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Conservation properties of the mass, momentum, and kinetic energy equations
for incompressible flow are specified as analytical requirements for a proper set of
discrete equations. Existing finite difference schemes in regular and staggered grid
systems are checked for violations of the conservation requirements and a few impor-
tant discrepancies are pointed out. In particular, it is found that none of the existing
higher order schemes for a staggered mesh system simultaneously conserve mass,
momentum, and kinetic energy. This deficiency is corrected through the derivation of
a general family of fully conservative higher order accurate finite difference schemes
for staggered grid systems. Finite difference schemes in a collocated grid system
are also analyzed, and a violation of kinetic energy conservation is revealed. The
predicted conservation properties are demonstrated numerically in simulations of in-
viscid white noise, performed in a two-dimensional periodic domain. The proposed
fourth order schemes in a staggered grid system are generalized for the case of a non-
uniform mesh, and the resulting scheme is used to perform large eddy simulations
of turbulent channel flow. © 1998 Academic Press

1. INTRODUCTION

The purpose of this research is to construct accurate finite difference schemes for in
pressible unsteady turbulent flow simulations such as large eddy simulation (LES) or d
numerical simulation (DNS). Experience has shown that the convective terms must |
serve kinetic energy if an incompressible, unsteady flow simulation is to be both stable
free of numerical dissipation. Arakawa [1] showed that when central differences are u
conservation of enstrophy in the absence of viscous dissipation is required for long timi
tegration in the two-dimensional vorticity-streamfunction formulation. The correspond

! permanent affiliation: Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-
Showa-ku, Nagoya, 466, Japan.

90
0021-9991/98 $25.00

Copyright© 1998 by Academic Press
All rights of reproduction in any form reserved.



DIFFERENCE SCHEMES FOR INCOMPRESSIBLE FLOW 91

conserved variable is kinetic energy in the velocity-pressure formulation, and some en
conservative finite difference schemes have been developed for the Navier—Stokes
tions in three dimensions. Staggered grid systems are usually required to obtain phys
correct pressure fields. The standard second order accurate finite difference scheme |
staggered grid system conserves kinetic energy and this scheme has proven useful fo
and DNS. However, the accuracy of the second order finite difference scheme is low
fine meshes are required [3]. Existing fourth order accurate convective schemes [4, 5] fc
staggered grid system do not conserve kinetic energy. As we shall show later, these sct
produce erroneous results at sufficiently high Reynolds number. Higher order staggerec
schemes that conserve kinetic energy have not been presented in the literature.

The conservation of kinetic energy is a consequence of the Navier—Stokes equa
for incompressible flow in the inviscid limit. In contrast, kinetic energy conservation ir
discrete sense is not a consequence of discrete momentum and discrete mass consel
Itis possible to derive numerical schemes that conserve both mass and momentum b
kinetic energy. Itis also possible to derive schemes that conserve kinetic energy even tf
mass or momentum is not conserved. When kinetic energy is not conserved, two possib
exist; (1) the errors are strictly dissipative and the simulation is stable or (2) the sign of
error is undetermined and the simulation is generally unstable. Upwind schemes fall
the first category. While these schemes are popular, their associated numerical dissi
adds a non-physical damping mechanism to the Navier—Stokes equations. This dan
is acceptable in cases where the solution is expected to be smooth (such as in soll
to the laminar or time-averaged Navier—Stokes equations). Unsteady, three-dimens
turbulent simulations are much less tolerant of numerical dissipation [6] since it selecti
removes energy from the dynamically important small-scale eddies. For this reason,
dissipative central-difference schemes or spectral methods [7] are usually preferre
turbulent simulations. Although central difference schemes do not give rise to numei
dissipation in general, they may not conserve kinetic energy. Most often non-conservi
central difference schemes are unstable, but this instability may not be apparent unle:
Reynolds number is sufficiently high. There are several examples in the literature w
non-conservative schemes are presented and tested only for low Reynolds number. We
show a few examples where these schemes become unstable as the Reynolds nur
increased. These schemes can be particularly dangerous at intermediate Reynolds nu
where the simulation is stable but adversely affected by the conservation errors.

The paper is organized as follows. Conservation properties of the mass, momer
and kinetic energy equations for incompressible flow are reviewed in Section 2. Tt
conservation properties are regarded as analytical requirements for a proper set of di
equations. Discrete operators used in this paper are defined in Section 3. Existing -
difference schemes in a regular grid system are checked for violations of the conserv
properties in Section 4. In Section 5 we analyze existing staggered grid schemes and pr
a new class of conservative schemes. Finite difference schemes for a collocated grid sy
which have been used in recent unsteady incompressible flow simulations, are disc
in Section 6. Generalization of the proposed staggered-mesh fourth order accurate sc
to a non-uniform mesh is presented in Section 7. The treatment of non-periodic boun
conditions is also discussed in this section. Finally, numerical tests of the conserve
properties and the accuracy of different numerical algorithms are performed in Sectic
Conservation properties of the numerical schemes are demonstrated on the exam|
two-dimensional, periodic, inviscid white noise simulations. The accuracy of the numer
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algorithm for non-uniform mesh is verified through numerical tests involving the growth
instability eigenfunctions in two-dimensional plane channel flow. Large eddy simulatic
of turbulent channel flow are performed there as well and the results of the new fourth ¢
accurate schemes are compared with those of the second order accurate algorithm.

2. ANALYTICAL REQUIREMENTS

The continuity and momentum equation describe the motion of incompressible fl
These equations are written symbolically as

(Cont) =0, QD
% + (Conv); + (Pres); + (Visc); =0, (2)
where

(Cont) = % 3)

- 0Xi ’

_op
(Pres); = % 4)

_ 0mj
(Visc); = o 5)

wherevy; is the velocity vectorp is the pressure divided by density andis the viscous
stress. Henceforthp will be referred to as pressuréConv); is a generic form of the
convective term and will be defined below.

The conservation properties of Egs. (1) and (2) will now be established. Note 1
Egs. (1) and (2) are of the form

¢

5 T Q@) +2Q@) +3Q(@) + - =0. ©)

The termkQ(¢) is conservativef it can be written in divergence form,

3 (*Fj (o)
“Q¢) =V - (“F(9)) = % (7
Xj
To see that the divergence form is conservative, integrate Eq. (6) over the volume and |
use of Gauss’s theorem for the flux terkns- 1, 2, . . ., all of which are assumed to satisfy

Eq. (7):

3/// pdV = —//<1F<¢)+2F(¢>+3F<¢)+---)-ds (8)
ot v s

From Eg. (8), we notice that the time derivative of the surnp @fi a volumeV equals the
sum of the flux‘F (¢) on the surfaces of the volume. In particular, the sum ¢f never
changes in periodic field fQ(¢) is conservative for ak.

Note that mass is conservagbriori since the continuity appears in divergence form. B
the same token, the pressuRrd€s); and viscous termsvfsc); are conservativa priori
in the momentum equation. The convective term is also consenafweri if it is cast
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in divergence form. This is not always the case, however, and we shall investigate it
in alternative forms. To perform the analysis, we reg&dr(v); as a generic form of the
convective term in the momentum equation. At least four types of convective forms
often used in analytical or numerical studies. These forms are defined as

ovjvj

(Div.); = % 9)
(Adv); = v; 32 (10)
s = 310 4
(Rot); = v (32 — 2;‘) n %a;’;’ , (12)

where Div.);, (Adv);, (Skew);, and Rot); are referred to adivergenceadvective skew-
symmetricandrotational forms, respectively. As mentioned above, tiieergencdorm is
conservative priori. The four forms are connected with each other through the followi
analytical relations:

(Adv); = (Div.)j — v; - (Cont), (13)
(Skew = S(DIv); + S (Adw);. (14)
(Rot); = (Adv);. (15)

We note that, analytically, there are only two independent convective forms, and the tw
equivalent if(Cont) = 0. It is also apparent that the advective, skew-symmetric, and ro
tional forms are conservative as long as the continuity equation is satisfied. From Eqs.
and (14), we can derive the relations

(Skewy; = (Div.); — 1'vi - (Cont)
2 (16)
= (Adv); + %vi - (Cont).

The transport equation of the square of a velocity component, for instafy&, is vy
times the = 1 component of Eq. (2):

3”1/

+v1 - (Conv); + vg - (Pres), + vq - (Visc)1 = a7

In the above equatlon, the convective term can be rewritten in the following forms co
sponding to those in the momentum equation,

. Jviv?/2 1
v1 - (Div)y = ]a le/ +§vf-(cOnt.), (18)
dviv?/2 1
v1 - (Adv); = ng,/ — Evf - (Cont), (19)
dvv2 /2
v1 - (Skew; = vivi/2 (20)

8Xj
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Note that the skew-symmetric form is conservatiaiori in the velocity square equation.
Since the rotational form is equivalent to the advective form, the four convective forms
energy conservative {{Cont) = 0.

The terms involving pressure and viscous stress in Eq. (17) can be rewritten in the fc

dpvy vy
- (Pres); = - p—, 21
v1-( )1 ™ ™ (21)
Brljvl 31)1
- (Misc), = —Tj—. 22
v - (Misc)y I 71 ox] (22)

These terms are not conservative since they involve components of the pressure-stra
viscous dissipation.

We can determine the conservation propertiessg2 andv3/2 in the same manner as
for vZ/2. The transport equation of kinetic enerfy= vjvi /2, isv; times the -component
of Eqg. (2) with summation over.

8_}t< + vi - (Conv); + v; - (Pres); + v; - (Visc); = 0. (23)

In Eqg. (23), the conservation property of the convective term is determined in the s:
manner as fov?/2. In addition, the terms involving presssure and viscous stress in Eq. (
can be rewritten into the forms

o - (Presy = 2P _ 5. (Conty, (24)
X
aTii Vj ov;

v - (Visc) = aI>J<J-I — 1j ﬁ (25)

The pressure term in Eq. (23) is conservativedbnt) = 0. The viscous stress term in
Eq. (25) is not conservative because the second term on the right-hand side of Eq. (:
the kinetic energy dissipation. Table 1 provides a summary of the conservation prope
of the convective, pressure, and viscous terms in the transport equationso2, andK
for incompressible flow.

The objective of this work is to derive higher order accurate finite difference scher
that satisfy these properties in a discrete sense.

TABLE 1
Conservation Properties of the Convective, Pressure, and Viscous
Terms in the v, v§/2, andK Equations

Transport equations

~

Terms in momentum eq. v v§/2

(Div.)

(Adv) = (Rot)
(Skew)

(Pres)

(Visc)

©O00006
X x © 0O

x OO0 00

Note © is conservativa priori, O is conservative if Cont) = 0, andx is
not conservative.
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FIG. 1. Regular grid system.

3. DISCRETE OPERATORS

In this and the next three sections, analysis is limited to a uniform grid system, i.e.,
grid spacings in each directiohg, hy, hz, are constant. A generalization to non-uniforn
meshes is presented in Section 7.

Conventional numerical algorithms based on a structured computational grid mostly
into three classesegular, staggeredandcollocatedyrid systems. In the regular grid systerr
the velocity components; (i = 1, 2, 3) and pressure are stored at the same points. Th
discretization of the continuity and momentum equation are centered at these points
example of a regular grid system in a two-dimensional plane is shown in Fig. 1. In
staggered grid system the velocity compondut¢i = 1, 2, 3) are distributed around the
pressure points. The continuity is centered at pressure points. The momentum eqt
corresponding to each velocity component is centered at the respective velocity point
example of a staggered grid system in a two-dimensional plane is shown in Fig. 2. Ir
collocated grid system the velocity componanté = 1, 2, 3) and pressurp are defined at
the same points, as in the regular grid system. The distinction comes through the defir
of an auxiliaryflux velocity F; (i = 1, 2, 3), which is obtained via interpolation. The flux
velocity is distributed in space as in the staggered grid system. An example of a colloc
grid system in a two-dimensional plane is shown in Fig. 3.

Let the finite difference operator with stengihcting ong with respect tox; be defined as

Sng _ PO+ Nhe/2, %, Xg) — ¢ (X1 — NM/2, X, X3). (26)
8nX1 |y x5 nhy
]
GIESEIRNL
oo r U
hferirer i

&
&
=
~
S
=

FIG. 2. Staggered grid system.
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FIG. 3. Collocated grid system.

Also, we define an interpolation operator with stemcilcting ong in the x; direction as

q;nxll _ ¢ (X1 4+ Nhy/2, Xz, X3) + ¢ (X1 — Nhy/2, Xo, X3)' 27)

X1,X2,X3 2
In addition, we define a special interpolation operator with stenaflthe product ofp and
Y in thex; direction,

Nn)(l’

1
= §¢(X1 +nhy/2, X, X3) ¥ (X1 — Nhy/2, X2, X3)

X1,X2,X3
1
+ él/f(Xl +nhy/2, X, X3) ¢ (X1 — Nhy/2, X5, X3). (28)

Equations (26) and (27) are second order accurate approximations to the first derivativi
function value, respectively,

Snp 09  n23% , n* 3% ,

~ Tt ———hfp . 29
Saxa — Ox1  249x3 ' 19200%3 1t (29)
n232p , n* 3%

P SIS LA 30
Pt g T 3gagd T (30)

T NXp

¢

Combinations of the discrete operators can be used to make higher order accurat
proximations to the first derivative and function value. For example, fourth order accul
approximations to the first derivative can be constructed as

4810 189 39 1 3% 4,

~ = TRy 31
361X1 382X 0X1 4808X]5_ 1t ’ ( )

9819 18 3¢ 3 3% ,

- -~ — — —_—+h , 32
881x1 88x1  dxg 6409x5 ! * (32)
480 L1ap _ 3¢ 103% 4 (33)
38X1 364X - 0X1 30 8X35_ ! ’
Two fourth order accurate interpolations are
4 71X, 1 T 2X1 1 84¢ 4
= - = ~¢p— ———hj+---, 34
3 3? 96 9x; * * (34)
9 11 1 T 3X1 3 84¢) 4
- - = ~p— ——r 35
8” 8” ¢ 1289x§ * (35)
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Discrete operators in the, and x3 directions are defined in the same way as forxhe

direction.
The following identities will be needed to derive some relations later in the paper:
—— nX;
Sup ' SV Sn¢
= + , 36
5an ¢82an 52an ( )
—_—" . . ——NX;
[(69) V1™ =™ gy, (37)
—x e l—nx 1 —~nx
¢nXJ wnXJ — Ed’l/fnxj + E(pwnxl , (38)
(S S NXj (S
" _ Snd ’ (39)
OnX;| donX;
S S mx (S—I’mﬁ
n® _ n® ’ (40)
CSnX] 8nXJ
CE Sy d™ Sy
= - : 41
Sa 0™ 18y d L 1. Sap
n . n : n
= = = . 42
¢ San 2 (3an + 2¢¢3an ( )

Note thatx; appearing as a superscript does not follow the summation convention.
We define two types of conservative forms in the discrete systefg) in Eq. (6) is
(locally) conservativef the term can be written as

s1(*Fi@#)  Sa(Fi@)  s(*Fi9))
k J J J
= 4
Q(¢) 52 + 52 + 53 + (43)
This definition corresponds to the analytical conservative form of Eq. (7).
KQ(¢) is globally conservativéf the following relation holds in a periodic field,
Y kQ@av =o, (44)

X1

X2 X3

where the sums that appear in Eq. (44) are taken over the periods in the respective dire
and AV = hihyhs is a constant in a uniform grid system. Note that in the periodic ca
local conservation also implies global conservation. Also note that the definition (44)

discrete analogue of Eq. (8).

4. FINITE DIFFERENCE SCHEMES IN A REGULAR GRID SYSTEM

4.1. Continuity and Pressure Terms in a Regular Grid System

We first examine the conservation property of the pressure term. As we have obse
the pressure term is analytically conservative in the transport equations of momentun

kinetic energy.

In the regular grid system, the discrete continuity and pressure term are defined as

(Cont.— R2)

(Pres.— R2);

SoU;
82X
220
82X ’

=0, (45)

(46)
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whereR2 denotes a second order accurate approximation in a regular grid system. F
order approximations for the continuity and pressure term in the regular grid system a

4 5,U; 164y
Cont.—RY)=-——-—-—=0, 47
( ) 3 82X 3 SaXi ( )

48,p 1éap
Pres.— Rd); = - -~ — =% 48
( )I 3 82X 3 SaXi ( )

Inthe momentum equation, the pressure terms, Egs. (46) and (48), are consarpetvie
Next, consider products of and the pressure terms which appear in Eq. (23). The produ
can be rewritten using Eq. (36) to give

S, pe
u - (Pres.— R2); = -+ Ix — p- (Cont.— R2), (49)
1Xi
/—_\/lxi /—_\/ZXi
Ui - (Pres.— Ry — S0P L0UPT o con_Ra).  (50)

3 81X _3 SoXi

These products are conservative provided that the corresponding discrete continuity
tions are satisfied. Notice that we need correspondence between the discrete continui
pressure term to ensure that the pressure term conserves kinetic energy. That is wt
residual term in Eq. (49) requires the continuity to be defined as in Eq. (45). It is &
important to note that the combination of Egs. (46) and (47) does not satisfy this prop
Table 2 shows a summary of the conservation properties of the discrete pressure terrr
regular grid system.

Before concluding this section, let us consider the Poisson equation for the pres:
The Poisson equation is often solved to satisfy the continuity constraint in computatic
algorithms of incompressible flow. For example, the projection stage onto a solenoidal
in fractional step methods [8] is

oM = vF — aAt(Pres);, (51)
(Cont)™*! = 0. (52)

In Eq. (51),At is time increment and is a constant that depends on the time marchir
method. The superscript refers to the discrete time levekalethotes the non-solenoidal in-
termediate velocity field. The Poisson equation for the pressure is constructed by substit

TABLE 2
Conservation Properties of Finite Difference Schemes
for the Pressure Term in a Regular Grid System

Transport equations

FD schemes for momentum eq. u; K
(Pres.—R2 O] O,
(Pres.— R4%) © [ON

Note. © is conservativea priori, O, is locally conservative if
(Cont.— R2) = 0, O, is locally conservative ifCont—R4) = 0.
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Eq. (51) into Eqg. (52) in a discrete sense. As we have seen, the proper corresponden
tween Pres); and Cont) should be used.

The proper combination for the second order scheme in the regular grid system, Eqs
and (46), gives us the following discrete Poisson equation for the pressure:

d2 (Sz_p) = i(Cont.— R2)*. (53)
82X \ 82X a At

The left-hand side of Eq. (53) generates a penta-diagonal matrix for a one-dimensi
problem. The solution for pressure using Eq. (53) may not be physical, due to even
decoupling. The proper combination for a fourth order scheme in the regular grid sys
Egs. (47) and (48), gives the following discrete Poisson equation for the pressure:

4 5 (452[) 154p) 1 64 (452[) 184p)

38% \38%  38aX

384%;

1
= ——(Cont.— R4d*. (54
3 82%; 384X ( ) ( )

aAt

The left-hand side of Eq. (54) generates a non-diagonal (9 band) matrix for aone-dimens
problem. The matrix has even-odd coupling, but the coupling is weak. Therefore, the
sure given by Eq. (54) may not be physical.

Due to the problem of odd-even decoupling, a staggered grid system is preferred
the regular grid system when a Poisson equation is solved for the pressure. Computa
algorithms without the Poisson equation (for example, [9, 10]) can be constructed, how
and it is of interest to consider the conservation properties of such schemes.

4.2. Standard Second Order Accurate Convective Schemes in a Regular Grid Systen

Here we are interested in conservation properties of convective schemes. The usual s
order accurate convective schemes in a regular grid system are defined as

82U U;
(Div. — R2S); = 2171 (55)
82Xj
82U
(Adv.— R2S); = uj——, (56)
52Xj
152ujui 1 S
Skew— R2); = = —uj—, 57
( W )i 2 52Xj ZUJSZXJ ( )
SoU; doU; 16ouju;
Rot.— R2S) = uj | — — = . 58
( )I J<52Xj 52Xi> 2 82Xi ( )

These schemes are direct applications of the standard second order accurate finit
ference operator of Eq. (26) to the divergence, advective, skew-symmetric, and rotat
forms, respectively2Sstands for standard second order approximations on a regular gt
(Div.— R2S; is conservative priori in the momentum equation. Using Eq. (363d{. —
R2S; and Rot — R2S; can be rewritten as

81070
(Adv.— R2S);, = 2120 ;. (Cont.— R2), (59)
51X]'
SUTGY 18,00 18uu;
(Rot.— R2S); = ==t —OHiT] =277y, . (Cont.— R2). (60)

51Xj 2 61X 2 82X

Therefore, these forms are conservative in the momentum equatiant  R2g; = 0.
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(Skew — R2); is the average oflfiv. — R2g; and Adv. — R2S;
1 1
(Skew— R2); = E(Div. — R29); + E(Adv.— R2S);. (61)

As a consequenceSkew — R2); is also conservative in the momentum equatiorCibiit
—R2=0.

Let us investigate the conservation properties of the convective schemes in the tran
equation ofu?/2. It is sufficient to consider the productof and thei = 1 component of
the convective schemes. Using Egs. (36) and (37), this product can be rewritten as

X —— A
81Uj ! U]_LlllxJ /2

ug - (SkeW.— R2), = 51X,
J

(62)
Therefore,(Skew— R2); is conservative in the?/2 equation. On the other hand, using
Eq. (36), the product ai; and(Div. — R2S); can be rewritten as

81(ug - ujup) doUz

— ujul_
51Xj

usg - (DIV — RZS)]_ = 5oX: .
]

This term is not conservative since the second term on the right-hand side cannot b
in divergence form. It can be shown thgkdv. — R2S); and (Rot. — R2S); are also
not conservative in the?/2 equation. In the same way, we can determine the cons
vation properties of the convective schemes in the transport equation of kinetic ene
(K =uu; /2). The following relations can be derived:

810" GG /2
Ui - (Skew— R2); = —1 1 /% (63)
51Xj
sr(ui-ujupi/2 1
U - (Rot.— R2S); = % — Suju; - (Cont.— R2). (64)
1A

(Skew— R2); is conservative priori in the K equation(Rot.— R2S); is conservative in
theK equation if(Cont.— R2) = 0. (Div. — R2S); and(Adv.— R2S); are not conservative
in the K equation.

Table 3 summarizes the conservation properties of the standard schemes, Eqs. (55)
(57), and (58). Comparing Table 3 and Table 1, we see that the only properly discret

TABLE 3
Conservation Properties of Standard Second Order Accurate
Convective Schemes in a Regular Grid System

Transport equations

FD schemes for momentum eq. u; u?/2 K
(Div. — R29) O} X X
(Adv.— R2S) O X X
(Rot.— R29) ¢) x o)
(Skew— R2) O ©] ©)

Note.© is conservativa priori, O is conservative if Cont.— R2) = 0, andx is
not conservative.
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standard scheme {Skew— R2);. Although(Rot.— R2S); is conservative in the momentum
and kinetic energy equations, it is not conservative in the equations for the square o
individual velocity componentsig, u3, u3). This scheme has been used in the past but,
shown by Horiuti [10], leads to excessively large truncation error.

4.3. Fully Conservative Second Order Accurate Convective Schemes
in a Regular Grid System

As shown in the previous sectio(Gkew— R2); is the only fully conservative standard
convective scheme for a regular grid system. Fully conservative variants for the diverg
and advective forms do exist, but they are different from the forms already conside
These forms can be constructed frogfkew— R2); by adding or subtracting factors of the
velocity multiplied by the discrete continuity equation (see Eq. (16)):

(Skew— R2); = (Div. — R2); — :—Lui - (Cont.— R2)
2 (65)

1
= (Adv.— R2); + Eui -(Cont.— R2).

By substituting Egs. (45) and (57) into Eq. (65) and then using Egs. (36), (38), (39),
(40), the divergence and advective forms that satisfy Eq. (65) are

8,070

(Div. — R2); = 5]1—X1| (66)
T

(Adv.— R2)i = u; ‘M (67)

(Div. — R2); is a natural divergence form for a control volume centered at the mesh pc
(Div. — R2); and(Adv.— R2); are related tgSkew— R2); through Eq. (65), and they are
equivalent if(Cont.— R2) = 0. Using this fact, the conservation propertiesiv. — R2);
and(Adv.— R2); are determined by the propertieg8kew— R2);. The results are shown in
Table 4. The conservation properties of the convective schemes in Table 4 agree with
of Table 1. Thereforg(Div. — R2);, (Adv.— R2);, and(Skew— R2); are aproper setof
convective schemes providé@ont.— R2) = 0. The skew-symmetric forSkew— R2);

is related to the proper divergence and advective forms via

(Skew— R2); = %(Div. —R2)i + %(Adv.— R2);. (68)

TABLE 4
Conservation Properties of Proper Second Order Accurate Convective
Schemes in a Regular Grid System

Transport equations

FD schemes for momentum eq. Uj uz/2 K
(Div. — R2) o e) e)
(Adv.— R2) ©) (©) ©)
(Skew— R2) O ©] O]

Note.Symbols are the same as Table 3.
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This relation should be used in place of Eq. (61) since the latter equation relies ¢
cancellation of errors on the right-hand side in order to arrive at a proper skew-symm
form. (Adv.— R2); is related taDiv. — R2); through the following analogue of Eq. (13):

(Adv.— R2); = (Div. — R2); — u; - (Cont.— R2). (69)

According to Eq. (15), the rotational and advective forms are equivalent, thus the foll
ing discrete relation is assumed:

(Rot.— R2); = (Adv.— R2);. (70)

Starting with Eq. (67) and then using Egs. (36), (38), (39), and (40), the discrete rotati
form that satisfies Eq. (70) is

1X:

1%;
_Ix: 81U| Y S1U;j 16ouju;
Rot.— R2); = ! —u— - 71
( )i = ( j 51XJ ] 81X +2 82X ( )

Although the above relation is written in a rotational like form, it is equivalent to Eg. (6
Since the two forms are equivalent we shall not discuss the rotational form further.

4.4, Fully Conservative Fourth Order Accurate Convective Schemes
for a Regular Grid System

In a regular grid system, proper fourth order accurate convective schemes are obt:
via a straightforward extension of the proper second order schemes:

—1x i —2X] —2><

4.8,U; Ju X 18,U] T
Div. — R4); = = , 72
( V- )I 3 81X] 3 82XJ ( )

1x;

—1x 51U| : 1—2x 52U|
Adv.— R4); = ! —ui’ , 73
(Skew— R4); = E(Div. — RA); + E(Adv.— R4);. (74)

(Div. — R4); was used by Horiuti [11], and is conservatigepriori in the momentum
equation. Using Egs. (36) and (31, times(Skew— R4); can be written as

451U lﬂﬁllxj/z 1526:]-2)(1@12)(]/2

up - (Skew— R4); =
v =3 3 X

(75)

Therefore,(Skew.— R4); is conservativea priori in the transport equation af2/2. The
conservation property gSkew — R4); in the transport equation of kinetic energy follows
directly. (Adv.— R4); and(Div. — R4); are connected through the equation

(Adv.— R4); = (Div. — R4); —u; - (Cont.— R4). (76)

As a consequencégDiv. — R4);, (Adv.— R4);, and (Skew.— R4); are all equivalent if
(Cont.— R4) = 0, and the conservation properties(dfdv. — R4) and (Div. — R4) can
be determined by using Eq. (76). Table 5 summarizes the results. It is evident that t
schemes are a proper set of convective schemes prog@tted. — R4) = 0.
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TABLE 5
Conservation Properties of Proper Fourth Order Accurate Convective
Schemes in a Regular Grid System

Transport equations

FD schemes for momentum eq. U uz/2 K
(Div. — R4) © @) e
(Adv.— R4) (@) (@) (@)
(Skew— R4) O © ©

Note.® is conservative priori andO is conservative ifCont.— R4) = 0.

5. FINITE DIFFERENCE SCHEMES IN A STAGGERED GRID SYSTEM

5.1. Continuity and Pressure Terms in a Staggered Grid System

In a staggered grid system, we define the discrete continuity and pressure terms as

8 .

(Cont.— 82) = 1—U' =0, 77)
61X
- &1p

(Pres.— S2); = 3 (78)

where theS2 denotes second order accuracy in a staggered grid system. Note that the
difference stencils cover only one mesh spacing since the derivatives are needed be
the nodal values. Analogous fourth order approximations are

945U 143U
Cont.—-#AH=-—— —-——=0, 79
( on ) 8 51X 8 83X ( )
961p 14sp
Pres.— $4); = -2~ _ Z%BF 80
(Pres )i 81%; 8 83X ( )

Local kinetic energy cannot be defined unambiguously in a staggered grid system ¢
the individual velocity components are defined at different locations in space. Some
of interpolation must be used in order to obtain the kinetic energy at the same point.
required interpolations for the pressure terms inkhequations are

81|0 % 51Ui pr

— p- (Cont.— 2), 81
51X| 81Xi P ( on ) ( )

1X; . .

9 &ip 5P 98U P 155U; p
2y 2P __U hi _ = — p-(Cont.—S4). (82
8 ' §1X; 8 & 8 81X 8 43X - (Con - (62)

The following relations can be used to show global conservation unambiguously:

1X;

Zzzui-(Pres—SZ)i=ZZZUi$—f : (83)

X1 X2 X3 X1 X2 X3

TPt 1 sp

1 3
D) RURCEEETES 969 9] VRSV L) HCE
X1 X2 X3 X1 X2 X3

Therefore, Eqgs. (78) and (80) are globally conservative if the corresponding disc
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TABLE 6
Conservation Properties of Finite Difference Schemes
for the Pressure Term in a Staggered Grid System

Transport equations

FD schemes for momentum eq. Ui K
(Pres.— S2) © O,
(Pres.— $4) ©) Oy

Note.© is conservativea priori, O, is locally conservative if
(Cont.— S2) = 0, O, is locally conservative ifCont.— $4) = 0.

continuity equations are satisfied. Table 6 shows a summary of the conservation prope
of the discrete pressure term in a staggered grid system.

The proper combination between second order continuity and pressure terms in a
gered grid system, Egs. (77) and (78), give us the following discretized Poisson equ:
for the pressuret(refers to the intermediate velocity field in the fractional step scheme; ¢
Eqg. (51)):

51 /8 1
01 (2P 2 cont.— 2. (85)
81X \ 01X a At

Similarly, the proper combination between fourth order continuity and pressure ter
Egs. (79) and (80), gives
9 4 (951{3 153p> 1 53 (951[:) 183[3

1
—— ——— —— """ ) = ——(Cont.— $4)*. (86
881X 861X 8 83X ) a At (Con ) (86)

81X 8 83X

" 85a%
The left-hand side of Eq. (85) results in a tri-diagonal matrix for one-dimensional proble
whereas the left-hand side of Eq. (86) results in a septa-diagonal matrix. Non-oscilla
solutions for the pressure are expected from Egs. (85) and (86), since both matrices
strong even-odd coupling.

5.2. Proper Second Order Accurate Convective Schemes in a Staggered Grid Systerr

As we have already mentioned, local kinetic enely= U;U; /2 cannot be defined
uniquely in a staggered grid system. Let us assume that a term is (locally) conservati
the transport equation &f if the term is (locally) conservative in the transport equations «
U2/2,U2/2, andUZ/2. Since the conservation propertiedgf/2 andUZ/2 are estimated
in the same manner as f0¢/2, only the conservation properties of the convective schem
in the momentum and?/2 equations need to be considered.

Let us define second order accurate convective schemes in a staggered grid syster

Div. — S2); = B0 0 87
(Div. — )i = T (87)

1X;
010
(Adv.— S2); = U 2L

) 88
ix (88)

(Skew— S2); = %(Div. — S2); + %(Adv.— S2);. (89)
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TABLE 7
Conservation Properties of Proper Second Order Accurate Convective
Schemes in a Staggered Grid System

Transport equations

FD schemes for momentum eq. U uz/2 K
(Div. — S2) © O O
(Adv.— S2) @) (@] O
(Skew— S2) O © )
Note.® is conservativa priori andO is conservative ifCont.— S2) = 0.
Using Egs. (40) and (41JAdv.— S2); is connected witliDiv. — S2); via
(Adv.— S2); = (Div. — S2); — U; - (Cont.— S2) . (90)

(Div. — S2); is the standard divergence form in a staggered grid systeniqdi. — S2);
was proposed by Kajishima [5]Skew— S2); is equivalent to the scheme that was propose
by Piacsek and Williams [12].

Clearly (Div. — S2); is conservative priori in the momentum equation. Using Egs. (41
and (42), the product betweéh and(Skew— S2); can be rewritten as

1y —— 1
5,000, /2

U; - (Skew— S2); =
51Xj

(91)

Therefore(Skew— S2); is conservative priori in the transport equation mf/z.

By using Eg. (90), the conservation properties of the various schemes are determ
The results are summarized in Table 7. These schemes are seen to be conservative pr
that the continuity equation is satisfied.

5.3. Existing Fourth Order Accurate Convective Schemes in a Staggered Grid System

Before proposing fully conservative fourth order accurate convective schemes, we
examine some existing fourth order schemes in a staggered grid system. By simple exte
of the proper second order accurate convective schemes, we obtain the schemes

95161'1Xi Jili ~ }5361'3Xi Lji3x,-

Div. — HAA); = - , 92
( )i 8 51Xj 8 53Xj ( )
1X; 3x;
9 TIX 81Ui ! l 73 53Ui !
Adv.— HAA); = U — _ZyXx=-_ | 93
1 1
(Skew— HAA); = é(D|v. — HAA); + E(Adv.— HAA);. (94)

(Div. — SAA); was used by A-Domis [4], and is conservataegriori in the momentum
equation. Using Egs. (41) and (42), the product betwageand (Skew.— S4A); can be
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written as

98U U0 "2 18,000, 0 /2
U; - (Skew— $4A); = = — - = )
8 51Xj 8 53Xj

(95)

Therefore(Skew— S4A); is conservativa priori in the transport equation &f2/2. The
difference betweefAdv.— $SAA); and(Div. — S4A); is

95,0, 1530, 3*')

- 96
8 51Xj 8 53Xj ( )

(Adv.— SAA); = (Div. — HAA); — U; - (
This equation is the discrete analogue of Eq. (13). Howeyaly. — SAA); is not equal
to (Div. — $4A);, because the term that appears on the right-hand side of Eq. (96) dif
from the properly discretized fourth order continuity equation in a staggered grid sys
(Eq. (79)). The difference between the right-hand side of Eq. (96) and Eq. (79) scales
gmlxi 1m3xi .
<§E — §R ) — (Cont.— $4) = O(h"), (97)
whereh is grid spacing. While the error is small it is not zero and thereféub.— S4A);
does not conserve momentum. As a consequéBkew— SAA); does not conserve mo-
mentum either. Furthermore, using Egs. (95), (96), and (94) it can be showDitiat
SAA); and (Adv.— S4A); do not conserv&)?/2. Table 8 shows the conservation proper
ties of (Div. — S4A);, (Adv.— SAA);, and(Skew— S4A);. It is evident that each of these
schemes has one or more conservation defects. In spite of this, it might be expecte
some of these schemes could still be used since the errors in the taidtdie Indeed,
(Div. — S4A); was used in [4] to obtain good results for LES of isotropic decaying tu
bulence at low Reynolds number. However, we observed numerical instabilities in L
of channel flow at high Reynolds number with the same scheme. The instability may
avoided by usingSkew— S4A); (since it conserves kinetic energy) but momentum woul
not be conserved in this case.
Another possible set of fourth order accurate convective schemes in a staggerec
system is

, 981 [/9-1 Lo\ (91 13
Div. — $4K); = - — [ zU™ —ZUu® ) ( Zu™ - Zu™
¢ % 8 81X Ks e g ' 8!

1 53 9—1x 1—3X. 9_1x- 1_3x-
— = ZuP—ZuX ) (Zu = Zu 98
sangKsl g 8 8 - 9

TABLE 8
Conservation Properties of A-Domis Type Fourth Order Accurate
Convective Schemes in a Staggered Grid System

Transport equations

FD schemes for momentum eq. Ui uz/2 K
(Div. — HAA) O A A
(Adv.— SAA) A A A
(Skew— $4A) A © ©

Note.Q is conservative priori. A has an error 0O (h*) even if Cont.— $4) = 0.
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1X;
_ 1— . 1 . )
(Adv.— SAK); = g(gu.lx' _ _st.) (?ﬁ _ _ﬂ>

g ! 8 ! 8 51Xj 8 53Xj
3X
1791 1-a\ (96U,  1630;\ "
— (2o Zu¥ ) (22 2B 99
8(8 J 8! 851X] 883XJ ( )
1 1
(Skew— HAK); = E(Div. — SAK); + é(Aolv.— HAK);. (100)

(Adv.— $4K); was proposed by Kajishima [5] as the extension of his second order sch
(Eq. (88)). Unfortunately, the conservation properties of Egs. (98), (99), and (100) are sin
to those of Egs. (92), (93), and (94), and thus each of them has at least one consen
error.

5.4. A Proposal for Fully Conservative, Higher Order Accurate Convective Schemes il
Staggered Grid System

In this section we show how to construct fully conservative convective schemes f
staggered grid system having arbitrary order of accuracy. We start with the following se
fourth order accurate schemes:

. 9§ 99— L1—3\,T1x 196 9—1x L1—3\—
(D|V _ S4)| = 1 |:<_Ule| _ éU]_3X|>Lji:|.x|:| - 3 |:<_UJ_1X| _ éUfX|)Uj3XJ:| ,

85:x; [\8 ~ 8683x; | \8
(101)
1x 3X
9/9 1 Ll-a\oUi ' 179~ 15 &U
Adv.— SA) = = (UM —Zu¥ ) ==L S Sy o) ==L (102
(Alv.— S0 8(8‘ 81>51xj 8\8 1 87 ) (102)
1 1
(Skew— 4); = é(Div. — ) + E(Adv.— ;. (103)

We see thatDiv. — $4); is conservativa priori in the momentum equation. Using Egs. (41
and (42), the product betweé&h and(Skew— $4); can be rewritten as

—— 1X
9 81 | (971 Lag Uil
Uy - (Skew— S$4); = ~ —— l(_u_lxl _ _U3x1> iUy ]

85,x; [\8 ) 8 2
L | (91 _ Lge U0, ™ (104)
85sx; [\8 1 8 2 '

Thus, (Skew — $4); is conservativea priori in the transport equation dfZ/2. Using
Egs. (40) and (41), the relation betwe@udv.— S4); and(Div. — $4); is

(Adv.— S4); = (Div. — S4); — U; - [g(COnt.— S :—;(Cont.— 54)3“‘} . (105)

This equation is a proper discrete analog of Eq. (13), @uty. — $4);, (Div. — $4); and
(Skew— $4); are equivalent ifCont.— $4) = 0. Table 9 shows the conservation propertie
of the proposed schemes. Comparing Table 9 with Table 1, we see that the present scl
are fully conservative provided that the discrete continuity relation is satisfied.
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TABLE 9
Conservation Properties of Proper Fourth Order Accurate Convective
Schemes in a Staggered Grid System

Transport equations

FD schemes for momentum eq. Ui uz/2 K
(Div. — $4) © (@) (@)
(Adv.— ) O @) @)
(Skew— ) O © ©

Note.® is conservativa priori andO is conservative ifCont.— S4) = 0

Higher order fully conservative finite difference schemes can be constructed in the s
way as for the fourth order schemes. The pattern faharder accurate scheme can be see
most clearly in the divergence form. The basic procedure is to make multiple evaluatior
the convective term on stencils spannin@.l .., n — 1 mesh spacings and then combine
the results with the appropriateh order accurate interpolation operator. In making th
evaluation on stencil of sizm, the convection velocity must be interpolated with titk
order accurate interpolation operator, whereas the flux velocity must be interpolated w
2nd order operator havingra-point stencil. Thus in general we can write

n/2

(Div. — Sn); = ZO‘

k=1

k-

n/2
[(Zala(le)x> (U_J (2k1)XJ)‘| 7 (106)

S2k-1)X]

where thexy are the interpolation weights (see Eqgs. (32) and (35)). A similar general form
exists for the advective form

(2k=1)x;

(Adv.— Sn); (107)

S(2k-1)X]

n/2 n/2 _ s Us
= Zak<zaluj(2I—l)xi> (2k—1) |
k=1 =1

The continuity and pressure terms involve straightforward applications of the higher o
interpolation operators:

n/2 3 U'
Cont.— Sn =S o1 _q, 108
( ) g G (108)
2o
(Pres.— Sy = 3 g &P (109)

k=1

Sk-1Xi

As an example, the proper set of sixth order schemes in a staggered grid system is

1508:;U; 25 83U 3 85U
Cont.— $6) = —— - = — =0 110
( ) 128 51X 128 83X 128 55X ’ ( )
1506;p 25 83p 3 &sp
Pres.— $6)j = —— —— — — 2P , = F 111
( )i 12881%  12883% = 12885X (111)
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. 150 § 150 —,. 25 —a 33—\ —1y
(Div. — $6); = 1 l:( U Uj3x. +_U5x,>uilx,:|

1286:x; |\ 12871 128 128"}
25 83 [[/150-1, 25 -5 3 o\ ~ax
I 7U i _7U i 7U i U ]
12855x; Klzs i T8 T80 )V
3 85 150_1X‘ 25 73X 3 5% —BX;
2 % | 0gm _ 2%, ° g\ ™| (112
* 12855, Klzs i 1Yl gt )V (112)
1X;
1507150 1, 25 o 3 o\ 01U;
Adv.— SB); = — U _ 220 4 2 g5 ) 2T
(Adv. = o) 128(128 T 1280 T12870 ) aix,
3Xj
_ 25 (18051 _ 25 gac 3 s Ui
128\128°) 1281 ' 128 1 ) 83x
3 7150 25 3 35U;
3 (10gm _ 2 ge 8 ga) BUT g,
+128(128 T 1280 12870 ) Gex; (113)
1 1
(Skew— S6); = é(D|v. — S6); + 5(Adv.— $6);. (114)

6. FINITE DIFFERENCE SCHEMES IN A COLLOCATED GRID SYSTEM

The main advantage of a staggered grid system is that it results in a non-oscille
pressure field. On the other hand, a regular grid system is convenient in a curvilinear
system. Acollocatedgrid system supposedly has the merits of both regular and stagge
grid systems, and has mainly been used for steady flow simulations. In the subsec
below, the conservation properties of these schemes are considered. Such an anal
useful since some unsteady flows have recently been simulated using the collocatec
system (for example, [13]).

6.1. Second Order Accurate Schemes in a Collocated Grid System

We first consider second order accurate finite difference schemes in a collocated
system. The discrete continuity equation is centered at the definition pgintold makes
use of the interpolated flux velocitl;, rather than the velocity itself:

(Cont.— C2) = il =0. (115)
81X
This is similar to the procedure used in the staggered grid system. The pressure term
momentum equation is discretized usifiRres.— R2); of Eq. (46). This is similar to the
regular grid system. Therefore, the projection stage onto a solenoidal field in the fracti

step method is
UMt = uf — aAt(Pres.— R2);, (116)
(Cont.— C2)™! = 0. (117)

This projection stage corresponds to Eqgs. (51) and (52). In this stage, the velocity cor
nentsk; are computed via the following special interpolation formula [14]

Frt = uT*lXi — aAt(Pres.— S2);. (118)
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(Pres.— S2); is the pressure term of Eq. (78) that is used in the staggered grid syst
The Poisson equation for the pressure for the collocated grid system is constructe
substituting Eq. (118) into Eq. (117) in a discrete sense.

—1x;
PN i o
S1Xi \ 01X alAt 81X

The left-hand side of Eq. (119) is the same discrete form of Eqg. (85) in the staggered
system, and as a result, non-oscillatory pressure solutions are expected from this equ
The following convective schemes are equivaleriCiébnt.— C2) = 0:

—1X;
S1Fju™
(Div. — C2); = 2% (120)
31Xj
—5 U lXj
(Adv.— C2); = Fj— | (121)
51Xj
1 . 1
(Skew— C2); = E(D|v. —C2)i + E(Adv.— C2),. (122)
(Adv.— C2); is connected witl{Div. — C2); through
(Adv.— C2); = (Div. — C2); — u; - (Cont.— C2). (123)

(Div. — C2); is conservative priori in the momentum equation. The product betwagn
and(Skew— C2), can be written as

81F; a2

usp - (SkeW.— C2),= B,
J

(124)

Therefore(Skew— C2); is conservative in the transport equatiouf2. In the same way,
(Skew— C2); is conservative priori in the transport equation of kinetic enerffy Using
Eqg. (123), the conservation properties(Biiv. — C2);, (Adv. — C2);, and(Skew — C2);
are determined. The result is th@liv. — C2);, (Adv. — C2);, and(Skew — C2); are fully
conservative providedCont — C2) = 0.

Next, we investigate the pressure term in a collocated grid system. The pressure
is discretized usingPres.— R2);, which was shown in Eqg. (49) to be conservative in th
transport equation of kinetic energy@€ont.— R2) = 0. However, the collocated continuity
equation igCont.— C2) = 0 and thugPres— R2); is not locally kinetic energy conserving
in a collocated grid system. In addition, it can be shown {Rats.— R2); is not globally
conservative either in a collocated grid system. It can be shown that the difference bet
(Cont.— R2) and(Cont.— C2) scales like

(Cont.— R2) — (Cont.— C2) = O(At - h?). (125)

Therefore, the pressure term has a conservation er@t at - h?) in the transport equation
of kinetic energy. As will be shown in the following section, the conservation error appe
to be dissipative and thus the collocated grid scheme may be stable although still affect
conservation error. Table 10 shows the conservation properties for the second order ac
finite difference schemes in a collocated grid system.
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TABLE 10
Conservation Properties of Second Order Accurate Finite Difference
Schemes in a Collocated Grid System

Transport equations

FD schemes for momentum eq. U uz/2 K
(Div. — C2) © (@) (@)
(Adv.— C2) (@) ©) (@)
(Skew— C2) O ©) ©)
(Pres.— R2) © X \Y%

Note.© is conservativa priori, O is conservative if Cont.— C2) = 0, x is not
conservativeV has an error oD (At - h?) even if Cont.— C2) = 0.

6.2. Fourth Order Accurate Schemes in a Collocated Grid System

Next, we outline fourth order accurate finite difference schemes in a collocated
system. The continuity is discretized in the same way as Eq. (79) of the staggered
system, but using the interpolated flux velocities:

961 F 153K
Cont.—C4)=-——-——-——-=0. 126
( ) 8 51X 8 53Xi ( )

Fourth order accurate equations corresponding to Eqgs. (116), (117), and (118) are

uM™! = u¥ — aAt(Pres.— R4);, (127)

(Cont.— C4)"! =0, (128)
91y  1_3x

FrHl <§ui*1x. _ éur?ax.) — aAt(Pres.— S4);. (129)

The Poisson equation for the pressure resulting from Egs. (128) and (129) is

8 83X

948 (941p 1d3p 1383 (981p 143p
881X 881X 8 83X

861X 8 83X
1 9 8]_ 9—1Xi 1—3Xi 1 1 83 9—1Xi 1—3x‘
== ZO(EE ) o 2 B (2 Z). 30

ozAt881xi<8u' g!h > aAt883Xi<8u' g! ) (130)

The convective schemes that are equivalet€idnt.— C4) = 0 are

—x —3x|
; 981Fjui ! 183Fjui !

Div. — C4); = = -z i 131
( d 8 81X 8  83X; (131)
1X 3x

9 51ui ! 1 53Ui !
Adv.— C4), = - F,— — =F; ’ 132

(Skew— C4); = %(Div. —Cd) + %(Adv.— Ca);. (133)
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TABLE 11
Conservation Properties of Fourth Order Accurate Finite Difference
Schemes in a Collocated Grid System

Transport equations

FD schemes for momentum eq. U uz/2 K
(Div. — C4) O] O O
(Adv.— C4) @) o (@)
(Skew— C4) @] © ©
(Pres.— R4) ©) X \v4

Note.© is conservative priori, O is conservative if Cont.— C4) = 0, x is not
conservativeV has an error oD (At - h*) even if Cont.— C4) = 0.

(Adv.— C4); is related taDiv. — C4); via
(Adv.— C4); = (Div. — C4); — u; - (Cont.— C4). (134)

(Div. — C4); is conservative priori in the momentum equation. The product betwaen
and(Skew— C4), can be rewritten as

98:Fjuun™ /2 185F Uy /2
8 51X]' 8 53Xj ’

Therefore(Skew- C4); is conservativa priori in the transport equation a /2. (Skew-—
C4); is also conservativa priori in the transport equation &€, u3/2 andu3/2. Thus, the
conservation properties 0Div. — C4);, (Adv.— C4);, and(Skew— C4); are determined.
Once again, the pressure term is seen to violate kinetic energy conservation, with the
resulting from the difference betweé@ont.— R4) and(Cont.— C4). It can be shown that
this difference scales like

(Cont.— R4) — (Cont.— C4) = O(At - h%). (136)

Therefore(Pres— R4); leads to a conservation error®f At - h*) in the transport equation
of kinetic energy. Table 11 shows conservation properties of the fourth order accurate f
difference schemes in a collocated grid system.

Finally, we note that the transport equation of a passive seglar,usually centered at
the pressure node in a staggered grid system. In a collocated grid system, a similat
arrangement exists far andF;. Thus by analogy, we can use the results of this section
infer the conservation properties for the passive scalar equation in a staggered grid sy
In particular, Egs. (120), (121), and (122) (withreplaced by andF; replaced byJ;) are
conservative second order accurate convective schemes for a passive scalar in a sta
grid system. Likewise, Egs. (131), (132), and (133) can be used to generate consen
fourth order accurate convective schemes [4].

up - (Skew— C4); =

(135)

7. NON-UNIFORM GRID ARRANGEMENT AND BOUNDARY CONDITIONS

The preceding analysis has been conducted under the assumption of a uniform
In this section we generalize the analysis to non-uniform grid systems and discuss
treatment of non-periodic boundary conditions. We shall restrict our attention to the fol
order accurate schemes in a staggered grid system. Generalizations of the other sc
can be accomplished in an analogous manner. For simplicity, we also restrict our attel
to meshes that are non-uniform in only one direction.
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7.1. Non-uniform Grid Treatment for Fourth Order Accurate Finite Difference Schemes
a Staggered Grid System

Lety be the non-uniform direction with point distributign. A straightforward extension
of Egs. (26) and (27) for differentiation and interpolation on the non-uniform mesh is

M _ & Yjin2) — d(Yj-ns2)
Sny vi Yi+n/2 — Yj-ns2 '

(137)

M, = Y = Yi-n2?Yjin2) + Yjin2 — Yo Yj-ns2)
y Yi+n/2 = Yj-n/2

(138)

Unfortunately the above formulas do not satisfy Egs. (36) to (42), and therefore a sir
replacement of the uniform mesh operators with these forms will not result in conserve
schemes on a non-uniform mesh. More importantly, no operators appear to exist that 1
in fourth order accuracy while remaining fully conservative on a non-uniform mesh. C
must therefore make a choice between strict conservation and strict fourth order accu
If accuracy is to be sacrificed, full conservation can be achieved on a non-uniform n
through the use of the operators

g | _ ¢Yjsn2) — #(Yj—ns2)
SnYly, n-(Yj+y2 — Yj-12)

q?wyl _ & (Yj+n/2) + & Yj-ns2)
Yi = 2 .

(139)

(140)

These operators satisfy Egs. (36) to (42) and therefore lead to fully conservative sche
We shall denote the use of Egs. (139) and (140) in the second and fourth order diverg
forms as(Div. — S2 — F) and (Div. — $4 — F), respectively, where the F stands for
fully conservativeUnfortunately the loss of accuracy in this formulation is substantial wi
(Div.— $4— F) dropping to second order on a non-uniform mesh. Note(iat — S2— F)

is actually identical tqDiv. — S2) and thus retains second order accuracy, even on a n
uniform mesh.

If high order accuracy is desired, it is possible to optimize the scheme so that it rem
fourth order on a non-uniform mesh at the expense of a slight conservation error. A
shall see, the conservation error itself can be limited to fourth order in the mesh spa
and thus such a scheme may still be useful even for high Reynolds number calculatio

In order to illustrate the procedure, we start with the advective fofay.— $4), as this
form will require the least amount of modification [5]. A discrete fornV(% in (Adv.—$4)
on a non-uniform grid is

sU Ui —Uj U —U_
(V_> = Cf" Visap T 4 CF - Vi
8y /1 i+1 = Yj Yi —Yj-1
+C3 Vg Tl g8y g IS (141)
b ey T T s

where the four weights are

clt i3 — YD — Y- —Yi-1)

) [(Yj+3 = YD) — ¥i-3) — Vi1 — YD — Vi-DI(Yj41 — Yj-1)
cl- (Yi+3 = YY) — Yi-3)(Yj+1 — Yj)

L e = YD = Yi=3) — (Vi1 — YD) — Yi—D1Yj+1 — Yj-1)

(142a)

(142b)
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Yi+1 = YD = Y- — Yj-3)
= s S (1429
[(Yi+3 = YD) = ¥Yi-3) — Yj+1 = YD = Vi—D](Yj+3 — Yj-3)

L s = YD = Yi—a) — Yjs1 — YD) — Yi-D] (Y43 — Yj-3)

Vjin/2andV;_p,2in Eq. (141) are obtained via fourth order interpolatiow at the locations
Yitn2 = (Yj+n +¥j)/2 andyj_n2 = (Yj + Yj—n)/2, respectively. They are also shifted
half a cell in thex direction using fourth order interpolation (35). The interpolations al
such that the scheme collapses to Eq. (102) on a uniform grid, and thus will have the de
conservation properties in this limit. On a non-uniform mesh, the scheme is fourth ol
accurate when grid stretching is smooth (formal accura®y(is + h3g—2)), but has a fourth
order error in kinetic energy conservation. We shall refer to this schexdelas- S4— 9);,
where theS denotes that the scheme is fourth order even on a stretched mesh.

7.2. Boundary Conditions

As far as non-periodic boundary conditions are concerned, we restrict our attention
solid wall. We work in the context afhost pointdhat extend beyond the boundaries so the
a consistent stencil can be used on the interior as well as near the boundaries.

The boundary conditions can be designed to ensure global momentum conservati
the non-periodic and perhaps non-uniform direction if the following discrete relation ho

N 56
> (hy); —‘ = Pnt1/2 — P1/2, (143)
j=1 8y ||

whereég¢ /8y is an arbitrary finite difference operator, afta,); = (Yj+12 — Yj-1/2).
i =1/2andj = N + 1/2 denote the lower and upper walls, respectively. We shall enfor
this condition for the fully conservative scheniBjv. — S4 — F).

The viscous term requires the second derivative of streamwise velocity compdnen
in the wall normal direction. This quantity is discretized as follows near the wall

POl _n (80
sy2 |, sy \ syl JIj
(144)
sUIT AUt Wlel | (hy)jhy) i 33U )40
8Y [jy1/2 ay j+1/2 24 ay3 j+1/2,
whereU " (y) is the Lagrangian interpolation &f defined as
Y =YDy —Yi+D) Y — Yj+2)
USW)ljs12 = i
Wiz Vi1 = YD1 — Vi) V1 — Yir2)
Y =Yi-0y =Y+ — Yj+2) U
i = Yi-0; = Yi+) ) — Yi+2)
Y —=Yi-0 =YDy —Yj+2) -
+
Vit — Y01 — YDV — Vi)
(Y =YDy =YD = ¥j+1) Ujso. (145)

Yj+2 = Y- Vj+2 = YD Vj+2 — Yj+1)
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Mass conservation gives boundary conditions for the wall normal velocity compone
V_1/2 andVn,32 [5]:
V_1/2 = 2Vyy2 — V32, (146a)
VN+3/2 = 2VN412 — VN-1/2. (146b)

Momentum conservation for the convection term in the streamwise velocity equation g
the following boundary conditions:

(VXUY) 15 = 27(VXUY) 15 — (VU )30 — (VIUD)10 — 241 5U1 0, (147q)

(\7XJ3y)N+3/2 = 27(\7Xle)N+1/2 - (\7XJ3y)N—1/2 - (\7X63y)N+1/2 — 24Vn41/2UN+1)2,

(147b)
\7x = 9\71x _ :_L\73x
8 8
Boundary conditions for the streamwise velocity componggtl)_;, Un,1, andUy, o are
obtained from the solution of the two equations

u L(yj+1/2)’j+1/2 = Uj11/2, j=0N, (148)

3[UE(W)j41/2)

5y -0, |j=0N. (149)

j+1/2

For a uniform grid, the solution to these equations is

8 1
Up = §U1/2 —2U; + §U2, (1506.)
U_1 = 8Uy12 — 9U1 + 2U,, (150b)
8 1
Unt = éUN+l/2 —2Un + éUN—l, (150c)
UN+2 = 8UN+1/2 — 9UpN + 2UpN_1. (150d)

For a non-uniform grid, the solution will be of the same form but with the coefficients bei
dependent on ratios of the mesh spacings in the vicinity of the wall.

We must also specify_sz,» andVy s> for use in the wall normal momentum equation
These values are obtained from the mass conservation constraint appliedOatnd
j=N+1

981U 153U
Vog2 = 2Vy2 — 26Va2 — 24hy)o( = —— — = —— | . 151a
3/2 1/2 32 — 24( y)O(S 81X 8 83X )o ( )
956U 163U
VN+5/2 — 27VN+1/2 — 26VN,1/2 + 24(hy)N+1 <§811—X - 583;—x) N+1. (151b)

Here we assume théty)o = (hy)1 and(hy)n+1 = (hy)n. The wall boundary condition for
the pressure terndp/ady, is constructed to satisfy the following conservation constraint

N-1 (Sp
> )iz = pn — Pr. (152)
=1 8y

j+1/2
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This condition leads to
Po = 2p1 — P2, (153a)
PN+1 = 2PN — PN-1- (153b)

Simpler boundary conditions can be used if strict conservation is not required. In
work we use the analytical solution for Stokes flow [15] as the wall boundary condition
the fourth order advective fornfAdv.— 4 — S). The Stokes flow boundary condition is
implemented by simply requiring thek(—y) = —U (y) andV (-y) = V (y) near the wall
aty =0.

8. NUMERICAL TESTS

8.1. Periodic Inviscid Flow

To confirm the results of the previous sections with numerical tests, inviscid flow simt
tions are performed on a two-dimensional periodic domain. The analytical conservatiol
quirements dictate that the total momentyuy), and total kinetic energyK ) = %(varv%),
should be conserved in time. The continuity and momentum equation are solved with se
finite difference schemes in regular, staggered, and collocated grid systems. The pel
regionis Zr x 2w (L = 27), and a 16x 16 mesh is used. Solenoidal initial velocity fields
are generated from a stream function constructed from homogeneous random number
velocity fields are normalized ttw;) = (v2) = 0 and(Kp) = 1.0. A third order Runge—
Kutta scheme [16] is used for the time advancement. The Poisson equation for the pre
is solved by using fast Fourier transforms (FFT).

Figure 4 shows the error of the total kinetic enerdy,— Ko), after an integration time of
10L /(27 +/(Ko)), for the proper second order finite difference scheme in a staggered (
system. Kinetic energy is not conserved exactly since the third order Runge—Kutta
stepping method introduces a slight dissipative error. As expected, the time stepping
decreases with the cube At, and we observe no violation of kinetic energy conservatic
due to the spatial scheme. The same behavior is observed in the solutions of the other |
schemes in regular and staggered grid systems.

i /@

/\Q -
M 107F
¥ 3
\
| E A13
] o- :(Div.-82)
. < :(Div.-C2)
1071°F < :(Div.-C4)

107, 10’

1074

FIG. 4. Kinetic energy conservation error as a function of time step for several finite difference scheme:
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TABLE 12
Kinetic Energy Conservation Error for Various Finite Difference
Schemes in Regular and Staggered Grid Systems

Convective schemes (K — Koy atT =10
(Div. — R2) —0.782143x 10°®
(Div. — R4) —0.193674x 1077
(Div. — S2) —0.163436x 1077
(Div. — $4) —0.319145x 1077
(Div. — R29) +oo (diverged
(Adv.— R2S) +oo (diverged
(Rot.— R2S) —0.213400x 10°®
(Skew— R2) —0.782143x 10°®
(Div. — HAA) +0.244368x 107!
(Adv.— HAA) +0.317386x 10!
(Skew— HAA) —0.257874x 1077
(Adv.— SAK) +0.725221x 107!

Note. Consistency between the discrete continuity and pressure term with
regard to the accuracy of the convection schemes and to the grid system are used.
At=0.001.

As predicted by Egs. (125) and (136), both the second and fourth order finite differe
schemes in a collocated grid system conserve kinetic energy only tostd€his scaling
is verified in Fig. 4. Note that the error from the collocation scheme is dissipative in th
tests and the calculation is therefore stable. It is also important to note that the conserv
errors for the second and fourth order accurate finite difference schemes in a collocate
system withAt = 0.001 are larger than those of the proper schemes in regular and stagg
grid systems withAt = 0.1. Therefore, we do not recommend the use of the collocated g
system for high Reynolds number unsteady flow simulations.

The computational results for several other schemes in regular and staggered grid sy
are shown in Table 12. A time increment &f =0.001 is selected for the computations
The proper divergence forms in the regular and staggered grid systems conserve k
energy to within the time marching error. The corresponding proper advective and sk
symmetric forms are also seen to be conservative. The results from the standard diver
and advective forms in the regular grid systébiv. — R2S) and (Adv.— R2S), diverge.
(Skew.— R2) is equivalent to(Div. — R2), and is also conservative. Although the ro
tational form,(Rot. — R2S), appears to give good results, the scheme does not conse
u?, ug, u3. Existing fourth order schemes in the staggered grid sys@ivn— S4A), (Adv.—
HAA), and(Adv.— HAK), produce errors that increase gradually with time. This indicat
that the schemes are at least weakly unstable. The A-Domis type skew-symmetric f
(Skew— S4A), conserves kinetic energy, but momentum conservation is not ensured.

The results in Table 12 were generated with the appropriate combinations of the
cretized continuity and pressure terms. The importance of the correct combinatio
illustrated in Table 13, where inconsistent continuity and pressure forms are used.
apparent that kinetic energy is conserved only when the proper combination is used.

8.2. Evolution of Small Disturbances in Two-Dimensional Plane Channel Flow

In order to validate the order of accuracy of the schemes described in Section 7
simulate the growth of low amplitude eigenmodes in laminar channel flow using a n



118 MORINISHI ET AL.

TABLE 13
Kinetic Energy Conservation Error for (Div. — S4) with Several
Combinations of the Discretized Continuity and Pressure Term in
a Staggered Grid System

(Div. — %) (K —Kp)atT =10
with (Pres — S2) & (Cont — S2) +0.212040x 107t
with (Pres — S2) & (Cont — $4) +0.182125x% 102
with (Pres — $4) & (Cont — $4) —0.319145x 1077

Note.At = 0.001.

uniform mesh in the wall-normal direction. We compare the computed eigenmode gra
rate with the exact result obtained by solving the Orr—Sommerfeld eigenvalue probl
This procedure has been used by Madilal.[17], among others, to measure the accurac
of different numerical methods.

The exact solution of the Orr—Sommerfeld problem can be written as

U, y,t)=1—-Yy?) +e- Real{ dz(yy) expli (ax — wt)]}, (154)
V(X,Y,1) = —¢ - Realiag (y) expli (ax — wt)]}, (155)

wheregp (y) is the disturbance eigenfunctionis the wall normal direction—1 < y < +1),

«a is the wavenumber in the streamwise directior; w; + i w; is the temporal frequency,
ande is the perturbation amplitude. In this case we choose-R800 andx = 1. The only
unstable mode has, = 2.47075x 10! andw; = 2.66441x 1073, and its eigenfunction,
¢ (y), is computed by the algorithm of Orszag [18]. With the eigenfunction determined,
initial velocity field is generated by taking= 1 x 10~° and setting = 0 in Egs. (154)
and (155).

Before advancing the simulations in time, the accuracy of the convective scheme:

checked by simply differentiating the initial condition and comparing with the exact deri
tives computed from the eigenfunction in its Chebyshev—Fourier representation. In o
to establish order of accuracy, six different grid resolutiolls x N), 8 x 16,16 x 32,
32 x 64,64 x 128 128 x 256, and 256x 512 are used. We consider both uniform an
stretched grids in order to verify that the order of accuracy is unaltered by mesh stretct
For the stretched grid, we use a hyperbolic-tangent function to distribute the wall nor
velocity points,Yy (j) = ¥j+12 (] =0,1,2,..., N)

. tanhfy(2j/N —1)]
Yv(]) = tanh(y) . (156)

The stretching parameter, is taken to be 2.75. The grid is uniform in the streamwise d
rection Ax = 2w /M). The error associated witiv. — S2— F) is computed according to
M

+1 (g M2 2y 1/2
/_1 {M.z_; X’y]} dy. (157)

The second term in the sum in Eq. (157) is computed analytically using Egs. (154)

uu uvVv
Div.— S2— F); — [ 2 4+ &Y
( ) <8X + ay)
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FIG. 5. Error in the numerical approximation of the convective term as a function of the number of m
points. The test velocity field is composed of the small disturbance eigenfunction for laminar channel flo
Reynolds number 8000.

(155) att = 0. The error associated witDiv. — $4— F) and(Adv.— $4— S) are computed
in a similar manner.

Figure 5 shows the rate of convergence for the convective schi@&iwes S2— F), (Div.—
A - F), and(Adv.— $4— S). The convergence rates are seen to follow the expected tre|
for the uniform grid. The small differences betwa@iv. — 4 — F) and(Adv.— 4 — S)
for the uniform mesh case are due to differences in the wall boundary treatment. W\
the grid is stretched we see th@dv.— S4 — S) remains fourth order accurate, wherea
(Div. — 4 — F) reduces to second order. We also seetbat — S2 — F) remains second
order, even on the stretched mesh.

Next, the initial solution is advanced in time for 3.9 eigenfunction periods/ i)
and the growth rate at the end of run is compared with the exact value. A semi-imp
time marching algorithm is used where the diffusion term in the wall normal directi
is treated implicitly with the Crank—Nicolson scheme, and a third order Runge—KLt
scheme [16] is used for all other terms. The fractional step method [19] is used in
der to enforce the divergence free condition. The resulting Poisson equation for the |
sure is solved exactly using a Fourier Transform in the streamwise direction and eitt
tri- or septa-diagonal matrix algorithm in the wall normal direction for the second a
fourth order schemes, respectively. The same set of 5 meshes discussed previou
used in order to determine convergence rates. The time increments for the five m
are 0.04, 0.02, 0.01, 0.005, and 0.0025. The maximum CFL numbers are about 0.05 f
runs.

Figure 6 shows the error in the growth rate giver(bBiv. — S2— F), (Div.— $4—F), and
(Adv.— SA— S). Again we see thatAdv.— S4 — S) produces true fourth order convergenc:
whereadqDiv. — $4 — F) is limited to second order.

8.3. Large Eddy Simulation of Plane Channel Flow

Further numerical tests of the schemes described in Section 7 are performed using
channel flow. We consider fully developed incompressible flow and make use of peri
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FIG. 6. Errorin the eigenfunction growth ratetat= 100 as a function of number of mesh points.

boundary conditions in the streamwise and spanwise directions. The time marching ¢
rithm is the same as described in the previous subsection. The dynamic subgrid scale (
model [20] with the least square technique [21] and averaging in homogeneous direci
is used. For the purpose of the dynamic model, test filtering is performed in the span
and streamwise directions. Simulations are conducted at two Reynolds number8Re
and 650, based on the channel half width and friction velocity.

Figures 7 and 8 show the profiles of mean streamwise velocity and velocity fluctuati
respectively forthe schemdsiv.— S2—F), (Div.— $4—F), and(Adv—$4—S) at Re= 180.
Filtered DNS data [22] at the same Reynolds number are plotted as a reference in the fig
The logarithmic law for the mean velocity profild t = 2.5-log(y*) +5.5) is also plotted
in Fig. 7. In the figuresyt = u,y/v is the wall unit andJ * = U/u, is mean streamwise
velocity in the wall variablesy’, v’, andw’ are the resolved velocity fluctuations in the
streamwise, wall normal, and spanwise directions, respectivelyland is the resolved
Reynolds stress. The computational boxis» 2 x 47 /3 and 32x 32 x 32 mesh points
are used. The wall normal grid is stretched according to Eq. (156)vith2.40. In this
case, the grid spacings in wall units ax&* = 70.69 andAz" = 23.56.

The mean velocity is seen to be overpredicted in the logarithmic region when the set
order scheme is used. This discrepancy is reduced when the higher order schemes ar

oYy, — S(Dv.-S2-F)  _L.essil
N : (Div.-S4~F) =
5 b — :(4dv.-54-5)

-7
-,

10_ _ - P

: DNS, Kim et al.(1987)
—-= Ut=25 logy+l+ 5.5

fr 100 g 10°

FIG. 7. Mean streamwise velocity at Re 180 (LES, box 4 x 2 x 47/3, 32 x 32 x 32 grid).
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FIG. 8. Velocity fluctuations at Re= 180 (LES, box & x 2 x 47/3, 32 x 32 x 32 grid).

with the true fourth order schem@dv.— S4 — S), giving the best results. The streamwise
velocity fluctuation is overpredicted by the second order scheme whereas the spanwis
wall-normal fluctuations are underpredicted. Again these discrepancies are reduced
the higher order schemes are used witdv.— $S4 — S) giving slightly superior results.

In order to measure the effect of the numerical error unambiguously, thell88 sim-
ulations are repeated without the use of a subgrid-scale model. In this case the re
are compared with a spectral simulation (Fourier—Chebyshev—Fourier) performed witt
same number of mesh points, again without a subgrid-scale model. The spectral methc
be regarded as the limiting case for a higher order accurate scheme. The spectral algc
is the Kleiser—Schumann method [23] with Werne’s modification [24], and is based on
velocity and pressure formulation. Figures 9 and 10 show the profiles of mean stream
velocity and velocity fluctuations respectively f@iv. — S2 — F), (Div. — $4 — F), and
(Adv.— S4—9).

The trends shown in Figs. 9 and 10 are nearly identical to those shown in Figs. 7 at
and thus we can conclude that the discrepancies caused by the second order method :
to the numerical error and not a shortcoming of the subgrid-scale model. We also see
the finite difference results are closer to the spectral reference case when the higher
schemes are used.

Figures 11 and 12 show the mean velocity and velocity fluctuation profiles, respectiv
for (Div. — S2 — F), (Div. — $4— F), and(Adv.— $4 — S) at Re=650. Experimental data
[25] at the same Reynolds number are plotted as a reference in the figures. The logari
velocity profile U+ = 2.5 log(y™") + 5.0) is also plotted in Fig. 11. The computationa

20
L eeeeee :(Div.-S2-F) L
5 |~ :(Div.-S4-F) ] *
I : (Adv.-54-S) 2
0k ° : Spectral

fr " ¢

FIG. 9. Mean streamwise velocity at Re 180 (No SGS model, box# x 2 x 47/3, 32 x 32 x 32 grid).
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FIG. 10. Velocity fluctuations at Re= 180 (No SGS model, box x 2 x 47 /3, 32 x 32 x 32 grid).

box for this case is2 x 2 x 27 /3 and 48x 32 x 48 mesh points are used. The wall-norma
mesh is stretched according to Eq. (156) with= 2.75. The grid spacings in wall units are
AxT = 85.08 andAz" = 28.36. The results are similar to the two previous cases with tl
higher order methods showing an improvement over the second order method.

9. CONCLUSIONS

Conservation of mass, momentum, and kinetic energy for incompressible flow was sj
fied as analytical requirements for a proper set of discrete equations. Several pre-ex
schemes in regular, staggered, and collocated grid systems were analyzed with reg
their conservation properties. Most of these schemes were found to violate one or more
conservation properties. Both second and fourth order accurate fully conservative sch
were then derived where lacking for the regular and staggered mesh systems. A ge
procedure for constructing fully conservative schemes of arbitrary order in a staggered r
system was also derived. Treatment for non-uniform meshes and non-periodic bour
conditions was given in detail for the new fourth order staggered mesh scheme. It was f
that strict conservation and strict fourth order accuracy could not be obtained simultanec
on a non-uniform mesh. Accordingly, two alternative schemes were derived. Thefirstis f
conservative but only formally second order accurate on a stretched mesh. The secc
formally fourth order accurate on a stretched mesh but has a fourth order violation in kir
energy conservation. The two schemes become identical on a uniform mesh where the
simultaneously conservative and fourth order accurate. Numerical tests on a non-uni

— : (Div.-S2-F) o
20f -.e.-. : (Div.-84~F) ]
[ ——  (Adv.~54-S) .-

-
.

U+

10F .-
I o Hussain & Reynolds(1970)
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N P | PR
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FIG. 11. Mean streamwise velocity at Re 650 (LES, box 2 x 2 x 27/3, 48 x 32 x 48 grid).
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FIG. 12. Velocity fluctuations at Re= 650 (LES, box 2 x 2 x 27/3, 48 x 32 x 48 grid).

mesh indicated a slight superiority of the fourth order, slightly non-conservative sche
The higher order schemes were compared with a second order scheme for turbulent ct
flow simulations and both variants were found to result in a significant improvement in
computed statistics.
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