: initial starting capital ($200,000) 

intρ : interest rate (for simplicity, all assets are invested in an interest bearing account.) 

borρ : borrowing rate 
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θbor: the amount borrowed is bounded by  θbor* maximum leverage (in the example we set 

maximum leverage equal to  initial capital.) 

θUS,acr: asset to capital ratio of the US division 

θEU,acr: asset to capital ratio of the EU division 

ps : probability of scenario s 

f1 and f2 : coefficients of the exponential part of the utility function 

 

Variables: 

xUS = initial assets of the US division 

xEU = initial assets of the EU division 

cUS = amount of initial capital allocated to the US division 

cEU = amount of initial capital allocated to in the EU division 

wUS = amount borrowed by the US division 

wEU = amount borrowed by the EU division 

U SU S , jy  = fraction invested in account U S U Sj acc∈  by the US division 

EUEU, jy  = fraction invested in account EU EUj acc∈  by the EU division 

s
USz = US division’s capital at the end of the investment horizon in each scenario 

s
EUz = EU division’s capital at the end of the investment horizon in each scenario 

 

DFA Model: 

In (3), the objective function is the maximization of the expected utility of the firm’s value (total 

capital) at the end of the horizon (see Bell (1995)). The utility function employed in this model is 

a combination of the linear and the negative exponential utility functions. Negative exponential 
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utility is sensible for an insurance enterprise since there is a probability of a negative total capital 

and this function has desirable theoretical properties, such as decreasing risk aversion. Different 

from the centralized model, we define separate variables for the initial asset, amount borrowed, 

ending capital with respect to the scenarios and fractions invested in each account regarding to 

both divisions. Especially in the reinsurance area, it is realistic to assume fractional investments 

since partial acceptances are possible. However contracts associated with other insurance 

businesses (such as homeowner insurance) would require binary variables ({0 or 1}) to identify 

the underwriting decisions. 

 

The first group of constraints depicts the complicating constraints together with the associated 

state prices (Π’s). Note that the state prices are identified on a scenario by scenario basis.  The 

second group of constraints defines the initial assets in terms of amount borrowed and revenues 

from accounts according to the fractions invested. The third group of constraints calculates the 

ending capital by taking the account losses with respect to the scenarios into account. The 

amount borrowed cannot exceed θbor multiple of capital allocated to that division. The capital 

allocation should adapt to the initial capital of the firm. We indicate the upper/lower bounds for 

the amount borrowed in total and the fractions invested in each account. In the convex 

programming formulation of the decentralized model, each division decides on its own asset-

liability management by monitoring the complicating resource constraints. Capital allocation is 

one of major outputs of the decentralized model. 
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3.2 Convergence 

As a major goal, the decentralized optimization model should give a similar optimal solution as 

the centralized optimization model.  Moreover it has to answer all the questions such as the 

asset-liability decisions specific to both of the divisions and the optimal capital allocation to the 

divisions. Mulvey and Erkan (2003) showed that the decentralized model converges to the same 

optimal result as the centralized version. 
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3.3 Numerical Experimentation 

In this section we illustrate the proposed approach via a numerical example. This application 

provides an ideal setting for decentralized risk management. First, the stochastic elements have 

been extensively analyzed by a number of large-scale efforts (e.g.: firms such as RMS, AIR, 

EQE International and others). Most insurance companies who sell catastrophe insurance run 

these scenario generators in order to compute the profit/loss distribution (Enz and Karl (2001)). 

This distribution is employed for capital allocation purposes and many other needs such as 

regulatory compliances by state insurance commissioners. Burket et al. (2001), Hoyland (1998), 

and Kaufman and Ryan (2000) give detailed discussions of the regulatory environment and other 

modeling complications for insurance companies. 

     

Second, clearly the tail insurance risks can be reduced by geographic diversification - 

earthquakes and hurricanes occur at specific physical locations. ). There is no contagion across 

CAT losses as occurs in financial markets. The tail characteristics are significant for a company 

since allocated capital, and a company’s overall profitability is based on the anticipated tail risks 

(e.g. VaR). Thus, the advantages of decentralized risk management are clearly delineated.   

3.3.1 Addition of Accounts 

We focus on the decentralized model by analyzing the effects of adding new insurance accounts 

to the portfolio on the utility level, wealth/capital and risk statistics. We first evaluate the 

changes in the utility level and wealth with respect to account size. 
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The wealth structure of the US and the EU division is changing such that the total wealth of the 

company is increasing with a decreasing slope as more and more accounts are added to the 

portfolio. Meanwhile borrowing becomes less attractive for the divisions as the variety of the 

available accounts with different loss structures increases. 
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The decomposition of the aggregated initial assets for the decentralized model with 10 accounts 

looks exactly the same as in the centralized version (Mulvey and Erkan (2003)). This fact again 

assures that the decentralized optimization model will produce the same optimal results as the 

centralized model and moreover it will provide more information such as the optimum capital 

allocation, the mutually exclusive investment strategies of both divisions and the optimum 

amount the divisions should borrow. 
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VaR is calculated based on the optimal output of the two-division example via the expected 

utility model. The VaR values are decreasing as the number of accounts increases. This pattern is 

similar to the VaR behavior in the centralized version. 
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3.3.2 Changing the Parameters f1 and f2 

We have also analyzed the decentralized model with respect to different f2 values. We run the 

model first with f1=1 and f 2= 0.001, 0.005… 5, 30, 100. As f2 increases, we reduce the risk 

premium, thus becoming closer to risk neutrality. The pattern in Figures 8 and 9 is easy to 

interpret.  Both divisions try to operate in a manner such that the aggregate company becomes 

more and more profitable. The increase in VaR of any division is compensated by the decrease in 

the VaR of the other division. In total, the VaR statistic for the whole company never increases, 

as f2 becomes larger. 

 

 

 

When we run the decentralized model for different f2 values by fixing f1=30, we have almost 

same type of trend in the VaR statistic. However one difference is that at f1=30 the pattern is just 

shifted leftwards since at a higher level of f1, even small changes of f2 parameter have a much 

faster effect on the statistics of both divisions. 
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4 Optimization Using Conditional Value-at-Risk (CVaR) as a Risk Measure 

CVaR is a risk measure with significant advantages compared to VaR and is an excellent tool for 

risk management (see Rockafellar and Uryasev (2000) and also Rockafellar and Uryasev 

(2001)). It has a parallel in the insurance area as expected policyholder deficit (EPD) that uses 

expected loss as its base, expressing the target deficit as a percentage of expected loss. The paper 

by Mango and Mulvey (2000) discusses the merits and weaknesses of different risk measures for 

insurance companies. The reader interested in other applications of optimization techniques in 

finance area can find relevant papers in Ziemba and Mulvey (1998).  

 

Artzner et al. (1999) presents and justifies a set of four desirable properties for measures of risk, 

and calls the measures satisfying these constraints “coherent”. Especially the sub-additivity 

property of CVaR makes this risk measure indispensable for decentralized risk management 

involving multiple divisions and headquarters.  
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CVaR is a more consistent risk measure than VaR.  First, CVaR supplements the information 

provided by VaR and calculates the quantity of the excess loss. Since CVaR is greater than or 

equal to VaR, portfolios with a low CVaR also have a low VaR. Second, under quite general 

conditions, CVaR is a convex function with respect to positions (see Rockafellar and Uryasev 

(2000)), allowing the construction of efficient optimization algorithms.  In particular, Rockafellar 

and Uryasev (2000) showed that CVaR can be efficiently minimized using linear programming 

techniques. A description of the approach for minimization of CVaR and the optimization 

problems with CVaR constraints can be found in Uryasev (2000).  

 

The optimization problem with CVaR constraint for the insurance company is formulated below. 

In contrast to the VaR, CVaR is easy to apply in a decentralized setting. In addition, the 

optimization problem with CVaR is easy to solve; it also provides VaR as a byproduct, so that 

policy makers and other stakeholders can readily grasp the concepts.  Again, we have separated 

the complicating (enterprise) constraints, with indications for the corresponding state prices 

(Π’s)  

 

In the optimization model (4) below, the variable B designates the maximum tolerance set for the 

CVaR constraint. The optimization model is solved for different upper bounds on CVaR. By 

solving the model, we find the optimal investment strategy, the optimal capital allocation, 

corresponding VaR, which equals to the optimal ζ*, and the CVaR. 
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Similar to return-variance analysis, the efficient frontiers are constructed below for different 

numbers of available investment projects and for different α (confidence level) values and the 

results are summarized in Table 1. 
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Confidence Level = 0.95, Number of Accounts = 12
B Return (%) VaR 
6 0.0783 -14.8419 

10 0.0804 -13.9167 
30 0.0925 -9.4781 
40 0.0985 -6.8640 
50 0.1045 -4.5364 
60 0.1099 -0.4335 
70 0.1118 9.3650 
100 0.1167 27.2029 

Confidence Level = 0.99, Number of Accounts = 12
B Return (%) VaR 
6 0.0679 -4.1903 

10 0.0688 -1.6888 
30 0.0733 10.8183 
40 0.0755 17.0719 
50 0.0778 23.3254 
60 0.0800 29.579 
70 0.0823 35.8325 
100 0.0890 54.5933 

Confidence Level = 0.95, Number of Accounts = 40
B Return (%) VaR 
6 0.0785 -14.2313 

10 0.0809 -13.2065 
30 0.0932 -8.0825 
40 0.0994 -5.5205 
50 0.1055 -2.9585 
60 0.1116 -0.3750 
70 0.1159 9.0059 
100 0.1260 22.4572 

Confidence Level = 0.99, Number of Accounts = 40
B Return (%) VaR 
6 0.0688 -4.5999 

10 0.0698 -2.1586 
30 0.0749 10.0471 
40 0.0775 16.1501 
50 0.0801 22.2531 
60 0.0826 28.356 
70 0.0852 34.459 
100 0.0929 52.7679 

 

 

 

Table 1: Optimal Expected Return and VaR values for different upper bounds on the CVaR 
constraint in the optimization model (4) and at different confidence levels 
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Four different numerical experiments were undertaken. We solve the optimization model for two 

different confidence levels, namely 0.95 and 0.99. There are 600 scenarios for all of the 

experiments, and the procedure is repeated for 12 and 40 accounts. The upper bound for the 

constraint on conditional value-at-risk is taking the values 6, 10, 30, 40, 50, 60, 70 and 100 in 

terms of 10,000 US dollars consequently for each optimization problem. The return values are 

calculated for each upper bound, and the efficient frontiers are plotted in Figure 10. 

 

 

In Figure 10, when we decrease the confidence level from 0.99 to 0.95, we are confronted with a 

higher return for the same risk measure, which is the upper bound on conditional value-at-risk in 

our case. On the other hand, increase in the account number has a positive effect for the returns 

with respect to the CVaR values. The effect of the increase in the number of available investment 

project on the returns at a given CVaR value is more dramatic for lower levels of confidence 

levels such as α = 0.95 than α = 0.99. As the confidence level is decreased from 0.99 to 0.95, the 
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optimal investment strategy becomes less risk averse. Hence the advantage of having a variety of 

accounts can be exploited at a greater extent. The optimal VaR, the CVaR and the optimal return 

on investment are given in Figure 11 where we have a set of 600 scenarios and 40 accounts to 

invest and the alpha-level is set to 0.99. 

 

 

 

5 Conclusions and Future Work 

By coordinating its assets and liabilities at the enterprise level, a financial institution can increase 

overall profits and reduce risks. This coordination requires a large-scale, forward looking 

simulation. We showed that Dynamic Financial Analysis (DFA) within the property/casualty 

industry provides a systematic approach for diversifying the company’s insurance activities.  In 

fact, a global property/casualty insurance company has greater opportunities than a local 

company since the former can diversify across many regions and types of risks, thus reducing its 

capital requirements.  However, a global insurance company is difficult to manage in a 
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centralized fashion due to complex local regulations/policies.  The decentralized approach 

enables the divisions to increase flexibility and independence as compared with a centralized 

model. 

 

The continuing convergence of the traditional capital and insurance markets should yield 

innovative approaches to managing emerging risks. Shareholders are increasingly holding boards 

of directors and senior executives to higher accountability standards. Aimed at giving 

shareholders more information and control and to increase the responsibility of directors, the 

Kon TraG bill was introduced into law in Germany in 1998.  Especially the Kon TraG bill (Das 

Magazin fuer Risk Management, 07.2000) emphasizes the necessity of an early warning system 

in an enterprise. According to the law, German enterprises must possess viable risk management 

systems.  

 

In the future, we plan to conduct research on the convergence properties of the decentralized 

algorithms under a variety of risk measures. As mentioned, the sub-additivity property of CVaR 

makes this risk measure indispensable for decentralized risk management involving multiple 

divisions and headquarters.  The VaR measure fails in this regard since it is difficult to optimize 

an enterprise with VaR as an objective or constraint on enterprise risk.   

 

Also, we intend to apply the concepts to firms outside the financial industry.  The supply chain 

area, for example, could benefit by addressing uncertainties and disruptions via a stochastic 

optimization framework.  Again, a decentralized approach has several advantages over a purely 

centralized model. 
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