BestMap: Context-Aware SKOS Vocabulary Mappings in OWL 2

Rinke Hoekstra
Overview

• Use Case
 – Access to court proceedings
• Vocabulary Mapping
• Requirements
• BestMap
• Discussion
BestPortal

• BEST Project
 – “BATNA Establishment using Semantic Web Technology”
 – Best Alternative to a Negotiated Agreement

• Improve access to court proceedings
 – Netherlands Council of the Judiciary
 http://www.rechtspraak.nl
 – 50 thousand verdicts
“Does my case stand a chance in court?”

• Full text search is not enough
 – Laymen
 – Lawyers

• Lawyers have their own language: *legalese*
 – Bridge the gap between common sense and legal knowledge

• Knowledge-based solution too expensive
 – Modelling effort
 – Quality assurance
 – Legal theory: *definitions*
BestPortal: Requirements

• Translate **layman** description to **legal** terms

• Search using **fingerprints** of **legal** terms

• **Context** in which **layman** concepts co-occur in a case determines the applicability of a **legal** concept

• A mapping is **not** the definition of a concept
Vocabularies

• Cultural Heritage
 – Museums, libraries
 – Huge repositories of (rich) information
 – Annotated using many different vocabularies (knowledge organization systems)

• Concept-based information retrieval
 – Europeana portal (http://www.europeana.eu)
Why Vocabulary Mapping

• Integrated access? Vocabulary mapping!
 – Format (XML to RDF)
 • e.g. via XSLT one-way transformation
 – Structure (VCard:Given + VCard:Family to foaf:name)
 • e.g. via SPARQL++, one-way transformation
 – Concepts (foaf:Person to lkif:Person)

• Simple Knowledge Organization System (SKOS)
 – Lifting existing KOS’s to the Semantic Web
 – Every skos:Concept is an OWL individual
 – Lightweight semantic relations: broader, narrower, and related.
 – Lightweight mapping relations between skos:ConceptSchemes.
Europeana Datacloud
Mapping in SKOS

- skos:semanticRelation
- skos:narrower
- skos:related
- skos:narrowMatch
- skos:relatedMatch (symmetric)
- skos:closeMatch (symmetric)
- skos:exactMatch (symmetric, transitive)
- skos:broadMatch
- skos:broader
- skos:mappingRelation
- skos:related
- inverse
- disjoint
Information retrieval perspective vs. lightweight semantics

• No **many-to-many** mappings
 – Mapping only between *pairs* of concepts
 – Required for *re-indexing* and *search* across collections (Isaac et al. 2007)

• ... fundamental issue
 – SKOS concepts and relations are ‘intensional’
 – What does a mapping then *mean*?

• Implicit assumption of **extensionality**
Extensional View

• SKOS relations
 – “Resources annotated by some concept should be retrievable via its broader concept.”

• SKOS mappings
 – “Resources annotated by some concept should be retrievable via the concepts it is mapped to.”

• ... only means to assess quality
BestMap: Requirements

• Extensional perspective
 – Concepts as **annotations** on resources
• Compatibility
 – Integrated with SKOS
• Hierarchic mappings
 – Exploit `skos:broader` and `skos:narrower`
• Many-to-many mappings
 – Granularity
 – **Context** determines whether a mapping holds
• Flexible and Lightweight
 – A mapping is **not** the definition of a concept
Connecting to SKOS (1)

- Relation between :Resource and skos:Concept
 \[:about \equiv inv(:describes) \]
- Direct and indirect annotations
 \[:d_about \subseteq :about \]
 \[:d_describes \subseteq :describes \]
 \[:d_describes \equiv inv(:d_about) \]
Connecting to SKOS (2)

• Transitive broader/narrower

:about \circ skos:broaderTransitive \subseteq :bt_about

:about \circ skos:narrowerTransitive \subseteq :nt_about

• Similar for other SKOS relations
Connecting to SKOS (3)
Mappings as OWL Classes

• A **mapping** class:
 – *Classifies* resources annotated using one vocabulary, and
 – *Infers* annotations using the other vocabulary
 – ... it may be **directed**

\[
\text{ex:AO_Mapping} \equiv \text{:about value lv:animal} \sqsubseteq \text{:about value lv:company} \sqsubseteq \\
\text{:about value lv:dangerous_action} \sqsubseteq \text{:d_about value tv:animal} \sqsubseteq \text{:d_about value tv:animal_owner} \sqsubseteq \\
\text{:d_about value tv:damage}
\]
Example
Discussion

• Extensible
 – Any OWL axiom may be used in a mapping (e.g. someValuesFrom etc.)
 – Reusable (partial) mappings
 – Exclude resources annotated with a particular concept
 • Negative property assertions
• Novel
 – “Reification” wrt. normal OWL ontologies
• Overcomes limitations of SKOS semantics
 – Makes explicit the extensional perspective that underlies SKOS semantics
 – Non-intrusive
Discussion

• OWL 1 vs OWL 2
 – Property chains
 – Disjoint properties
 – Negative property assertions

• The bad
 – Cannot enforce that the mapping holds between two distinct concept schemes
 – Property chains are not equivalent to super property
Future Work

• Apply BestMap to other domains
 – Legal assessment based on spatial plans
 – ...

• Further development of BestPortal
 – Do the mappings actually work?
 – Structured mappings
 • (case frames)
 – Does BestPortal really improve access to court proceedings?
 – Connect to the linked data cloud