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Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE),
which often progresses to end-stage renal disease (ESRD) and ultimately leads to death. At
present, there are no definitive therapies towards LN, so that illuminating the molecular
mechanism behind the disease has become an urgent task for researchers. Bioinformatics
has become a widely utilized method for exploring genes related to disease. This study set
out to conduct weighted gene co-expression network analysis (WGCNA) and screen the
hub gene of LN. We performed WGCNA on the microarray expression profile dataset of
GSE104948 from Gene Expression Omnibus (GEO) database with 18 normal and 21 LN
samples of glomerulus. A total of 5,942 genes were divided into 5 co-expression modules,
one of which was significantly correlated to LN. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted on the
LN-related module and the module was proved to be associated mainly with the activation
of inflammation, immune response, cytokines, and immune cells. Genes in the most
significant GO terms were extracted for sub-networks of WGNCA. We evaluated the
centrality of genes in the sub-networks by Maximal Clique Centrality (MCC) method and
CD36 was ultimately screened out as a hub candidate gene of the pathogenesis of LN. The
result was verified by its differentially expressed level between normal and LN in
GSE104948 and the other three multi-microarray datasets of GEO. Moreover, we further
demonstrated that the expression level of CD36 is related to the WHO Lupus Nephritis
Class of LN patients with the help of Nephroseq database. The current study proposed
CD36 as a vital candidate gene in LN for the first time and CD36 may perform as a brand-
new biomarker or therapeutic target of LN in the future.
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17 Abstract

18 Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE), which 

19 often progresses to end-stage renal disease (ESRD) and ultimately leads to death. At present, 

20 there are no definitive therapies towards LN, so that illuminating the molecular mechanism 

21 behind the disease has become an urgent task for researchers. Bioinformatics has become a 

22 widely utilized method for exploring genes related to disease. This study set out to conduct 

23 weighted gene co-expression network analysis (WGCNA) and screen the hub gene of LN. We 

24 performed WGCNA on the microarray expression profile dataset of GSE104948 from Gene 

25 Expression Omnibus (GEO) database with 18 normal and 21 LN samples of glomerulus. A total 

26 of 5,942 genes were divided into 5 co-expression modules, one of which was significantly 

27 correlated to LN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

28 enrichment analyses were conducted on the LN-related module and the module was proved to be 

29 associated mainly with the activation of inflammation, immune response, cytokines, and immune 

30 cells. Genes in the most significant GO terms were extracted for sub-networks of WGNCA. We 

31 evaluated the centrality of genes in the sub-networks by Maximal Clique Centrality (MCC) 

32 method and CD36 was ultimately screened out as a hub candidate gene of the pathogenesis of 

33 LN. The result was verified by its differentially expressed level between normal and LN in 

34 GSE104948 and the other three multi-microarray datasets of GEO. Moreover, we further 

35 demonstrated that the expression level of CD36 is related to the WHO Lupus Nephritis Class of 

36 LN patients with the help of Nephroseq database. The current study proposed CD36 as a vital 

37 candidate gene in LN for the first time and CD36 may perform as a brand-new biomarker or 

38 therapeutic target of LN in the future.
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39 Introduction

40 Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease characterized by 

41 autoantibody production, complement activation and immune complex deposition. The incidence 

42 of SLE ranges from 0.03‱ to 2.32‱ person-years worldwide (Rees et al. 2017). 

43 Lupus nephritis (LN) is one of the most frequent and severe organ manifestations in patients with 

44 SLE, the hallmark of which is often glomerulonephritis. Approximately 50% of SLE patients 

45 develop clinically evident renal disease, up to 11% of whom develop end-stage renal disease 

46 (ESRD) at 5 years (Tektonidou, Dasgupta and Ward 2016, Almaani, Meara and Rovin 2017). LN 

47 is an important cause of ESRD and mortality. The initial and subsequent therapy of LN mainly 

48 consists of immunosuppressants and glucocorticoids, which means there are little efficient and 

49 specific therapies. Thus, it is a pressing task to clarify molecular mechanisms involved in LN.

50 LN is characterized by its complicated physiopathologic mechanism. In LN patients, the 

51 formation of immune complexes in different glomerular compartments, the activation of innate 

52 immune signal pathways, the infiltration of immune cells and proinflammatory mediators can 

53 harm glomerular cells through various approaches (Devarapu et al. 2017). Although many 

54 studies have determined certain pathological mechanisms of LN, the pathogenesis is still far 

55 from clear.

56 With the development of gene microarray and high-throughput next-generation sequencing, 

57 bioinformatics analysis of gene expression profiling has been broadly applied to explore the 

58 mechanism underlying diseases and potential diagnostic biomarkers or treatment targets. Among 

59 diverse means aiming to investigate altered molecular elements based on comparison between 

60 groups of different states, weighted gene co-expression network analysis (WGCNA) is a 

61 powerful tool utilized for describing the correlation patterns among genes and exploring hub 

62 genes related to certain traits (van Dam et al. 2018, Langfelder and Horvath 2008). WGCNA 

63 constructs a co-expression network between genes, and then, genes are divided into several co-

64 expression modules by clustering techniques. Genes in certain module are deemed to share 

65 similar biological function and biological process. At last, after relating modules to clinical traits, 

66 modules with high correlation to disease are further analyzed and hub genes of pivotal 

67 importance to disease are identified. WGCNA has been broadly used for studying of diseases 

68 such as cancer (Jardim-Perassi et al. 2019), neuropsychiatric disorder (Huggett and Stallings 

69 2019), chronic disease (Morrow et al. 2015) and proved to be quite useful. 

70 However, although researchers have conducted numerous bioinformatics studies about LN and 

71 have got many achievements (Arazi et al. 2019, Panousis et al. 2019), WGCNA has rarely been 

72 used for studies of LN (Sun et al. 2019). In our study, we constructed a co-expression network of 

73 the expression profile of glomerulus tissue by WGCNA and confirmed gene modules related to 

74 LN. After systematically analyzing the LN-related co-expression module by series of 

75 bioinformatics methods, a hub gene associated with LN was identified and verified. Depend on 

76 the potential roles of the hub gene in the pathogenesis of LN, we expect to propose novel clues 

77 of the diagnosis and treatment of LN.

78 Materials & Methods
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79 Expression profile data collection

80 The overall procedures of our study are illustrated in the flow chart (Fig. 1). The gene expression 

81 profile of GSE104948 was selected and obtained from the Gene Expression Omnibus (GEO) 

82 database (https://www.ncbi.nlm.nih.gov/geo/). The raw data is available in the GEO database. 

83 The dataset consists of microarray-based gene expression profiles of 32 LN samples and 18 

84 normal samples of glomerular tissues from SLE patients and living kidney transplant donors 

85 respectively. The glomerular tissues were microdissected and verified with glomerular-selective 

86 transcripts (Grayson et al. 2018). The expression values have already been log2 transformed.

87 Data preprocessing

88 The probe annotation was conducted under the Perl environment with the microarray platform 

89 file. Probes matching with multiple genes were removed, and for genes corresponding to 

90 multiple probes, the average values of probes were regarded as the expression values of the 

91 genes. A total of 11,884 genes were left after the probe annotation.

92 Since non-varying genes are usually regarded as background noise, we filtered the genes by 

93 variance and the top 50% (5,942 genes) with larger variance were chosen for subsequent 

94 analyses.

95 Weighted co-expression network construction and module division

96 Before WGCNA, we excluded the outlier samples by sample clustering with the hierarchical 

97 clustering method. The sample IDs and details of all samples included in our study are available 

98 in Table. S1. After that, we applied WGCNA with the expression profile by using the WGCNA 

99 package (Langfelder and Horvath 2008) in the R environment (version 3.5.3). Firstly, we 

100 calculated the Pearson`s correlation for all pair-wise genes and constructed a correlation matrix. 

101 Secondly, the correlation matrix was transformed to an adjacency matrix (also known as scale-

102 free network) with an appropriate soft-thresholding value β. A reasonable β value would 

103 emphasize strong correlations between genes and penalize weak ones. We calculated the scale-

104 free fit index and mean connectivity of each β value from 1 to 30 respectively, and when the 

105 scale-free fit index is up to 0.85, the β value with highest mean connectivity is deemed as the 

106 most appropriate one. Then, the adjacency matrix was converted to a topological overlap matrix 

107 (TOM) so that the indirect correlations between genes are concerned. Finally, we used average 

108 linkage hierarchical clustering according to the TOM-based dissimilarity measure to classify all 

109 genes into several co-expression modules with a minimum size of 30 genes, thereby the genes 

110 with similar expression patterns were divided into the same module. After defining the first 

111 principal component of a given module as eigengene, we calculated the Pearson`s correlations of 

112 the eigengenes, and merged modules whose eigengenes were highly correlated (with Pearson`s 

113 correlation higher than 0.75) into one module. 

114 To verify the reliability of the division of modules, we plotted an adjacency heatmap of all the 

115 5,942 genes analyzed by WGCNA. Besides, we completed a cluster analysis of module 

116 eigengenes and plotted an adjacency heatmap to find out the interactions among modules.

117 Identification of clinically significant modules
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118 The clinical traits of our samples included normal and LN, we calculated the correlation between 

119 modules and traits. Modules of positive correlation with LN were considered as playing roles in 

120 the pathogenesis of the disease. On the other hand, genes in modules of positive correlation with 

121 normal trait are indispensable for maintaining normal biological functions. Thus, we extracted 

122 gene modules of highest correlation with LN and normal for subsequent studies.

123 Here, we introduced the definition of gene significance (GS) and module membership (MM), 

124 which represent the correlation of a given gene with clinical trait and module eigengene 

125 respectively. Genes in clinical-related modules should have high values and preferable 

126 correlations of GS and MM.

127 GO and KEGG pathway enrichment analyses

128 To explore the involved signal pathways and biological characteristics of genes in clinical-

129 related modules, we conducted Gene Ontology (GO) enrichment analysis and Kyoto 

130 Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and visualized the 

131 top 10 significant terms respectively with the clusterProfiler R package (Yu et al. 2012). For both 

132 of GO and KEGG, enrichment terms arrived the cut-off criterion of p-value < 0.01 and 

133 Benjamin-Hochberg adjusted p-value < 0.01 were considered as significant ones.

134 Differentially expressed genes analysis

135 To investigate the difference of the expression profiles between normal and LN samples of genes 

136 in clinical-related modules, we applied differentially expressed genes (DEGs) analysis based on 

137 Empirical Bayes test with the limma R package (Ritchie et al. 2015). The cut-off criterion was 

138 set as follow: |log2fold change (logFC)| > 1; p-value < 0.01; false discovery rate (FDR) < 0.001. 

139 The results were visualized with the heatmap R package (Galili et al. 2018).

140 Identification of hub gene

141 Hub gene of the LN-related module should have high connectivity with the whole module and 

142 LN trait, which may play critical roles in the molecular mechanism of LN. For identifying the 

143 hub gene related with LN, we extracted gene clusters that enriched in certain GO terms from the 

144 WGCNA network to construct sub-networks after GO enrichment analysis of the LN-related 

145 module. Then, we utilized the Cytoscape software and its plug-in cytohubba to seek out the hub 

146 gene from sub-networks (Shannon et al. 2003). After calculating the Maximal Clique Centrality 

147 (MCC) value of each gene, those with high MCC values was regarded as hub genes (Chin et al. 

148 2014). The results were exhibited with the Cytoscape software. We then surveyed the GS value, 

149 MM value and logFC value of the selected hub gene to validate its reasonability.

150 Validation of hub gene with the other GEO datasets

151 To further verify the differential expression level of the hub gene between normal and LN 

152 tissues, we analyzed the logFC value of the hub gene with data from the other three GEO 

153 datasets (GSE32591, GSE99339 and GSE113342). The GEO IDs and details of the datasets were 

154 given in Table. S1. 

155 Validation of the clinical significance of hub gene by Nephroseq database 

156 To assess the relationship between the expression level of the hub gene and the activity or grade 

157 of LN, we visited the Nephroseq database (http://v5.nephroseq.org), which provides unique 
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158 access to datasets from the Applied Systems Biology Core at the University of Michigan, 

159 incorporating clinical data which is often difficult to collect from public sources. We then 

160 analyzed the difference of the expression level of hub gene between patients in different WHO 

161 Lupus Nephritis Class (Weening et al. 2004) based on two datasets (the dataset of Peterson 

162 Lupus Glom and the dataset of Berthier Lupus Glom) from Nephroseq database (details available 

163 in Supplemental Document. 1). We performed unpaired t test for comparisons between groups 

164 and set the criterion of two-tailed value of p < 0.05 as statistically significant.

165 Results

166 Data preprocessing

167 After data preprocessing, 5,942 genes were selected for subsequent analyses. Sample clustering 

168 excluded the outlier samples and a total of 18 normal samples and 21 LN samples were left. The 

169 final result of sample clustering is shown in Fig. 2A, revealing satisfactory intra-group 

170 consistency and distinct difference between groups. The GEO IDs and details about the source of 

171 the samples are available in Table. S1.

172 Weighted co-expression network construction and module division

173 In the current study, taking both scale-free fit index and mean connectivity as reference, the soft-

174 thresholding was determined as 10 (Fig. 2B and Fig. 2C). Accordingly, the correlation matrix 

175 was transformed to an adjacency matrix and then converted to a topological overlap matrix. 

176 Based on average linkage hierarchical clustering and module merging, the genes were divided 

177 into 6 modules and were displayed with different colors (Fig. 3A), including the black, blue, 

178 brown, magenta, pink, and grey modules, containing 220, 2,881, 777, 465, 770, and 829 genes, 

179 respectively. Genes in the grey module were those couldn`t be divided into any co-expression 

180 modules.

181 Fig. 3B depicts the topological overlap adjacency among all the 5,942 genes analyzed by 

182 WGCNA, indicating that most genes have higher correlation with genes in the same module and 

183 lower correlation with genes in other modules, which means the division of the modules was 

184 accurate. The clustering dendrogram and adjacency heatmap of eigengene are shown in Fig. 3C 

185 and Fig. 3D, meaning that the 5 modules were mainly separated into two clusters.

186 Identification of clinically significant modules

187 We calculated the module-trait correlation coefficients and showed the results in Fig. 4A. The 

188 results illuminated that the blue module displayed highest correlation with LN trait (r = 0.91, p = 

189 2e-15), while the brown module related best with normal trait (r = 0.66, p = 4e-06). The GS and 

190 MM value of all member genes of the blue and brown modules were shown in the scatterplots 

191 (Fig. 4B and Fig. 4C). The GS and MM value were of high correlation in the two modules (cor = 

192 0.89, p < 1e-200, and cor = 0.73, p = 3.1e-130 respectively), suggesting that the genes in the two 

193 modules were associate with their module eigengenes and clinical traits synchronously and thus 

194 suitable for further analyses and hub gene excavation. We then renamed the two modules as top 

195 LN module and top non-LN module respectively.

196 DEGs analysis of trait-related modules
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197 We applied DEGs analysis for the two trait-related modules. For the top LN module, 203 DEGs 

198 were screened in LN compare with normal, including 195 up-regulated genes and 8 down-

199 regulated ones. While, the top non-LN module contained 78 DEGs, all of which were down-

200 regulated. The top 30 of up-regulated and down-regulated genes are displayed in Fig. 5 

201 respectively. The logFC value, p-value, and FDR of DEGs are given in Table. S2.

202 GO and KEGG Enrichment analyses of trait-related modules

203 To confirm the biological themes of genes in the trait-related modules and find the underlying 

204 biological pathways behind LN, we performed GO and KEGG enrichment analyses towards the 

205 top LN and top non-LN modules and the top 10 significant terms of GO and KEGG are exhibited 

206 in Fig. 6 and Fig. 7 respectively. The complete results of GO and KEGG enrichment analyses 

207 were given in Table. S3.

208 For the top LN module, enriched GO-BP terms were mainly about activation of immune 

209 response, immune cells, cytokine production, and inflammation (Fig. 6A), such as “neutrophil 

210 activation” (gene count = 178, p = 7.26e-301.52E-20), “positive regulation of defense response” 

211 (gene count = 160, p = 9.14e-25), “activation of innate immune response” (gene count = 107, p = 

212 3.45e-18). Enriched GO-MF terms were mainly about cytokine and their receptors (Fig. 6B), 

213 such as “cytokine binding” (gene count = 39, p = 2.47e-8), “cytokine receptor activity” (gene 

214 count = 34, p = 5.3e-7), “cytokine receptor binding” (gene count = 69, p = 2.98e-5). For GO-CC, 

215 enriched terms were mainly involved in membrane and endocytic vesicle (Fig. 6C), such as 

216 “vesicle lumen” (gene count = 107, p = 4.13e-15), “cytoplasmic vesicle lumen” (gene count = 

217 106, p = 8.99e-15), “membrane region” (gene count = 95, p = 2.33e-12). The results of KEGG 

218 enrichment were similar to that of GO-BP, were mainly about immune and inflammation (Fig. 

219 7A). The top KEGG terms included “Complement and coagulation cascades” (gene count = 31, p 

220 = 6.55e-6), “Fc gamma R-mediated phagocytosis” (gene count = 34, p = 1.90e-5), “Th1 and Th2 

221 cell differentiation” (gene count = 33, p = 3.05e-5). Meanwhile, several well-known pathways 

222 involved in LN were also included, such as Th17 cell differentiation.

223 On the other hand, for the top non-LN module, the GO-BP results were mainly involved in the 

224 metabolism process of different kinds of molecule (Fig. 6D), for example, “small molecule 

225 catabolic process” (gene count = 93, p = 3.27e-41), “organic acid catabolic process” (gene count 

226 = 73, p = 3.97e-39), “carboxylic acid catabolic process” (gene count = 73, p = 3.97e-39). The top 

227 10 terms of GO-MF and GO-CC are also displayed (Fig. 6E and Fig. 6F). Similarly, the top 

228 KEGG terms were mainly about metabolism process (Fig. 7B).

229 Besides, we found that the magenta module also had high correlation with LN trait. The results 

230 of enrichment analyses of magenta module are also given in Table. S3.

231 Identification and validation of hub gene

232 We extracted the genes enriched in two of the top 10 significant GO-BP terms in top LN module, 

233 namely “neutrophil activation” and “positive regulation of defense response”, and constructed 

234 two sub-networks of the weighted co-expression network respectively. Co-expression pairs with 

235 top 500 weighted correlations in the sub-networks were selected for hub gene excavation. After 

236 importing the gene co-expression pairs and their weighted correlations into Cytoscape, we 
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237 calculated the MCC value of genes and the most central genes of the sub-network were screened 

238 out as shown in Fig. 8. In both sub-networks, CD36 had the maximum MCC value among all, 

239 and was therefore deemed as the hub gene under the pathogenesis of LN.

240 The GS and MM value of CD36 were 0.772 and 0.833, revealing CD36 was significant 

241 correlated with the top LN module and LN trait. The DEGs analysis showed that the expression 

242 level of CD36 in LN was abnormally up-regulated compared with that of normal. The logFC of 

243 CD36 was 2.298, which ranked 11th among all. 

244 Validation of hub gene with the other GEO datasets

245 For verifying our conclusion in a broader range, we interrogated the GEO database for more 

246 datasets about LN. We downloaded the datasets of GSE32591, GSE99339 and GSE113342, and 

247 then analyzed the differentially expressed level of CD36 between LN and normal (Fig. 9). In the 

248 four different datasets, the expression level of CD36 was consistently up-regulated in LN 

249 samples, illustrating a satisfactory reliability of the result.

250 Validation of hub gene by Nephroseq database

251 We analyzed the expression level of CD36 in glomerular tissues under different severity of LN 

252 evaluated by WHO Lupus Nephritis Class. The result indicates that CD36 was significantly up-

253 regulated with the aggravation of LN (Fig. 10), that is to say, CD36 plays an important role in 

254 the development of LN.

255 Discussion

256 In the current study, we used the expression profile of GSE104948 to screen the hub gene 

257 involved in the pathogenesis of LN. We performed WGCNA and divided all genes into 5 co-

258 expression modules. After relating the modules to clinical traits, we concluded that the blue 

259 module was of highest correlation with LN and was suitable for hub gene excavating. The brown 

260 module had the highest correlation with normal trait, and was also worthy of subsequent 

261 analyses. GO and KEGG enrichment illuminated that genes in the top LN module were mostly 

262 enriched in biological themes of the activation of inflammation, immune response, cytokine, and 

263 immune cells, and the top non-LN module was mainly about the metabolism process of various 

264 molecules. What`s more, DEGs analysis showed that almost all DEGs in top LN module were 

265 abnormally up-regulated, revealing an aberrant activated stage of inflammation and immune 

266 response in LN. On the other hand, all DEGs in the top non-LN module were down-regulated, 

267 meaning a reduced ability of material metabolism in LN. To achieve the ultimately purpose of 

268 finding out the hub gene, we extracted genes enriched in the GO terms of “neutrophil activation” 

269 and “positive regulation of defense response” and constructed sub-networks accordingly. Base 

270 on the MCC method, CD36 with maximum value of MCC in both sub-networks was regarded as 

271 the hub gene behind the pathogenesis of LN. We investigated the GS, MM and logFC of CD36 

272 and validated its importance. We interrogated the GEO database and got more datasets of LN, 

273 the obvious overexpression of CD36 was therefore further verified. Moreover, the association 

274 between CD36 and WHO Lupus Nephritis Class showed directly that the expression level of 

275 CD36 gradually up-regulates along with the development of LN evaluated by WHO Lupus 
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276 Nephritis Class, providing strong evidence that the abnormal over-expression of CD36 is an 

277 important element in the pathogenesis of LN.

278 The CD36 gene is located on band q11.2 of chromosome 7 (Fernandez-Ruiz et al. 1993). The 

279 protein encoded by CD36 is a kind of transmembrane protein (also known as scavenger receptor 

280 B2) expresses on the surface of various kinds of cells. In the glomerulus of kidney, CD36 

281 expresses in podocyte (Hua et al. 2015), mesangial cells (Ruan et al. 1999) and interstitial 

282 macrophages (Kennedy et al. 2013). Meanwhile, CD36 expresses in immunity correlating cells 

283 such as monocytes and macrophages (Collot-Teixeira et al. 2007). With multiple ligands, CD36 

284 involves in complex biological process such as lipid homeostasis, immune response and cell 

285 apoptosis.

286 There are no relative reports concerning the direct relationship between CD36 and LN. Our 

287 results have shown that CD36 mainly participates in the function of neutrophil, such as 

288 “neutrophil activation”, “neutrophil activation involved in immune response”, “neutrophil 

289 degranulation”, “neutrophil mediated immunity”, as well as the activation of immune response, 

290 such as  “positive regulation of defense response”, “positive regulation of innate immune 

291 response”, “innate immune response-activating signal transduction”, “positive regulation of 

292 immune effector process”. Base on the results, we conclude that CD36 performs important 

293 functions in the pathogenesis and development of LN through affecting the function of 

294 neutrophil and innate immune response. Studies have proved that deposited immune complexes 

295 (IC) could activate complement and attract neutrophils and potentiate their responses, which will 

296 lead to intense glomerulonephritis, release protease and Reactive Oxygen Species (ROS), and 

297 give rise to kidney involvement of SLE (Tsuboi et al. 2008). Besides, IC-induced activation of 

298 neutrophils can lead to the formation of neutrophil extracellular traps (NETs), which can be 

299 pathogenic and promote the release of type I interferon (Garcia-Romo et al. 2011). CD36 may 

300 candidate in the pathogenesis of LN by the above-mentioned pathways.

301 Numerous studies have shown that CD36 participates in the pathogenesis of several kinds of 

302 chronic kidney disease (CKD).

303 It has long been known that chronic inflammation is an important segment of the progression of 

304 CKD. Studies have proved that the ligands signal via CD36 to promote inflammatory response 

305 and the recruitment and activation of macrophage in the glomerulus (Kennedy et al. 2013). A 

306 report of LN showed that renal macrophage is associated with onset of nephritis and indicates 

307 poor prognosis (Bethunaickan et al. 2011). Meanwhile, oxidant stress plays a critical role in 

308 glomerular dysfunction. Along with chronic inflammation, CD36 may facilitate the development 

309 of oxidant stress in LN (Hua et al. 2015, Kennedy et al. 2013, Aliou et al. 2016).

310 Podocyte is most susceptible to injury among the component of the glomerulus and its injury 

311 leads to glomerular dysfunction in various renal diseases including LN. Here, we determined that 

312 podocyte functional markers were down-ragulated in LN glomerular tissue, including WT1 

313 (logFC = -0.273, p = 0.009) and NPHS1 (logFC = -0.306, p = 0.034), indicating the fact of 

314 podocyte injury. It is reported that in primary nephrotic syndrome mouse, the overexpression of 
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315 CD36 in the podocyte promotes its apoptosis (Yang et al. 2018). There is probably similar 

316 pathogenesis in the progression of LN.

317 Ectopic lipid deposition in kidney may cause lipotoxicity and further affect the function of the 

318 kidney (Lin et al. 2019). CD36 is a multifunctional protein function as a key molecule in the 

319 uptake of long-chain fatty acids, which is the main component of fatty acids uptake system in the 

320 kidney and plays a critical rule in the development of CKD (Gai et al. 2019). The expression 

321 level of CD36 is higher in kidney with acute or chronic damage, and lipid disorders will 

322 stimulate the up-regulation of CD36. Furthermore, CD36 can promote the uptake of lipid from 

323 plasma to tissue (Hua et al. 2015, Lin et al. 2019, Nosadini and Tonolo 2011, Yang et al. 2017). 

324 Among our results, the top 10 GO terms of non-LN module includes two terms about lipid 

325 metabolism:  fatty acid catabolic process (p = 8.03e-22) and fatty acid metabolic process (p = 

326 2.62e-20), implying that lipid disorders exist in the glomerular tissue, in which CD36 may take 

327 part. 

328 Regrettably, as most reports on the relationship between CD36 and kidney diseases are about the 

329 disorders of kidney in metabolic diseases, there is no study about the role CD36 plays in immune 

330 response, which is worthy of further study in LN.

331 Conclusions

332 In conclusion, through WGCNA and a series of comprehensive bioinformatics analyses, CD36 

333 was confirmed for the first time as a hub gene in the pathogenesis of LN. CD36 is likely to 

334 become a new biomarker or therapeutic target of LN. Our work might provide a new insight for 

335 exploring the molecular mechanisms of LN.
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Figure 1
Flow chart of the whole procedures in this study.

Data processing, analyses, hub gene identification and validation.
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Figure 2
Sample cluster dendrogram and soft-thresholding values (β) estimation.

(A) Sample cluster dendrogram and clinical trait heatmap of 18 normal samples and 21 LN
samples based on their expression profile. (B) Analysis of scale-free fit index of each β value
from 1 to 30. (C) Analysis of mean connectivity of each β value from 1 to 30. β = 10 was
chosen for subsequent analyses as it has the biggest mean connectivity when the scale-free
fit index is up to 0.85.
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Figure 3
Division and validation of co-expression modules.

(A) Dendrogram of all genes divided into 6 modules base on a dissimilarity measure (1-TOM).
The modules labeled by color are indicated below the dendrogram. The upper presents the
original division by average linkage hierarchical clustering according to the TOM-based
dissimilarity measure and the under presents the modules merged according to the
Pearson`s correlation of eigengenes. (B) Adjacency heatmap of the 5,942 genes analyzed by
WGCNA. The depth of the red color indicates the correlation between all pair-wise genes. The
red color mainly distributes in the diagonal of the heatmap. (C) Clustering dendrogram of
eigengenes. (D) Adjacency heatmap of eigengenes. Red represented high adjacency (positive
correlation) and blue represented low adjacency (negative correlation).
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Figure 4
Identification and verification of clinical related modules.

(A) Heatmap of module-trait correlations. Each cell depicts the correlation coefficients and P-
value. The cells are colored by the intensity of correlation according to the color legend (red
for positive correlation and blue for negative correlation). The blue module (top LN module)
and brown module (top non-LN module) were identified as trait-related modules. (B) Scatter
plot for correlation between the Gene significance (GS) and Module Membership (MM) in the
top LN module. Correlation coefficients and P-value is labeled at the top. (C) Scatter plot for
correlation between the GS and MM in the top non-LN module.
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Figure 5
DEGs analysis of two trait-related modules.

The color of each cell represents the expression level of a gene in a sample (red for high
level and blue for low level). Only DEGs with top 30 logFC values are displayed. (A) Heatmap
of DEGs in the top LN module. (B) Heatmap of DEGs in the top non-LN module.
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Figure 6
GO enrichment analyses of two trait-related modules.

The depth of color is corresponded to the enrichment significant of each term and the x-axis
indicates the enriched gene count. (A) Top 10 significantly enriched GO Biological Process
(BP) terms of top LN module. (B) Top 10 significantly enriched GO Molecular Function (MF)
terms of top LN module. (C) Top 10 significantly enriched GO Cellular Component (CC) terms
of top LN module. (D) Top 10 significantly enriched GO Biological Process (BP) terms of top
non-LN module. (E) Top 10 significantly enriched GO Molecular Function (MF) terms of top
non-LN module. (F) Top 10 significantly enriched GO Cellular Component (CC) terms of top
non-LN module.
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Figure 7
KEGG enrichment analyses of two trait-related modules.

The depth of color is corresponded to the enrichment significant of each term and the size of
the circle indicates the enriched gene count. (A) Top 10 significantly enriched KEGG terms of
top LN module. (B) Top 10 significantly enriched KEGG terms of top non-LN module.

PeerJ reviewing PDF | (2019:07:39216:2:0:NEW 20 Aug 2019)

Manuscript to be reviewed



PeerJ reviewing PDF | (2019:07:39216:2:0:NEW 20 Aug 2019)

Manuscript to be reviewed



Figure 8
Sub-networks of WGCNA based extracted based on most significant GO terms.

The nodes represent the genes and the edges represent the weighted correlation. Only co-
expression pairs with top 500 weighted correlations are included. The red and yellow nodes
represent genes of top 10 MCC values (red for a higher MCC value and yellow for lower). (A)
Sub-network of the GO term “neutrophil activation”. (B) Sub-network of the GO term
“positive regulation of defense response”.
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Figure 9
Differentially expressed level of CD36 between LN and normal in different GEO datasets.

(A) Expression level of CD36 in dataset of GSE104948. (B) Expression level of CD36 in
dataset of GSE32591. (C) Expression level of CD36 in dataset of GSE99339. (D) Expression
level of CD36 in dataset of GSE113342.
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Figure 10
Differentially expressed level of CD36 in glomerular tissues of different WHO Lupus
Nephritis Class.

(A) Differentially expressed level of CD36 in class II and class IV respectively (from the
dataset of Berthier Lupus Glom). (B) Differentially expressed level of CD36 in class III and
class IV respectively (from the dataset of Peterson Lupus Glom).
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