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 A B S T R A C T 

In this study, comparative analysis of multiple linear regression (MLR) and 
artificial neural network (ANN) for prediction of wear rate and coefficient of 
friction brake pad produced from palm kernel shell was carried out. The inputs 
parameters used for the two models generated using inertia dynamometer 
were the percentages of palm kernel shell, aluminium oxide, graphite, calcium 
carbonate, epoxy resin, interface temperature of the brake pad, and work done 
by brake application. Two model equations were developed using MLR model 
for predicting wear rate and coefficient of friction while the neural network 
architecture  BR 7 [5-3] 2 was used to predict wear rate and coefficient of 
friction. The predicted wear rate and coefficient of friction by MLR model were 
compared with ANN model along with the measured values using statistical 
tools such as means square absolute error (MAE), root means square error 
(RMSE), and Nash-Scutcliffe efficiency (NSE). The results revealed that the 
MLR model outsmarts the ANN model with the values of MAE and RMSE 
reasonably low and NSE reasonably higher. The best MAE and RMSE values of 
0.000 were observed at the three values of measured wear rates and coefficient 
of friction that matched with the predicted values using MLR compared to -
0.0300 and 0.0740 for ANN model. However, the ANN model was equally found 
suitable for the prediction of wear rate and coefficient of friction of brake pads 
developed. The implication of these results is that the two models have the 
capabilities of being used simultaneously when estimating the wear and 
coefficient of friction of brake pads.  
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1. INTRODUCTION  
 
Friction and wear performance constitutes two 
kinds of responses from one tribo-system. The 

phenomenon of material transfer during sliding is 
important from both the scientific and practical 
considerations. As the development of disc brake 
system is always a big challenge for car 
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manufacturers and suppliers due to the complex 
nature of wear mechanisms involved in the system 
[1]. Thus investigating and coming up with model 
equations for the evolution of the tribo-system 
(disc, brake pads) we go a long way in solving the 
friction and wear behaviour problems of 
automotive brakes. According to Zafaruddin and 
Dolas [2] disc brake system has a higher wear 
resistance and easier maintenance as compared to 
other brake system but due to long repetitive 
braking leads to brake failure and cause severe 
wear of brake pad. The authors maintained that 
due to heavy braking there is formation of hot 
spots on brake disc and formation of grooves on 
brake pads and excessive wear leading to failure of 
brake system. Many efforts have been made in the 
development of friction/wear models for 
prediction of wear properties of different 
engineering materials. Ikpambese et al. [1] stated 
that Archad was one of the early researchers to 
develop a linear wear model for metals. Other 
wear models the authors mentioned were 
nonlinear wear model for friction materials in a 
disc brake system developed by Rhee in 1974, and 
finite element model of a brake pad with particular 
emphasis to uncertainties. 
 
Multiple linear regression analysis is a technique 
that allows additional factors to enter the 
analysis separately so that the effect of each can 
be estimated. It is valuable for quantifying the 
impact of various simultaneous influences upon 
a single dependent variable [3] and [4]. 
According to Mata [5] multiple linear regression 
is a method used to model the linear 
relationship between a dependent variable and 
one or more independent variables. That the 
dependent variable is sometimes called the 
response, and the independent variables the 
predictors. Artificial Neural Networks (ANNs) 
are revolutionary computing paradigms that try 
to mimic the biological brain. These ANNs are 
modeling techniques that are especially useful to 
address problems where solutions are not 
clearly formulated or where the relationships 
between inputs and outputs are not sufficiently 
known [6,1]. 
 
The performance evaluation of multiple 
regression and artificial neural network in 
predicting parameters in engineering have been 
carried out by many researchers. Abdulkareem 
and Mohammed [6] investigated the use of 
artificial neural network for the estimation of 

wear and temperature in disc and pad. Two 
types of disc made from aluminum and steel 
were made to slide against the pad under dry 
conditions at different time, rotational speed, 
initial temperature of the disc and load in order 
to examine the wear. The results showed that 
the wear and temperature increase with 
increasing the sliding speed, and load or contact 
time. The authors concluded that the ANN model 
was successful in showing its high capability in 
predicting wear and temperature with the 
results of the model corresponding with the 
experimental results. The modelling of wear of 
organic brake pad using multiple linear 
regression was carried out by [2]. The inputs 
into the model equation for predicting wear rate 
were load, sliding distance and sliding velocity 
and the authors concluded that it will be helpful 
for engineers in making changes in the 
composition which could minimized the wear 
rate by considering the input parameters used. 
 
The machining forces-tool wear relationship of 
an aluminium metal matrix composite using 
multiple regression analysis (MRA) and artificial 
neural network was investigated by [7]. The 
results show that force-wear equation derived 
from MRA was fairly accurate way of predicting 
the attainment of prescribed tool wear. The 
effects of cutting parameters on surface 
roughness and tool wear were investigated in 
turning novel aluminum alloy ash composite by 
[8]. The authors concluded that the relationship 
between cutting responses and input 
parameters held good for more than 97 % and 
the model was adequate. Kialashaki and Reisel 
[9] also used multiple regression and artificial 
neural network for the development of energy-
demand models which were able to predict the 
future energy demand in the residential sector 
of the United States. Mata [5] employed artificial 
neural network and multiple linear regression 
models for the interpretation of concrete dam 
behaviour under environmental load. The 
author concluded that the neural network 
models were more flexible and proved to be 
adequate for months with extreme temperatures 
than the multiple linear regression models with 
the same variables. 
 
Obviously based on the aforementioned studies 
multiple regression analysis and artificial neural 
networks have potential for developing models 
capable of predicting wear and friction of 
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automotive brake pads produced from palm 
kernel shell. The previous studies that employed 
the use of linear regression analysis in the 
modelling of wear failed to provide the model with 
the complex synergy of different influence of 
materials formulation, and operating conditions on 
wear and friction of the friction materials 
investigated. In addition little or no information is 
available from literature on the use of modern and 
traditional approaches for modelling of friction 
and wear of automotive brake pads produced from 
agro wastes.  Hence, this study investigated the use 
of multiple regression analysis in comparison with 
artificial neural network in predicting wear and 
friction of automotive brake pads developed from 
palm kernel fibres. 
 
 
2. MATERIALS AND METHODS 
 
2.1 Brake pad development  
 
The palm kernel nuts after drying were cracked 
manually using stones to release the shells and 
the palm kernel shells (PKS) were sun dried for 
two weeks to reduce the moisture content to 20 
percent. The dried PKS was then ground to 
powder and sieved to 100 µm particle size using 
BS 410 standard sieves to be used as fibre for 
the brake lining formulation. The sieved PKS 
was added in various percentages with other 
additives (Table 1) such as aluminium oxide, 
graphite, calcium carbonate and epoxy resin 
based on commercial brake pad  weight of 176 g. 
Each of the mixtures was one after the other 
transferred  into a designed mould and pressed 
at room  temperature using 100 KN force for 2 
minutes to fabricate full-scale brake samples.  

 
Table 1. Composition of Additives used for Brake 
Pads Samples from PKS. 

Brake Additives 
Samples in percentage by    

weight (% wt) 
S1 S2 S3 S4 S5 S6 

Epoxy- resin 19 40 23 25 15 30 
Palm kernel fibres (PKS) 6 10 27 30 35 40 

Aluminium oxide 0 6 10 5 5 5 
Graphite 5 29 10 5 5 5 

Calcium carbonate 70 15 30 35 40 20 

 
The produced brake pads were then cured at 
250 oC in digital furnace for 90 minutes after 
removal from the hydraulic press. The produced 
samples were finished by polishing them using 
polisher-grinder with various grinding paper of 

various sizes to obtain the final brake pad 
sample as shown in Fig. 1 [10]. 
 

 

Fig. 1. One of the produced samples. 
 

2.2 Inertia dynamometer testing of the 
produced brake pads 

 
The data needed for the modelling of the 
produced brake pad samples were tested using 
Inertia dynamometer located at Anambra State 
Motor Manufacturing Company (ANAMMCO) 
Nigeria. The equipment was utilized to generate 
wear and friction of the produced samples and 
other operating conditions to be used in the 
multiple linear regression and artificial neural 
network models. The produced brake pads were 
one after the other mounted on the brake 
assembly unit of the inertia dynamometer. 
 
The initial rotating speed of the driving motor 
was adjusted to 5.56 m/s with the aid of a 
variable speed drive called tachometer. The 
values of wear rate and coefficient of friction 
were measured (with the aid of the attached 
sensors) after attaining the set speed via a 
computer attached to the equipment. The same 
procedure was repeated for each of the 
produced samples for speeds of 8.33, 11.11, 
16.67, 22.22, and 27.78 m/s to obtain the 
respective values of wear rate and coefficient of 
friction. Other parameters of interest obtained 
by the equipment were brake pads interface 
temperature, power and stopping time for each 
of the samples investigated. 
 
2.3 Determination of the predictors for 

multiple linear regression and artificial 
neural network models 

 
The independent variables otherwise known as 
the predictors to be used for the formulations of 
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the two models were thoroughly screened using 
statistic tool. The three groups of independent 
variables screened were: materials formulation 
represented by the percentages of the raw 
materials shown in Table 1; manufacturing 
conditions represented by moulding 
temperature, moulding load, heat treatment 
time, and moulding time. While the operating 
conditions were represented by brake interface 
temperature and work done by brake 
application. A stepwise forward selection 
procedure by [11] was adopted for the selection 
of the best predictors that have a better 
relationship with wear rate and coefficient of 
friction which were to be the outputs to the two 
models. All the inputs variable to the network 
were one after other correlated with the outputs 
variables and the straight line regression 
subsequently fitted. The variables with the most 
highly correlated variable with R2 as given in 
equation (1) was selected.  
 
The straight line regression equations relating 
wear rate and coefficient of friction with the first 
selected variable (which is the percentages of 
the PKS) with the highest R2 were respectively: 

              𝑊𝑟𝑎𝑡𝑒 = 𝛽0 + 𝑋1𝛽1 + 𝐸, 

               𝐶𝑜𝐹 = 𝜎1 + 𝑋1𝜎1 + 𝐸                (1) 

The hypothesis that 𝛽1 = 0 was tested by 
determining if the F statistics for the regression 
equation was significant by comparing it with 
Fk,n-k-1, 1-α. This procedure was repeated for other 
predictors to eliminate those independent 
variables that have no relationship with the 
outputs. 
 
2.4 Multiple linear regression 
 
Two model equations were formulated for 
predicting wear rate and coefficient of friction as:  

          𝑊𝑟𝑎𝑡𝑒 = 𝛽0 + 𝑋1𝛽1 + 𝑋2𝛽2 + 𝑋3𝛽3 +
                        𝑋4𝛽4+𝑋5𝛽5 + 𝑋6𝛽6 + 𝑋7𝛽7 + 𝐸,           (2a)          

           𝐶𝑜𝐹 = 𝜎0 + 𝑋1𝜎1 + 𝑋2𝜎2 + 𝑋3𝜎3 +
         𝑋4𝜎4+𝑋5𝜎5 + 𝑋6𝜎6 + 𝑋7𝜎7 + 𝐸                       (2b) 

where,   𝑋1 is the % of palm kernel shell, 𝑋2 is 
the % of aluminium oxide, 𝑋3 is the % of 
graphite, 𝑋4  is the % of calcium carbonate, 𝑋5 is 
the % of epoxy resin, 𝑋6 is the interface 
temperature of the brake pad, and 𝑋7 is the 
workdone by brake application as shown in 
Table 2. While E is the error between the 

experimental and predicted values. The work 
done by brake application (𝑋7 ) was calculated 
by multiplying braking power and stopping time 
as reported by [12] in equation (3): 

    𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 (𝑘𝐽) = 𝑝𝑜𝑤𝑒𝑟 × 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔𝑡𝑖𝑚𝑒     (3)              

𝛽0 and 𝜎0 are the constants to wear rate and 
coefficient of friction, 𝛽1−𝛽7 and 𝜎1−𝜎7 are the 
coefficients of the inputs for the wear rate and 
coefficient of friction respectively.  
 
Table 2. Training and testing inputs to ANN. 

Input 
Training 
data set 
T1-T30 

Samples 

S1 S2 S3 S4 S5 S6 

Epoxy- resin 
(%) (X5) 

1.5-70 19 40 23 25 15 30 

Palm kernel 
fibres (PKS) 

(%) (X1) 
0.5-60 6 10 27 30 35 40 

Aluminium 
oxide (%) (X2) 

0.12-15 0 6 10 5 5 5 

Graphite (%) 
(X3) 

2-40 5 29 10 5 5 5 

Calcium 
carbonate (%) 

(X4) 
15-100 70 15 30 35 40 20 

Brake interface 
temperature 

(oC) (X6) 
300-1000 690 650 770 800 610 600 

Workdone by 
brake 

application (kJ) 
(X7) 

1.67-10 3.84 4.83 5.91 4.01 5.62 2.57 

 
A Reglin function in the SCILAB environment for 
multiple regression with sample codes shown in 
Appendix 1 was utilized to evaluate the 
coefficients  𝛽0, − 𝛽7  and  𝜎0, − 𝜎7 for wear rate 

and coefficient of friction respectively. The four 
statistical criteria used in validating the 
regression models were mean absolute error 
(MAE), root means square error (RMSE), Nash-
Scutcliffe efficiency (NSE)   given by the 
equations  (4), (5) and (6) [12,13]:  

                𝑀𝐴𝐸 =
1

𝑁
∑ (𝑃𝑖 − 𝐸𝑖)𝑁

𝑖=1                            (4) 

                    𝑅𝑀𝑆𝐸 = √∑ (𝑃𝑖−𝐸𝑖)2𝑁
𝑖=1

𝑁
                             (5) 

𝑁𝑆𝐸 = 1 −
∑ (𝐸𝑖−𝑃𝑖)2𝑁

𝑖=1

∑ (𝐸𝑖−𝐸̅𝑖)2𝑁
1=1

                           (6)                                              

where E is the experimental value, P is the 
predicted value by multiple regression model Ē 

and   are the mean value of E and P 
respectively, N is the number of sample. 
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2.5 Artificial neural network modelling 
 
The artificial neural network model for predicting 
wear rate and coefficient of friction was based on 
the experimental data generated by the inertia 
dynamometer. The same inputs used as presented 
in Table 2 for multiple linear regression models for 
prediction of wear rate and coefficient were 
adopted.  The inputs data T1-T2 were selected 
outside the ranges of each of the inputs and were 
used for the training of the neural network to 
obtain the neural network architecture that 
matched the inputs/outputs relationship. Several 
neural network architectures were trained with 
MATLAB 7.90 using different algorithms 
(Resilient  backpropagation, Levernberg 
Marquardt, and Bayesian Regulation etc), and 
layers such as one layered, two layered and three 
layered networks.  However, prior to training of 
the neural network, the inputs such as brake 
interface temperature and workdone by brake 
applications were scaled within the value of 0-1 
using equation (7) [14]. While the experimental 
output wear rate (Table 3) was normalized using 
the relation in equation (8) reported by [15]. The 
reason for this is that input and output data set 
are measured in different units and needed to be 
normalized into the dimensionless units to 
remove the arbitrary effect of similarity among 
the data. The data set S1-S2 was employed for 
testing the prediction capabilities of the artificial 
neural network for the prediction of wear rate 
and coefficient of friction. The relationship 
between the inputs and outputs is shown in Fig. 1. 
The ANN model was also validated using 
statistical tools given in equations (4-6). 

             𝐼𝑆𝑘𝑎𝑙 = 1 +
(𝐼𝐶𝑢𝑟𝑟−𝐼𝑀𝑎𝑥)

(𝐼𝑀𝑎𝑥−𝐼𝑀𝑖𝑛)
                   (7)                                                                    

        𝑦𝑛 =
𝑦−0.95𝑦𝑚𝑖𝑛

1.05𝑦𝑚𝑎𝑥−0.95𝑦𝑚𝑖𝑛
                   (8)                                                                                                                                                                                             

Where: 𝐼𝐶𝑢𝑟𝑟-current input value, 𝐼𝑀𝑎𝑥-
maximum input value and 𝐼𝑀𝑖𝑛-minimum input 
value, 𝑦𝑛 is the normalized value of 𝑦; 𝑦 is the 
experimental data, 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the max. 
and min values of y respectively 
 
Table 3. Outputs generated from Inertia 
dynamometer. 

Output 
Samples 

S1 S2 S3 S4 S5 S6 

Wear rate 
(mg/m) 

3.59 3.54 3.56 3.52 3.91 4.08 

Coefficient of 
friction 

0.17 0.35 0.18 0.19 0.21 0.2 

3. RESULTS AND DISCUSSION 
 

3.1 Multiple linear regression (MLR) 

 

The inputs representing the manufacturing 
conditions were eliminated as there was no 
relationship with the outputs (wear rate and 
coefficient of friction); as their values were 
constant for each of the samples produced. 
The regression constants and coefficients for 
the inputs shown in equations (2a) and (2b) 
were obtained using measured data with the 
aid of SCILAB software version 5.4.1. These 
constants and coefficients were substituted 
into equations (2a) and (2b) to formulate 
multiple regression models for predicting 
wear rate and coefficient of friction shown in 
equations (9a) and (9b) respectively: 

              𝑊𝑟𝑎𝑡𝑒 = 5.409 + 5.85 × 10−4𝑋1 +
             0.0153𝑋2 − 0.02𝑋3 − 0.002𝑋4 +
             0.0062𝑋5 − 0.0024𝑋6 − 0.003𝑋7 +
             2.584 × 10−15.                                              (9a)                                                                       

              𝐶𝑜𝐹 = 0.095 + 0.0031𝑋1 − 0.0121𝑋2 +
              0.0111𝑋3 − 2.57 × 10−4𝑋4 −
              0.0018𝑋5 + 7.24 × 10−5𝑋6 + 9.2 ×
              10−4𝑋7 + 6.28 × 10−16.                           (9b)                                                           

The negative coefficients observed in equations 
(9a) and (9b) for some of the inputs implied that 
as the individual responses increased there was 
decrease in the input parameters and vice versa. 
This confirms the earlier findings reported by 
[7,12]. The developed models using MLR were 
employed to predict the wear rate and 
coefficient of friction as presented in Tables 4 
and 5 respectively. 
 
Tables 4 and 5 show the values of the predicted 
and measured wear rate and coefficient of 
friction with their statistical tools used in 
validating the model. It was observed that the 
selected neural network prediction of the wear 
rate and coefficient of friction were in 
agreement with the measured values. This was 
confirmed by the values of MAE and RMSE 
reasonably low; R and NSE reasonably high as 
reported by [14,6].  
 
3.2 Artificial neural network model (ANN) 
 
The neural network architecture BR 7 [5-3] 2 
shown in Fig. 2 was discovered to match the 
inputs for the prediction of wear rate and 
coefficient of friction after series of training.  
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          Wear rate 

          rate 

Coefficient of 

friction 

Table 4. The predicted and measured wear rates with performance statistics using MLR and ANN Models. 

 Multiple Linear regression Model Artificial neural network model 
Measured 
Wear rate  
(mg/m) 

Predicted 
Wear rate 
(mg/m) 

MAE RMSE NSE 
Predicted 
Wear rate 
(mg/m) 

MAE RMSE NSE 

3.59 3.59 0.0000 0.0000 1.0000 3.41 -0.030 0.0740 0.8990 
3.54 3.54 0.0000 0.0000 1.0000 3.54 0.0000 0.0000 1.0000 
3.56 3.58 0.0033 0.0087 0.9780 3.60 0.0007 0.0163 0.9184 
3.52 3.53 0.0001 0.0041 0.9970 3.52 0.0000 0.0000 1.0000 
3.91 3.89 -0.0033 0.0082 0.9910 3.80 -0.018 0.0450 0.7256 
4.08 4.08 0.0000 0.0000 1.0000 4.03 -0.0083 0.0500 0.9827 

 
Table 5. The predicted and measured coefficient of friction (CoF) with performance statistics using MLR and 
ANN models. 

 Multiple Linear regression Model Artificial neural network model 
Measured 
Coeff. of 
Friction 

Predicted 
Coeff. of 
Friction 

MAE RMSE NSE 
Predicted 
Coeff. of 
Friction 

MAE RMSE NSE 

0.17 0.173 0.0005 0.0019 0.9874 0.19 0.0030 0.0290 0.8166 
0.35 0.35 0.0000 0.0000 1.0000 0.39 0.0067 0.0163 0.9010 
0.18 0.18 0.0000 0.0000 1.0000 0.23 0.0083 0.0204 0.8999 
0.19 0.193 0.0005 0.0012 0.9873 0.19 0.0000 0.0000 1.0000 
0.21 0.21 0.0000 0.0000 1.0000 0.199 -0.0018 0.0045 0.9819 
0.25 0,2 0.0083 0.0204 0.9081 0.25 0.0083 0.0204 0.9103 

 
        Input layer         Hidden layer         Output layer 

 

                                      

                                                

 

 

                                    

Fig. 2. Neural network architecture used for the 

prediction of Wear rate and Coefficient of friction. 
 
The choice was based on the training 
performance indicators that gave a value R = 
0.9983 at epoch of 17 with the overall R= 
0.09752 for training validation and testing. 
These values were in consonance with the 
works of [10,14] for the utilization of ANN for 
predicting compressibility and oil absorption 
of gasket produced from palm kernel fibres. 
 
3.3 Comparison of multiple linear regression 

and artificial neural network models 
 
Tables 4 and 5 present the statistical indicators 
used for the comparison between the MLR 

model and ANN model for prediction of wear 
rate and coefficient of friction. The statistical 
analyses used for the validation of the models 
were mean absolute error (MAE), Root mean 
square Error (RMSE), and Nash-Scutcliffe 
efficiency (NSE). The values of statistical 
indicators MAE, RMSE, and NSE for validation of 
the multiple regression model for prediction of 
wear rate ranged from  -0.0033 – 0.000, 0.000 – 
0.0087, and 0.9780 - 1.0000, respectively. While 
that of coefficient of friction varied from 
0.00005-.0.0000, 0.0000-0.0204, and 0.9081-
1.0000 respectively for MAE, RMSE, and NSE. 
This result was in consonance with the studies 
undertaken by [15,1] where the MAE, RMSE and 
NSE were within the acceptable limit. 
 
While the corresponding values of the statistical 
indicators for ANN model varied from -0.0018-
0.0000, 0.0000-0.029, and 0.8166-1.0000 for 
MAE, RMSE and NSE respectively. The statistical 
indicators show that the prediction of the wear 
rate and coefficient of friction employing the 
multiple regression models was satisfactory 
with the values of, MAE, and RMSE, reasonably 
low; NSE values reasonably high for almost all 
the measured values. The predicted wear rate 
values of 3.59, 3.56 and 4.08 mg/m using MLR 
model were the same as the experimental values 
compared to two values of 3.52 and 4.08 mg/m 
obtained using ANN model. While the predicted 
coefficient of friction values of 0.35, 0.18 and 

Inputs  X1-X2 
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0.21 using MLR model were also the same as the 
experimental values compared to only one value 
of 0.19 obtained using ANN model. This implies 
that MLR model predicted wear rate and 
coefficient of friction of the automotive brake 
pads developed from palm kernel shell with high 
accuracy than the ANN model. 
 
The two models were proven to be suitable for 
predicting the measured values of wear rate and 
coefficient of friction. The wear rate was observed 
to increase with increasing percentage of palm 
kernel shell used for both MLR and ANN models 
along with measured values.  However, the MLR 
model proved to be better than ANN model as seen 
in Fig. 3.  The increased in wear rates and 
coefficient of friction (Fig. 3) with increasing 
percentage of PKS is due to reduced wettability of 
the shell which act as fibre by the epoxy used as 
binders. Thus leading to brake pads with more 
pores which weaken the ability of the epoxy to 
hold the friction materials together thereby 
increasing the wear rate as reported by [12,14]. 
 

 
Fig. 3. Comparison of the wear rate obtained by MLR 
and ANN models with measured values. 
 

The comparison between the wear rates obtained 
from MLR and ANN models against palm kernel 
shell clearly showed that MLR model was closer to 
the measured values compared to ANN model. 
This was confirmed by good correlation as 
presented in Fig. 4 with R2=0.9989 between the 
predicted and measured using MLR than that of 
ANN model with R2=0.912 as presented in Fig. 5. 
Similarly the accuracy of predicting coefficient of 
friction using MLR and ANN models along with 
measured values was graphically compared as 
presented in Fig. 6. It was also clearly shown that 
the MLR model was superior over ANN model and 
increased with increasing percentage of PKS as 
confirmed by higher correlation value of 0.9124 
for MLR model presented in Fig. 7 against 0.8885 
for ANN model shown in Fig. 8 as reported by [12].  

 

Fig. 4. Scatter plot of the measured and predicted wear 
rate derived from multiple linear regression model. 

 

 

Fig. 5. Scatter plot of the measured and predicted 
wear rate derived from ANN model. 

 

 
Fig. 6. Comparison of coefficient of friction obtained 
by MLR and ANN models with measured values. 
 

 
Fig. 7. Scatter plot of the measured and predicted 
coefficient of friction derived from multiple linear 
regression model. 
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Fig. 8. Scatter plot of the measured and predicted 
coefficient of friction derived from ANN model. 
 
The analysis of variance (ANOVA) shown in 
Appendix 2a and 2b was carried out to 
determine whether there is significant 
difference between the MLR and ANN models 
together with measured values in terms of wear 
rate and coefficient of friction at 5 % significant 
level. The ANOVA results revealed that there 
was no significant differences (Ho: F < Fcrit; 
0.097505 < 3.68232 for wear rate; and 0.181172 
< 3.68232 for coefficient of friction) between 
MLR and ANN models along with the measured 
values. Thus suggesting that the values of wear 
rate and coefficient of friction for the two 
models in question are statistically the same 
with the measured values. 
 
 
4. CONCLUSION 
 
The comparative analysis of the MLR and ANN 
models for predicting wear rate and coefficient 
of friction for automotive brake pads developed 
from palm kernel shell was successfully carried 
out. The conclusions drawn were: 

1. Both MLR and ANN models approaches 
have potential for predicting the wear rate 
and coefficient of friction of automotive 
brake pads. 

2. MLR model performed better in predicting 
wear rate and coefficient of friction 
compared to ANN model based on the 
statistical indicators and visual assessment. 
That is the two MLR equations are capable 
of predicting the wear rate and coefficient of 
friction to an appreciable level of accuracy. 

3. That the two models can be used as 
complementary to each other in making 
good decision concerning the prediction of 
wear rate and coefficient of friction of brake 

pads and other fiction composites provided 
the inputs are identified. 
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Appendix 1 
 
Sample Code for Multiple Regressions using the 
Reglin Function: 
 
x1=[6 10 27 30 35 40] 
x2=[0 6 10 5 5 5] 
x3=[5 29 10. 5 5 5] 
x4=[70 15 30 35 40 20] 
x5=[19 40 23 25 15 30] 
x6=[690 650 770 800 610 600] 
x7=[3.84 4.83 5.91 4.01 5.62 2.57] 
y=[3.59 3.54 3.56 3.52 3.91 4.08] 
X=[x1; x2; x3; x4; x5; x6; x7];// create matrix x from 
the six rows 
[a, a0, sigma]=reglin (X,y);// perform a multiple 
regression analysis of y as a function of x1, x2, x3, x4, 
x5,x6  and x7 

ypred = a0 + a(1)*x1 + a(2)*x2 + a(3)*x3 + a(4)*x4 + 
a(5)*x5 + a(6)*x6 + a(7)*x7;// fitted data 
wn = scf() ;//create new graphic window 
plot(y, ypred, "*");//plot given data with fitted data 
d = gca();// get current graphic attributes 
d.children.children.thickness = 3;// make the plot 
lines 3 points thick 
Xtitle("",Given data", "Fitted data");// specify axes 
titles 
filename = myreglindir + basename(myfile) + "-
plot.png";// create filename from basename of file 
xs2png(wn, filename);// save graphic in PNG format 
result = ["a0" "a(1)" "a(2)" "a(3)" "a(4)" "a(5)" "a(6)" 
"a(7)"];// first row of data 
result(2,:) = string([a0 a]);// convert coefficients to 
string for export 
result(:,$) = result(:,$) + "\\\ hline";//add end of line 
commands for LaTex table 
filename = myeeglindir + basename(myfile) + 
"text";// filename for saving results 
csvWrite(result, filename, "&");// use "&" to separate 
the colums 

 
Appendix 2 
 
Comparison of wear rates values from MLR and ANN 
models together with measured values using Analysis 
of Variance (ANOVA):   
 
Source of 
Variation 

SS df MS F P-value F crit 

Between 
Groups 

0.010344 2 0.005172 0.097505 0.907668 3.68232 

Within 
Groups 

0.795683 15 0.053046 
   

Total 0.806028 17 
    

Ha: F ˃ Fcrit       Ho: F ≤ Fcrit  , α = 0.05 
There is no significant  
 

Appendix 3 
 
Comparison of coefficient of friction values from MLR 
and ANN models together with measured values 
using Analysis of Variance (ANOVA): 

 
Source of 
Variation 

SS df MS F P-value F crit 

Between 
Groups 

0.001788 2 0.000894 0.181172 0.836091 3.68232 

Within 
Groups 

0.074023 15 0.004935 
  

 

Total 0.075811 17 
   

 

Ha: F ˃ Fcrit       Ho: F ≤ Fcrit  , α = 0.05 
There is no significant  
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