Short-term Linkable Group Signatures with Categorized Batch Verification

Lukas Malina¹, Jordi Castella-Rocà², Arnau Vives-Guasch², Jan Hajny¹

¹Department of Telecommunications Faculty of Electrical Engineering and Communication Brno University of Technology Czech Republic

²Department of Computer Engineering and Mathematics Universitat Rovira i Virgili Catalonia (Spain)

Malina et al.

Short-term Linkable Group Signatures with Categorized Batch Verification

FPS 2012 1 / 20

Scope

In ad hoc wireless networks like Vehicular ad hoc Network (VANETs) or Wireless Sensor Networks (WSN), data confidentiality is usually a minor requirement contrary to **data authenticity** and **integrity**.

Messages broadcasted from a node to other nodes should be authentic but also keep **user's privacy** in plenty scenarios working with personal data.

1

Appropriate schemes: Group Signatures (GS).

Security Requirements in VANETs

Problems in VANET Security

The current solutions have practical drawbacks:

- Expensive tamper-proof hardwares.
- Computation bottlenecks of the verification and revocation phases.
- Complicated certificate distribution/revocation.
- Omitting important properties like a short-term linkability demanded in several applications, e.g. change lanes of vehicles in VANET.

Requirements and Cryptographic Background

- Security properties of our solution:
 - Non-repudiation, message integrity and authenticity,
 - user privacy (revocable anonymity),
 - traceability.
- Used cryptography:
 - ECDSA signature scheme,
 - probabilistic ElGamal encryption,
 - group signatures based on *q*-SDH problem and Decision Linear problem (BBS04 scheme [1]).

7/20

Pairing-based Group Signatures

We employ **Group Signatures** (GS) based on the **BBS04** scheme [1].

General properties:

- Message integrity, authenticity and non-repudiation,
- anonymity,
- unlinkability,
- traceability.

Pros of GS:

- Only 1 public key (suitable for VANETs, WSN, WBSN ...),
- shorter security overhead than solutions using certificates,
- providing user privacy.

Cons of GS:

- Expensive due to pairing operations,
- growing a revocation list,
- vulnerability against several attacks, e.g. Denial of Services (DoS).

Expensive due to pairing operations.

- Minimize the number of pairings in verification due to a **batch verification**.
- Reduce pairings in signing.
- Redesign scheme.

Growing a revocation list.

- Use time restrictions of pseudonyms.
- Recompute the secret keys.

Vulnerability against several attacks.

- Check the hashes of signatures.
- Apply the time stamps (against replay attack).
- Sort out the potential honest/bogus messages due to a **short-linkability** and **categorized verification**.

Advanced Properties of Our Solution

Short-linkability:

- more efficient signing (reducing the pairing operations),
- possible sorting of the messages,
- no harming the privacy in long term (long-term unlinkability).
- Categorized Batch Verification:
 - sorts out potentially honest and bogus messages due to linkability,
 - less errors in the 1. batch \rightarrow O(1),
 - robust against the Sybil and Denial of Services attacks.

The Parties in Our Model

- Trusted Authority TA:
 - Issues certified pseudonyms,
 - generates cryptographic parameters,
 - reveals ID of a user.
- Group Manager GM:
 - Generates group member secret keys,
 - traces and opens malicious message.
- User V:
 - A driver with the certified pseudonym,
 - uses devices with VANET applications,
 - signs, sends and verifies messages.

Communication Pattern

Our Scheme

- Setup $Set(0, 1)^{l} \rightarrow parameters$
 - establishing cryptographic parameters,
 - setting keys of TA and GMs.
- Registration $\text{Reg}(ID_{Vi}) \rightarrow \pi_{Vi}$
 - a driver V_i is authenticated by TA (ECDSA, ElGamal),
 - TA issues pseudonym π_{V_i} to V_i .
- Join $Join(\pi_{Vi}) \rightarrow gsk_{Vi}$
 - V_i with π_{V_i} is anonymously authenticated by GM_i (ECDSA, ElGamal),
 - V_i obtains a group member secret key *gsk*_{Vi} from the GM_i.

Our Scheme

- Signing $Sig(M, gsk_{V_i}, gpk) \rightarrow \sigma$
 - using the modified group signature scheme (BBS04 [1]),
 - V_i signs *M* and outputs a group signature σ .
- Verification $Ver(M, gpk, \sigma) \rightarrow valid/invalid$
 - sorting the signed messages to 3 levels of credibility,
 - batch verification of group signatures.
- Trace **Trace**($M, \sigma, gmsk$) $\rightarrow gsk_{V_i}, \pi_{V_i}$
 - bogus signatures can be opened by GM_i,
 - GM_{*i*} reveals the part of pseudonym π_{Vi} from database.
- Revocation $\mathbf{Rev}(\pi_{Vi}) \rightarrow ID_{V_i}$
 - the cooperation of GM_i and TA,
 - TA reveals ID_{V_i} from π_{V_i} .

FPS 2012 14 / 20

The Performance Evaluation - Signing

In **Signing**, **pairing operations** are reduced $3 \Rightarrow 0$, exponentiations $10 \Rightarrow 9$ and multiplication $14 \Rightarrow 9$.

V2V scheme:	Our scheme	WLZ [4]	GSIS [3] & Zhang et al. [5] & Ferrara et al. [2]		
Short-term linka- bility:	yes	no	no		
The performance of Signing, excluding the first message					
Pairings	0	3	3		
Exponentiation	9	10	12		
Multiplication	9	14	12		

The Performance Evaluation - Verification

In Categorized batch verification, **pairing operations** are reduced $5n \Rightarrow 2$ (*n* - number of messages in one batch)

V2V scheme:	Our scheme	GSIS [3]	Zhang et al. [5]	Ferrara et al. [2]
	& WLZ		[-]	
	scheme[4]			
Batch:	yes	no	yes	yes
Length of sig-	$5G_1, G_T, 5Z_p$	3 <i>G</i> ₁ ,6 <i>Z</i> _p	$7G_1, G_T, 5Z_p$	$3G_1, G_T, 6Z_p$
nature:	(2380 bits)	(1500 bits)	(2570 bits)	(2032 bits)
Performance of batch verification				
Pairings	2	5n	2	2
Exponentiation	11n	12n	14n	13n
Multiplication	11n+1	8n	17n	10n+1
Performance of individual verification				
Pairings	5	5	5	5
Exponentiation	10	12	12	12
Multiplication	9	8	8	8

A proof of concept implementation in JAVA.

Properties:

- the Java Pairing Based Cryptography (jPBC) Library,
- MNT curves type D with the embedding degree k = 6, 171 b order curve,
- the implementation of signing, verification and batch verification.

-	Our scheme	BBS schemes
Signing	60 ms	160 ms
Single Verification	207 ms	224 ms
Verification of 10 mes-	500 ms (batch)	2240 ms
sages		

Tested on machine: Intel(R) Xeon(R) CPU X3440 @ 2.53GHz, 4 GB Ram.

Malina et al.

Short-term Linkable Group Signatures with Categorized Batch Verification

Contribution

- Practical and secure registration, join and revocation of members.
- Secure and anonymous inter-vehicle communication.
- Using short-term linkability → more efficient performance in Signing.
- Categorized batch verification → protection against DoS attacks in Verification.

Future work

- The investigation of categorized batch verification and short-term linkability in dense urban traffic.
- The determination of parameters.

Thank you for your attention.

D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In <i>Proc. Adv. Cryptology-Crypto 04, ser. LNCS 3152</i> , pages 41–55. Springer-Verlag, 2004.
A. L. Ferrara, M. Green, S. Hohenberger, and M. Ø. Pedersen. Practical short signature batch verification. In <i>Topics in Cryptology - The Cryptographers' Track at the RSA Conference</i> , volume 5473, pages 309–324. Springer, April 2009.
X. Lin, X. Sun, P. han Ho, and X. Shen. Gsis: A secure and privacy preserving protocol for vehicular communications. In <i>IEEE Transactions on Vehicular Technology</i> , volume 56, pages 3442–3456, 2007.
L. Wei, J. Liu, and T. Zhu. On a group signature scheme supporting batch verification for vehicular networks. In International Conference on Multimedia Information Networking and Security, pages 436–440, Los Alamitos, CA, USA, 2011. IEEE.
L. Zhang, Q. Wu, A. Solanas, and J. Domingo-Ferrer. A scalable robust authentication protocol for secure vehicular communications. In <i>IEEE Transactions on Vehicular Technology 59(4)</i> , pages 1606–1617, 2010.